Emerging Techniques to Develop Biotic Stress Resistance in Fruits and Vegetables

  • Chapter
  • First Online:
Sustainable Agriculture in the Era of the OMICs Revolution

Abstract

Biotic stress is one of the prime causes that limit plant growth and development. Since fruit crops are mostly perennial, biotic stress has a significant impact on them. Modern biotechnology has the potential to establish biotic stress-resistant cultivars that improve farming production and profitability. It gives farmers more leverage by increasing their productivity and improving their nutritional security. The utilization of genes and biotechnological techniques is being used to alter agriculture through the production of resistant transgenic fruits and vegetables. Therefore, assessing the impact of these new biotic stresses and develo** novel strategies for their control is crucial, which have emerged in recent years. New research innovations are needed to devise an effective preventive and eradicative strategy for incorporating these biotic stresses, such as deciphering basic and molecular mechanisms of host-pathogen interactions, endophytic mechanisms of plant protection, host resistance strengthening by gene cloning, recombinant DNA technologies, nanotechnology in pest management, RNA biology, and gene-editing technologies such as CRISPR-Cas9. This study includes a detailed overview of develo** resistance in fruits and vegetables to new biotic stresses, as well as an overview of novel scientific breakthroughs around the world. These scientific advancements could be used to develop more effective techniques to induce biotic stress resistance in fruit and vegetable crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 235.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdul Malik, N. A., Kumar, I. S., & Nadarajah, K. (2020). Elicitor and receptor molecules: Orchestrators of plant defense and immunity. International Journal of Molecular Sciences, 21(3), 963.

    Article  CAS  Google Scholar 

  • Abd-Elsalam, K. A., & Alghuthaymi, M. A. (2015). Nanobiofungicides: are they the Next-Generation of Fungicides?. Journal of Nanotech Mater Sciences, 2(2): 38–40.

    Google Scholar 

  • Abudayyeh, O. O., Gootenberg, J. S., Essletzbichler, P., Han, S., Joung, J., Belanto, J. J., et al. (2017). RNA targeting with CRISPR–Cas13. Nature, 550(7675), 280–284.

    Article  Google Scholar 

  • Ádám, A. L., Nagy, Z. Á., Kátay, G., Mergenthaler, E., & Viczián, O. (2018). Signals of systemic immunity in plants: Progress and open questions. International Journal of Molecular Sciences, 19(4), 1146.

    Article  Google Scholar 

  • Afzal, I., Shinwari, Z. K., Sikandar, S., & Shahzad, S. (2019). Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiological Research, 221, 36–49.

    Article  CAS  Google Scholar 

  • Ahn, C. (2007). Necrotizing fasciitis: Reviewing the causes and treatment strategies. Advances in Skin & Wound Care, 20(5), 288–293.

    Article  Google Scholar 

  • Ahuja, G., Soda, G., & Zaheer, A. (2012). The genesis and dynamics of organizational networks. Organization science, 23(2), 434–448.

    Article  Google Scholar 

  • Ai, Q., Xu, H., Mai, K., Xu, W., Wang, J., & Zhang, W. (2011). Effects of dietary supplementation of Bacillus subtilis and fructooligosaccharide on growth performance, survival, non-specific immune response and disease resistance of juvenile large yellow croaker, Larimichthys crocea. Aquaculture, 317(1–4), 155–161.

    Article  CAS  Google Scholar 

  • Aitken, R. J., Chaudhry, M. Q., Boxall, A. B. A., & Hull, M. (2006). Manufacture and use of nanomaterials: Current status in the UK and global trends. Occupational Medicine, 56(5), 300–306.

    Article  CAS  Google Scholar 

  • Akram, M., et al. (2020a). Genetic engineering of novel products of health significance: Recombinant DNA technology. In C. Egbuna & T. G. Dable (Eds.), Functional foods and nutraceuticals. Springer. https://doi.org/10.1007/978-3-030-42319-3_26

    Chapter  Google Scholar 

  • Akram, M., Munir, N., Daniyal, M., Egbuna, C., Găman, M. A., Onyekere, P. F., & Olatunde, A. (2020b). Vitamins and minerals: Types, sources and their functions. In Functional foods and nutraceuticals (pp. 149–172). Springer.

    Google Scholar 

  • Aldon, D., Mbengue, M., Mazars, C., & Galaud, J. P. (2018). Calcium signalling in plant biotic interactions. International Journal of Molecular Sciences, 19(3), 665.

    Article  Google Scholar 

  • Alghuthaymi, M. A., Almoammar, H., Rai, M., Said-Galiev, E., & Abd-Elsalam, K. A. (2015). Myconanoparticles: Synthesis and their role in phytopathogens management. Biotechnology & Biotechnological Equipment, 29(2), 221–236.

    Article  CAS  Google Scholar 

  • Ali, S., Ganai, B. A., Kamili, A. N., Bhat, A. A., Mir, Z. A., Bhat, J. A., et al. (2018a). Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiological Research, 212, 29–37.

    Article  Google Scholar 

  • Ali, Z., Mahas, A., & Mahfouz, M. (2018b). CRISPR/Cas13 as a tool for RNA interference. Trends in Plant Science, 23(5), 374–378.

    Article  CAS  Google Scholar 

  • Aman, R., Ali, Z., Butt, H., Mahas, A., Aljedaani, F., Khan, M. Z., et al. (2018). RNA virus interference via CRISPR/Cas13a system in plants. Genome Biology, 19(1), 1–9.

    Article  Google Scholar 

  • Aragão, F. J., & Faria, J. C. (2009). First transgenic geminivirus-resistant plant in the field. Nature Biotechnology, 27(12), 1086–1088.

    Article  Google Scholar 

  • Bai, Y., Sunarti, S., Kissoudis, C., Visser, R. G., & van der Linden, C. (2018). The role of tomato WRKY genes in plant responses to combined abiotic and biotic stresses. Frontiers in plant science, 9, 801.

    Google Scholar 

  • Bari, R., & Jones, J. D. (2009). Role of plant hormones in plant defence responses. Plant Molecular Biology, 69(4), 473–488.

    Article  CAS  Google Scholar 

  • Barrangou, R., & Doudna, J. A. (2016). Applications of CRISPR technologies in research and beyond. Nature Biotechnology, 34(9), 933–941.

    Article  CAS  Google Scholar 

  • Barrett, D. M., & Lloyd, B. (2012). Advanced preservation methods and nutrient retention in fruits and vegetables. Journal of the Science of Food and Agriculture, 92(1), 7–22. https://doi.org/10.1002/jsfa.4718

    Article  CAS  Google Scholar 

  • Bauer, W. D., & Mathesius, U. (2004). Plant responses to bacterial quorum sensing signals. Current Opinion in Plant Biology, 7(4), 429–433.

    Article  CAS  Google Scholar 

  • Bernard, G. C., Egnin, M., & Bonsi, C. (2017). The impact of plant-parasitic nematodes on agriculture and methods of control. Nematology-concepts, diagnosis and control, 10, 121–151.

    Google Scholar 

  • Bigeard, J., Colcombet, J., & Hirt, H. (2015a). Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant, 8(4), 521–539.

    Article  CAS  Google Scholar 

  • Bigeard, J., Colcombet, J., & Hirt, H. (2015b). Signaling mechanism in pattern-triggered immunity (PTI). Molecular Plant, 8, 521–539.

    Article  CAS  Google Scholar 

  • Bjornson, M., Benn, G., Song, X., Comai, L., Franz, A. K., Dandekar, A. M., et al. (2014). Distinct roles for mitogen-activated protein kinase signaling and CALMODULIN-BINDING TRANSCRIPTIONAL ACTIVATOR3 in regulating the peak time and amplitude of the plant general stress response. Plant Physiology, 166(2), 988–996.

    Article  CAS  Google Scholar 

  • Boller, T., & Felix, G. (2009). A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 60, 379–406.

    Article  CAS  Google Scholar 

  • Bonfim, K., Faria, J. C., Nogueira, E. O., Mendes, É. A., & Aragão, F. J. (2007). RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Molecular Plant-Microbe Interactions, 20(6), 717–726.

    Article  CAS  Google Scholar 

  • Boudsocq, M., Willmann, M. R., McCormack, M., Lee, H., Shan, L., He, P., et al. (2010). Differential innate immune signalling via Ca2+ sensor protein kinases. Nature, 464(7287), 418–422.

    Article  CAS  Google Scholar 

  • Breeze, E. (2019). State of (In) flux: Action of a CNGC Ca2+ channel in defense against herbivory.

    Google Scholar 

  • Cabral-Pinto, M. M., Inácio, M., Neves, O., Almeida, A. A., Pinto, E., Oliveiros, B., & da Silva, E. A. F. (2020). Human health risk assessment due to agricultural activities and crop consumption in the surroundings of an industrial area. Exposure and Health, 12(4), 629–640.

    Article  CAS  Google Scholar 

  • Chen, X., Yang, H., Gan, C., Yuan, R., Han, Z., & Li, Y. (2020). Transcriptomic analysis of the phytotoxic effects of 1-allyl-3-methylimidazolium chloride on the growth and plant hormone metabolic pathways of maize (Zea mays L.) seedlings. Chemosphere, 241, 125013.

    Article  CAS  Google Scholar 

  • Chhipa, H. (2017). Nanofertilizers and nanopesticides for agriculture. Environmental Chemistry Letters, 15(1), 15–22.

    Article  CAS  Google Scholar 

  • Chiasson, D. M., Haage, K., Sollweck, K., Brachmann, A., Dietrich, P., & Parniske, M. (2017). A quantitative hypermorphic CNGC allele confers ectopic calcium flux and impairs cellular development. eLife, 6, e25012.

    Article  Google Scholar 

  • Chin, K., DeFalco, T. A., Moeder, W., & Yoshioka, K. (2013). The Arabidopsis cyclic nucleotide-gated ion channels AtCNGC2 and AtCNGC4 work in the same signaling pathway to regulate pathogen defense and floral transition. Plant Physiology, 163(2), 611–624.

    Article  CAS  Google Scholar 

  • Chitra, K., & Annadurai, G. (2013). Antimicrobial activity of wet chemically engineered spherical shaped ZnO nanoparticles on food borne pathogen. International Food Research Journal, 20(1), 59–64.

    CAS  Google Scholar 

  • Chung, C. C., Lin, Y. K., Chen, Y. C., Kao, Y. H., Lee, T. I., & Chen, Y. J. (2020). Vascular endothelial growth factor enhances profibrotic activities through modulation of calcium homeostasis in human atrial fibroblasts. Laboratory Investigation, 100(2), 285–296.

    Article  CAS  Google Scholar 

  • Collinge, S. K. (2009). Ecology of fragmented landscapes. JHU Press.

    Book  Google Scholar 

  • Conn, V. M., Walker, A. R., & Franco, C. M. M. (2008). Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 21(2), 208–218.

    Article  CAS  Google Scholar 

  • CTNBio, Brazil. (2018). National biosafety technical commission normative resolution No. 16. https://agrobiobrasil.org.br/wp-content/uploads/2018/05/Normative-Resolution-16-of-January-15-2018.pdf. (March 12, 2019).

  • Cui, S., Ling, P., Zhu, H., & Keener, H. M. (2018). Plant pest detection using an artificial nose system: A review. Sensors, 18(2), 378.

    Article  Google Scholar 

  • Dangl, J. L., & Jones, J. D. (2001). Plant pathogens and integrated defence responses to infection. Nature, 411(6839), 826–833.

    Article  CAS  Google Scholar 

  • Dangl, J. L., & McDowell, J. M. (2006). Two modes of pathogen recognition by plants. Proceedings of the National Academy of Sciences, 103(23), 8575–8576.

    Article  CAS  Google Scholar 

  • Dangl, J. L., Horvath, D. M., & Staskawicz, B. J. (2013). Pivoting the plant immune system from dissection to deployment. Science, 341(6147), 746–751.

    Article  CAS  Google Scholar 

  • Das, M., Saxena, N., & Dwivedi, P. D. (2009). Emerging trends of nanoparticles application in food technology: Safety paradigms. Nanotoxicology, 3(1), 10–18.

    Article  CAS  Google Scholar 

  • DeFalco, T. A., Moeder, W., & Yoshioka, K. (2016). Opening the gates: Insights into cyclic nucleotide-gated channel-mediated signaling. Trends in Plant Science, 21(11), 903–906.

    Article  CAS  Google Scholar 

  • Dodds, P. N., & Rathjen, J. P. (2010). Plant immunity: Towards an integrated view of plant–pathogen interactions. Nature Reviews Genetics, 11(8), 539–548.

    Article  CAS  Google Scholar 

  • Dolatabadian, A., Bayer, P. E., Tirnaz, S., Hurgobin, B., Edwards, D., & Batley, J. (2020). Characterization of disease resistance genes in the Brassica napus pangenome reveals significant structural variation. Plant Biotechnology Journal, 18, 969–982.

    Article  CAS  Google Scholar 

  • Dong, P., Wang, H., Fang, T., Wang, Y., & Ye, Q. (2019). Assessment of extracellular antibiotic resistance genes (eARGs) in typical environmental samples and the transforming ability of eARG. Environment International, 125, 90–96.

    Article  CAS  Google Scholar 

  • Doughari, J. (2015). An overview of plant immunity. Journal of Plant Pathology and Microbiology, 6(11), 10–4172.

    Google Scholar 

  • Dry, I. B., Rigden, J. E., Krake, L. R., Mullineaux, P. M., & Rezaian, M. A. (1993). Nucleotide sequence and genome organization of tomato leaf curl geminivirus. Journal of General Virology, 74(1), 147–151.

    Article  CAS  Google Scholar 

  • Dudareva, N., Negre, F., Nagegowda, D. A., & Orlova, I. (2006). Plant volatiles: recent advances and future perspectives. Critical reviews in plant sciences, 25(5), 417–440.

    Google Scholar 

  • F. A. O., World Health Organization, & WHO Expert Committee on Food Additives. (2017). Evaluation of certain contaminants in food: Eighty-third report of the joint FAO/WHO expert committee on food additives. World Health Organization.

    Google Scholar 

  • FAO. (2009). How to feed the world in 2050. In Executive summary proceedings of the expert meeting on how to feed the world in 2050. Food and agriculture organization. https://www.fao.org/fleadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf

  • Foyer, C. H. (2018). Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environmental and experimental botany, 154, 134–142.

    Google Scholar 

  • Franceschetti, M., Maqbool, A., Jiménez-Dalmaroni, M. J., Pennington, H. G., Kamoun, S., & Banfield, M. J. (2017). Effectors of filamentous plant pathogens: Commonalities amid diversity. Microbiology and Molecular Biology Reviews, 81(2), e00066–e00016.

    Article  CAS  Google Scholar 

  • Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., & Galdiero, M. (2015). Silver nanoparticles as potential antibacterial agents. Molecules, 20(5), 8856–8874.

    Article  CAS  Google Scholar 

  • Fu, Z. Q., & Dong, X. (2013). Systemic acquired resistance: Turning local infection into global defense. Annual Review of Plant Biology, 64, 839–863.

    Article  CAS  Google Scholar 

  • Fürstenberg-Hägg, J., Zagrobelny, M., & Bak, S. (2013). Plant defense against insect herbivores. International journal of molecular sciences, 14(5), 10242–10297.

    Google Scholar 

  • Fuchs, M., & Gonsalves, D. (2007). Safety of virus-resistant transgenic plants two decades after their introduction: Lessons from realistic field risk assessment studies. Annual Review of Phytopathology, 45, 173–202.

    Article  CAS  Google Scholar 

  • Galvez, L. C., Banerjee, J., Pinar, H., & Mitra, A. (2014). Engineered plant virus resistance. Plant Science, 228, 11–25.

    Article  CAS  Google Scholar 

  • Giordano, M., Petropoulos, S. A., & Rouphael, Y. (2021). Response and defence mechanisms of vegetable crops against drought, heat and salinity stress. Agriculture, 11(5), 463.

    Article  CAS  Google Scholar 

  • Gond, S. K., Bergen, M. S., Torres, M. S., White, J. F., & Kharwar, R. N. (2015). Effect of bacterial endophyte on expression of defense genes in Indian popcorn against Fusarium moniliforme. Symbiosis, 66(3), 133–140.

    Article  CAS  Google Scholar 

  • Gouveia, B. C., Calil, I. P., Machado, J. P. B., Santos, A. A., & Fontes, E. P. (2017). Immune receptors and coreceptors in antiviral innate immunity in plants. Frontiers in microbiology, 7, 2139.

    Google Scholar 

  • Hajong, M., Devi, N. O., Debbarma, M., & Majumder, D. (2019). Nanotechnology: An emerging tool for management of biotic stresses in plants. In R. Prasad (Ed.), Plant nanobionics. Nanotechnology in the life sciences. Springer. https://doi.org/10.1007/978-3-030-16379-2_11

    Chapter  Google Scholar 

  • Hamamouch, N., Li, C., Seo, P. J., Park, C. M., & Davis, E. L. (2011). Expression of Arabidopsis pathogenesis-related genes during nematode infection. Molecular Plant Pathology, 12(4), 355–364.

    Article  CAS  Google Scholar 

  • Hanley-Bowdoin, L., Bejarano, E. R., Robertson, D., & Mansoor, S. (2013). Geminiviruses: Masters at redirecting and reprogramming plant processes. Nature Reviews Microbiology, 11(11), 777–788.

    Article  CAS  Google Scholar 

  • Hattori, S. I., Higshi-Kuwata, N., Raghavaiah, J., Das, D., Bulut, H., Davis, D. A., et al. (2020). GRL-0920, an indole chloropyridinyl ester, completely blocks SARS-CoV-2 infection. MBio, 11(4), e01833–e01820.

    Article  CAS  Google Scholar 

  • Hayles, J., Johnson, L., Worthley, C., & Losic, D. (2017). Nanopesticides: A review of current research and perspectives. New Pesticides and Soil Sensors, 193–225. ISBN 9780128042991

    Google Scholar 

  • Hu, Q., Niu, Y., Zhang, K., Liu, Y., & Zhou, X. (2011). Virus-derived transgenes expressing hairpin RNA give immunity to Tobacco mosaic virus and Cucumber mosaic virus. Virology Journal, 8(1), 1–11.

    Article  Google Scholar 

  • Iqbal, Z., Shariq Iqbal, M., Singh, S. P., & Buaboocha, T. (2020). Ca2+/calmodulin complex triggers CAMTA transcriptional machinery under stress in plants: signaling cascade and molecular regulation. Frontiers in Plant Science, 11, 598327.

    Google Scholar 

  • Jacob, F., Kracher, B., Mine, A., Seyfferth, C., Blanvillain-Baufumé, S., Parker, J. E., et al. (2018). A dominant-interfering camta3 mutation compromises primary transcriptional outputs mediated by both cell surface and intracellular immune receptors in Arabidopsis thaliana. New Phytologist, 217(4), 1667–1680.

    Article  CAS  Google Scholar 

  • Jaiswal, M., Dudhe, R., & Sharma, P. K. (2015). Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech, 5(2), 123–127.

    Article  Google Scholar 

  • Juge, N. (2006). Plant protein inhibitors of cell wall degrading enzymes. Trends in plant science, 11(7), 359–367.

    Google Scholar 

  • Jain, D., & Khurana, J. P. (2018). Role of pathogenesis-related (PR) proteins in plant defense mechanism. In Molecular aspects of plant-pathogen interaction (pp. 265–281). Springer, Singapore.

    Google Scholar 

  • James, Z. M., & Zagotta, W. N. (2018). Structural insights into the mechanisms of CNBD channel function. Journal of General Physiology, 150(2), 225–244.

    Article  CAS  Google Scholar 

  • Jan, R., Khan, M. A., & Gómez-Aguilar, J. F. (2020). Asymptomatic carriers in transmission dynamics of dengue with control interventions. Optimal Control Applications & Methods, 41(2), 430–447.

    Article  Google Scholar 

  • Jogawat, A., Meena, M. K., Kundu, A., Varma, M., & Vadassery, J. (2020). Calcium channel CNGC19 mediates basal defense signaling to regulate colonization by Piriformospora indica in Arabidopsis roots. Journal of Experimental Botany, 71(9), 2752–2768.

    Article  CAS  Google Scholar 

  • Jones, J. D., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329.

    Article  CAS  Google Scholar 

  • Kang, B. R., Anderson, A. J., & Kim, Y. C. (2018). Hydrogen cyanide produced by Pseudomonas chlororaphis O6 exhibits nematicidal activity against Meloidogyne hapla. The plant pathology journal, 34(1), 35.

    Article  CAS  Google Scholar 

  • Karlovsky, P. (2011). Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives. Applied Microbiology and Biotechnology, 91(3), 491–504.

    Article  CAS  Google Scholar 

  • Khan, A., Khan, A. L., Imran, M., Asaf, S., Kim, Y. H., Bilal, S., et al. (2020). Silicon-induced thermotolerance in Solanum lycopersicum L. via activation of antioxidant system, heat shock proteins, and endogenous phytohormones. BMC Plant Biology, 20, 1–18.

    Article  Google Scholar 

  • Kim, J., & Franco, E. (2020). RNA nanotechnology in synthetic biology. Current Opinion in Biotechnology, 63, 135–141.

    Article  CAS  Google Scholar 

  • Kim, W. G., Song, H., Kim, C., Moon, J. S., Kim, K., Lee, S. W., & Oh, J. W. (2016). Biomimetic self-templating optical structures fabricated by genetically engineered M13 bacteriophage. Biosensors and Bioelectronics, 85, 853–859.

    Article  CAS  Google Scholar 

  • Kookana, R. S., Boxall, A. B., Reeves, P. T., Ashauer, R., Beulke, S., Chaudhry, Q., et al. (2014). Nanopesticides: Guiding principles for regulatory evaluation of environmental risks. Journal of Agricultural and Food Chemistry, 62(19), 4227–4240.

    Article  CAS  Google Scholar 

  • Ku, Y. S., Sintaha, M., Cheung, M. Y., & Lam, H. M. (2018). Plant hormone signaling crosstalks between biotic and abiotic stress responses. International Journal of Molecular Sciences, 19(10), 3206.

    Article  Google Scholar 

  • Kubicek, C. P., Starr, T. L., & Glass, N. L. (2014). Plant cell wall–degrading enzymes and their secretion in plant-pathogenic fungi. Annual Review of Phytopathology, 52, 427–451.

    Article  Google Scholar 

  • Kudla, J., Becker, D., Grill, E., Hedrich, R., Hippler, M., Kummer, U., Parniske, M., Romeis, T. & Schumacher, K. (2018). Advances and current challenges in calcium signaling. New Phytologist, 218(2), 414–431.

    Google Scholar 

  • Kusari, S., Singh, S., & Jayabaskaran, C. (2014). Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends in biotechnology, 32(6), 297–303.

    Google Scholar 

  • Kumar, R. P., Kumar, V., Lee, S., Raza, N., Kim, K. H., Ok, Y. S., & Tsang, D. C. (2018). Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. Environment International, 119, 1–19. https://doi.org/10.1016/j.envint.2018.06.012

    Article  CAS  Google Scholar 

  • Leba, L. J., Cheval, C., Ortiz-Martín, I., Ranty, B., Beuzón, C. R., Galaud, J. P., & Aldon, D. (2012). CML9, an Arabidopsis calmodulin-like protein, contributes to plant innate immunity through a flagellin-dependent signalling pathway. The Plant Journal, 71(6), 976–989.

    Article  CAS  Google Scholar 

  • Lecourieux, D., Lamotte, O., Bourque, S., Wendehenne, D., Mazars, C., Ranjeva, R., & Pugin, A. (2005). Proteinaceous and oligosaccharidic elicitors induce different calcium signatures in the nucleus of tobacco cells. Cell Calcium, 38(6), 527–538.

    Article  CAS  Google Scholar 

  • Lee, I., Keum, J., & Nam, H. (2019). DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences. PLoS computational biology, 15(6), e1007129.

    Google Scholar 

  • Li, X., Li, Y., Ahammed, G. J., Zhang, X. N., Ying, L., Zhang, L., et al. (2019). RBOH1-dependent apoplastic H2O2 mediates epigallocatechin-3-gallate-induced abiotic stress tolerance in Solanum lycopersicum L. Environmental and Experimental Botany, 161, 357–366.

    Article  CAS  Google Scholar 

  • Lindbo, J. A., & Dougherty, W. G. (2005). Plant pathology and RNAi: A brief history. Annual Review of Phytopathology, 43, 191–204.

    Article  CAS  Google Scholar 

  • Lindbo, J. A., & Falk, B. W. (2017). The impact of “coat protein-mediated virus resistance” in applied plant pathology and basic research. Phytopathology, 107, 624–634.

    Article  Google Scholar 

  • Lomonossoff, G. P. (1995). Pathogen-derived resistance to plant viruses. Annual Review of Phytopathology, 33, 323–343.

    Article  CAS  Google Scholar 

  • Lopes, M. S., El-Basyoni, I., Baenziger, P. S., Singh, S., Royo, C., Ozbek, K., et al. (2015). Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. Journal of Experimental Botany, 66(12), 3477–3486.

    Article  CAS  Google Scholar 

  • Lorence, A., & Verpoorte, R. (2004a). Gene transfer and expression in plants. Methods in Molecular Biology, 267, 329–350.

    CAS  Google Scholar 

  • Lorence, A., & Verpoorte, R. (2004b). Gene transfer and expression in plants. Recombinant Gene Expression, 267, 329–350.

    Article  CAS  Google Scholar 

  • Lövestam, G., Rauscher, H., Roebben, G., Klüttgen, B. S., Gibson, N., Putaud, J. P., & Stamm, H. (2010). Considerations on a definition of nanomaterial for regulatory purposes. Joint Research Centre (JRC) Reference Reports, 80, 00–41.

    Google Scholar 

  • Lubna, A. S., Hamayun, M., Gul, H., Lee, I. J., & Hussain, A. (2018). Aspergillus niger CSR3 regulates plant endogenous hormones and secondary metabolites by producing gibberellins and indoleacetic acid. Journal of Plant Interactions, 13(1), 100–111.

    Article  CAS  Google Scholar 

  • Ma, L., Zhang, M., Bhandari, B., & Gao, Z. (2017). Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables. Trends in Food Science and Technology, 64, 23–38. https://doi.org/10.1016/j.tifs.2017.03.005

    Article  CAS  Google Scholar 

  • Ma, Z., Liu, K., Li, X. R., Wang, C., Liu, C., Yan, D. Y., et al. (2020). Alpha-synuclein is involved in manganese-induced spatial memory and synaptic plasticity impairments via TrkB/Akt/Fyn-mediated phosphorylation of NMDA receptors. Cell Death and Disease, 11(10), 1–15.

    Article  Google Scholar 

  • Mahas, A., & Mahfouz, M. (2018). Engineering virus resistance via CRISPR–Cas systems. Current Opinion in Virology, 32, 1–8.

    Article  CAS  Google Scholar 

  • Manzoor, Q., Nadeem, R., Iqbal, M., Saeed, R., & Ansari, T. M. (2013). Organic acids pretreatment effect on Rosa bourbonia phyto-biomass for removal of Pb (II) and Cu (II) from aqueous media. Bioresource Technology, 132, 446–452.

    Article  CAS  Google Scholar 

  • Marone, D., Russo, M. A., Laidò, G., De Leonardis, A. M., & Mastrangelo, A. M. (2013). Plant nucleotide binding site–leucine-rich repeat (NBS-LRR) genes: Active guardians in host defense responses. International Journal of Molecular Sciences, 14(4), 7302–7326.

    Article  CAS  Google Scholar 

  • McGinn, J., & Marraffini, L. A. (2019). Molecular mechanisms of CRISPR–Cas spacer acquisition. Nature Reviews Microbiology, 17(1), 7–12.

    Article  CAS  Google Scholar 

  • Monaghan, J., & Zipfel, C. (2012). Plant pattern recognition receptor complexes at the plasma membrane. Current Opinion in Plant Biology, 15(4), 349–357.

    Article  CAS  Google Scholar 

  • Mur, L. A., Kenton, P., Lloyd, A. J., Ougham, H., & Prats, E. (2008). The hypersensitive response; the centenary is upon us but how much do we know? Journal of Experimental Botany, 59(3), 501–520.

    Article  CAS  Google Scholar 

  • Muthamilarasan, M., & Prasad, M. (2013). Plant innate immunity: an updated insight into defense mechanism. Journal of biosciences, 38(2), 433–449.

    Google Scholar 

  • Neik, T. X., Barbetti, M. J., & Batley, J. (2017). Current status and challenges in identifying disease resistance genes in Brassica napus. Frontiers in Plant Science, 8, 1788.

    Article  Google Scholar 

  • Niu, Q., Huang, X., Zhang, L., Li, Y., Li, J., Yang, J., & Zhang, K. (2006). A neutral protease from Bacillus nematocida, another potential virulence factor in the infection against nematodes. Archives of Microbiology, 185(6), 439–448.

    Article  CAS  Google Scholar 

  • Noman, A., Aqeel, M., & Lou, Y. (2019a). PRRs and NB-LRRs: From signal perception to activation of plant innate immunity. International Journal of Molecular Sciences, 20, 1882.

    Article  CAS  Google Scholar 

  • Noman, M. T., Ashraf, M. A., & Ali, A. (2019b). Synthesis and applications of nano-TiO 2: A review. Environmental Science and Pollution Research, 26(4), 3262–3291.

    Article  CAS  Google Scholar 

  • Orozco P. (2018). Argentina and Brazil merge law and science to regulate new breeding techniques. https://allianceforscience.cornell.edu/blog/2018/01/argentina-and-brazil-merge-law-and-science-to-regulate-new-breeding-techniques/ (March 12, 2019).

  • Osman, H. A., Ameen, H. H., Mohamed, M., & Elkelany, U. S. (2020). Efficacy of integrated microorganisms in controlling root-knot nematode Meloidogyne javanica infecting peanut plants under field conditions. Bulletin of the National Research Centre, 44(1), 1–10.

    Article  Google Scholar 

  • Osusky, M., Zhou, G., Osuska, L., Hancock, R. E., Kay, W. W., & Misra, S. (2000). Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nature Biotechnology, 18(11), 1162–1166.

    Article  CAS  Google Scholar 

  • Pan, Y., Chai, X., Gao, Q., Zhou, L., Zhang, S., Li, L., & Luan, S. (2019). Dynamic interactions of plant CNGC subunits and calmodulins drive oscillatory Ca2+ channel activities. Developmental Cell, 48(5), 710–725.

    Article  CAS  Google Scholar 

  • Park, C. Y., Lee, J. H., Yoo, J. H., Moon, B. C., Choi, M. S., Kang, Y. H., Lee, S. M., Kim, H. S., Kang, K. Y., Chung, W. S. and Lim, C. O.(2005). WRKY group IId transcription factors interact with calmodulin. FEBS letters, 579(6), 1545–1550.

    Google Scholar 

  • Pandey, G. K., & Sanyal, S. K. (2021). Ca2+-ATPase and Ca2+/cation antiporters. In Functional dissection of calcium homeostasis and transport machinery in plants (pp. 89–104). Springer.

    Google Scholar 

  • Pieterse, C. M., & Van Loon, L. C. (2004). NPR1: The spider in the web of induced resistance signaling pathways. Current Opinion in Plant Biology, 7(4), 456–464.

    Article  CAS  Google Scholar 

  • Pichersky, E., & Gershenzon, J. (2002). The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Current opinion in plant biology, 5(3), 237–243.

    Google Scholar 

  • Price, A. A., Sampson, T. R., Ratner, H. K., Grakoui, A., & Weiss, D. S. (2015). Cas9-mediatedtargeting of viral RNA in eukaryotic cells. Proceedings of the National Academy of Sciences, 112(19), 6164–6169.

    Google Scholar 

  • Rai, V., Acharya, S., & Dey, N. (2012). Implications of nanobiosensors in agriculture

    Book  Google Scholar 

  • Ranty, B., Aldon, D., Cotelle, V., Galaud, J. P., Thuleau, P., & Mazars, C. (2016). Calcium sensors as key hubs in plant responses to biotic and abiotic stresses. Frontiers in Plant Science, 7, 327.

    Article  Google Scholar 

  • Reddy, A. S., Ali, G. S., Celesnik, H., & Day, I. S. (2011). Co** with stresses: Roles of calcium-and calcium/calmodulin-regulated gene expression. Plant Cell, 23(6), 2010–2032.

    Article  CAS  Google Scholar 

  • Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B., & Bartel, D. P. (2002). MicroRNAs in Plants Genes and Development, 16(13), 1616–1626.

    Article  CAS  Google Scholar 

  • Romanazzi, G., Sanzani, S. M., Bi, Y., Tian, S., Martınez, P. G., & Alkan, N. (2016). Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biology and Technology, 122, 82–94. https://doi.org/10.1016/j.postharvbio.2016.08.003

    Article  CAS  Google Scholar 

  • Roorkiwal, M., Bharadwaj, C., Barmukh, R., Dixit, G. P., Thudi, M., Gaur, P. M., et al. (2020). Integrating genomics for chickpea improvement: Achievements and opportunities. Theoretical and Applied Genetics, 133(5), 1703–1720.

    Article  Google Scholar 

  • Rosa, C., Kuo, Y. W., Wuriyanghan, H., & Falk, B. W. (2018). RNA interference mechanisms and applications in plant pathology. Annual Review of Phytopathology, 56, 581–610.

    Article  CAS  Google Scholar 

  • Rosenblueth, M., & Martínez-Romero, E. (2006). Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions, 19(8), 827–837.

    Article  CAS  Google Scholar 

  • Rugini, E., Bashir, M. A., Cristofori, V., Ruggiero, B., & Silvestri, C. (2020). A review of genetic improvement of main fruit trees through modern biotechnological tools and considerations of the cultivation and research of the engineered plant restrictions. Pakistan Journal of Agricultural Sciences, 57(1), 17.

    Google Scholar 

  • Saijo, Y., & Loo, E. P. I. (2020). Plant immunity in signal integration between biotic and abiotic stress responses. The New Phytologist, 225(1), 87–104.

    Article  Google Scholar 

  • Sanford, J. C., & Johnston, S. A. (1985). The concept of parasite-derived resistance—deriving resistance genes from the parasite’s own genome. Journal of Theoretical Biology, 113, 395–405.

    Article  Google Scholar 

  • Santamaria, M. E., Martínez, M., Cambra, I., Grbic, V., & Diaz, I. (2013). Understanding plant defence responses against herbivore attacks: An essential first step towards the development of sustainable resistance against pests. Transgenic Research, 22(4), 697–708.

    Article  CAS  Google Scholar 

  • Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M., & Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research, 183, 92–99.

    Article  CAS  Google Scholar 

  • Sanzani, S. M., Reverberi, M., & Geisen, R. (2016). Mycotoxins in harvested fruits and vegetables: Insights in producing fungi, biological role, conducive conditions, and tools to manage postharvest contamination. Postharvest Biology and Technology, 122, 95–105. https://doi.org/10.1016/j.postharvbio.2016.07.003

    Article  CAS  Google Scholar 

  • Scholz, S. S., Vadassery, J., Heyer, M., Reichelt, M., Bender, K. W., Snedden, W. A., et al. (2014). Mutation of the Arabidopsis calmodulin-like protein CML37 deregulates the jasmonate pathway and enhances susceptibility to herbivory. Molecular Plant, 7(12), 1712–1726.

    Article  CAS  Google Scholar 

  • Schumann, G. L., & D'Arcy, C. J. (2006). Essential plant pathology. American Phytopathological Society (APS Press).

    Google Scholar 

  • Schuurink, R. C., Shartzer, S. F., Fath, A., & Jones, R. L. (1998). Characterization of a calmodulin-binding transporter from the plasma membrane of barley aleurone. Proceedings of the National Academy of Sciences, 95(4), 1944–1949.

    Article  CAS  Google Scholar 

  • Shang, W., Zeng, X., Li, T., Xu, W., Wei, D., Liu, M., & Wu, Y. (2019). Controlled distribution of active centre to enhance catalytic activity of ordered Pd/Co catalytic nano-monolayer. Journal of Catalysis, 376, 228–237.

    Article  CAS  Google Scholar 

  • Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi journal of biological sciences, 22(2), 123–131.

    Article  CAS  Google Scholar 

  • Singh, S. P., & Gaur, R. (2017). Endophytic Streptomyces spp. underscore induction of defense regulatory genes and confers resistance against Sclerotium rolfsii in chickpea. Biological Control, 104, 44–56.

    Article  CAS  Google Scholar 

  • Singh, A., Sagar, S., & Biswas, D. K. (2017). Calcium dependent protein kinase, a versatile player in plant stress management and development. Critical Reviews in Plant Sciences, 36(5-6), 336–352.

    Google Scholar 

  • Singh, M., & Pandey, K. D. (2021). Endophytic bacterial strains modulated synthesis of lycopene and bioactive compounds in Solanum lycopersicum L. fruit. Biocatalysis and agricultural. Biotechnology, 35, 102088.

    CAS  Google Scholar 

  • Sobiczewski, P., Iakimova, E. T., Mikiciński, A., Węgrzynowicz-Lesiak, E., & Dyki, B. (2017). Necrotrophic behaviour of Erwinia amylovora in apple and tobacco leaf tissue. Plant Pathology, 66(5), 842–855.

    Article  CAS  Google Scholar 

  • Spoel, S. H., & Dong, X. (2012). How do plants achieve immunity? Defence without specialized immune cells. Nature Reviews Immunology, 12(2), 89–100.

    Article  CAS  Google Scholar 

  • Sun, Y., Cheng, Z., & Glick, B. R. (2009). The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiology Letters, 296(1), 131–136.

    Article  CAS  Google Scholar 

  • Taiz, L., & Zeiger, E. (2006). Fisiologia vegetal (Vol. 10). Universitat Jaume I.

    Google Scholar 

  • Taneja, M., & Upadhyay, S. K. (2018). Molecular characterization and differential expression suggested diverse functions of P-type II Ca2+ ATPases in Triticum aestivum L. BMC Genomics, 19(1), 1–16.

    Article  Google Scholar 

  • Tao, Y., **e, Z., Chen, W., Glazebrook, J., Chang, H. S., Han, B., et al. (2003). Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell, 15(2), 317–330.

    Article  CAS  Google Scholar 

  • Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), 671–677.

    Google Scholar 

  • Thomma, B. P., Eggermont, K., Penninckx, I. A., Mauch-Mani, B., Vogelsang, R., Cammue, B. P., & Broekaert, W. F. (1998). Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proceedings of the National Academy of Sciences, 95(25), 15107–15111.

    Article  CAS  Google Scholar 

  • Urkude, R., Dhurvey, V., & Kochhar, S. (2019). Pesticide residues in beverages. In quality control in the beverage industry (pp. 529–560). Academic Press.

    Google Scholar 

  • USDA. (2018). Secretary perdue issues USDA statement on plant breeding innovation. USDA press release no. 0070.18. https://www.usda.gov/media/press-releases/2018/03/28/secretary-perdue-issues-usda-statement-plant-breeding-innovation (March 12, 2019).

  • van Loon, L. C., Rep, M., & Pieterse, C. M. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162.

    Article  Google Scholar 

  • Vincent, T. R., Avramova, M., Canham, J., Higgins, P., Bilkey, N., Mugford, S. T., et al. (2017). Interplay of plasma membrane and vacuolar ion channels, together with BAK1, elicits rapid cytosolic calcium elevations in Arabidopsis during aphid feeding. Plant Cell, 29(6), 1460–1479.

    Article  CAS  Google Scholar 

  • Von Bodman, S. B., Bauer, W. D., & Coplin, D. L. (2003). Quorum sensing in plant-pathogenic bacteria. Annual Review of Phytopathology, 41(1), 455–482.

    Article  Google Scholar 

  • Wang, M. B., Masuta, C., Smith, N. A., & Shimura, H. (2012a). RNA silencing and plant viral diseases. Molecular Plant-Microbe Interactions, 25, 1275–1285.

    Article  CAS  Google Scholar 

  • Wang, Q., Ma, X., Zhang, W., Pei, H., & Chen, Y. (2012b). The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics, 4(10), 1105–1112.

    Article  CAS  Google Scholar 

  • Wang, X., Yang, G., Feng, Y., Ren, G., & Han, X. (2012c). Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresource Technology, 120, 78–83.

    Article  CAS  Google Scholar 

  • Wang, G., Zhang, S., Ma, X., Wang, Y., Kong, F., & Meng, Q. (2016). A stress-associated NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic stresses. Physiologia Plantarum, 158(1), 45–64.

    Article  CAS  Google Scholar 

  • Wang, Y., Yin, W., & Zeng, J. (2019). Global convergence of ADMM in nonconvex nonsmooth optimization. Journal of Scientific Computing, 78(1), 29–63.

    Article  Google Scholar 

  • Wani, Z. A., Ashraf, N., Mohiuddin, T., & Riyaz-Ul-Hassan, S. (2015). Plant-endophyte symbiosis, an ecological perspective. Applied Microbiology and Biotechnology, 99(7), 2955–2965.

    Article  CAS  Google Scholar 

  • Waqas, M., Khan, A. L., Shahzad, R., Ullah, I., Khan, A. R., & Lee, I. J. (2015). Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress. Journal of Zhejiang University-SCIENCE B, 16(12), 1011–1018.

    Article  CAS  Google Scholar 

  • Waterhouse, P. M., Graham, M. W., & Wang, M. B. (1998). Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proceedings of the National Academy of Sciences, 95(23), 13959–13964.

    Article  CAS  Google Scholar 

  • Whelan, A., & Lema, M. (2015). Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina. GM Crops Food, 6, 253–265.

    Article  Google Scholar 

  • Wu, W. Y., Lebbink, J. H., Kanaar, R., Geijsen, N., & Van Der Oost, J. (2018). Genome editing by natural and engineered CRISPR-associated nucleases. Nature chemical biology, 14(7), 642–651.

    Google Scholar 

  • **e, W., Lv, X., Ye, L., Zhou, P., & Yu, H. (2015). Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metabolic Engineering, 30, 69–78.

    Article  CAS  Google Scholar 

  • Yang, J., Duan, G., Li, C., Liu, L., Han, G., Zhang, Y., & Wang, C. (2019). The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Frontiers in Plant Science, 10, 1349.

    Article  Google Scholar 

  • Yoshida, K., Schuenemann, V. J., Cano, L. M., Pais, M., Mishra, B., Sharma, R., et al. (2013). The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. eLife, 2, e00731.

    Article  Google Scholar 

  • Yuan, K., Wang, C., Zhang, C., Huang, Y., Wang, P., & Liu, Z. (2020). Rice grains alleviate cadmium toxicity by expending glutamate and increasing manganese in the cadmium contaminated farmland. Environmental Pollution, 262, 114236.

    Article  CAS  Google Scholar 

  • Zhang, L., Zhao, S., Lai, S., Chen, F., & Yang, H. (2018). Combined effects of ultrasound and calcium on the chelate-soluble pectin and quality of strawberries during storage. Carbohydrate Polymers, 200, 427–435.

    Article  CAS  Google Scholar 

  • Zhang, X., Wu, F., Gu, N., Yan, X., Wang, K., Dhanasekaran, S., et al. (2020). Postharvest biological control of Rhizopus rot and the mechanisms involved in induced disease resistance of peaches by Pichia membranefaciens. Postharvest Biology and Technology, 163, 111146.

    Article  CAS  Google Scholar 

  • Zhou, J., Xu, X., Liu, X., Li, H., Nie, Z., Qing, M., et al. (2014). A gold nanoparticles colorimetric assay for label-free detection of protein kinase activity based on phosphorylation protection against exopeptidase cleavage. Biosensors & Bioelectronics, 53, 295–300.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Younas, A., Rashid, M., Riaz, N., Munawar, M., Fiaz, S., Noreen, Z. (2023). Emerging Techniques to Develop Biotic Stress Resistance in Fruits and Vegetables. In: Prakash, C.S., Fiaz, S., Nadeem, M.A., Baloch, F.S., Qayyum, A. (eds) Sustainable Agriculture in the Era of the OMICs Revolution. Springer, Cham. https://doi.org/10.1007/978-3-031-15568-0_12

Download citation

Publish with us

Policies and ethics

Navigation