Option Pricing

  • Chapter
  • First Online:
Advanced REIT Portfolio Optimization

Abstract

Call and put options provide a standard tool for hedging exposure to foreseeable risk. The pricing of options is inherently coupled to the price of the underlying asset, hence a model for pricing options must couple innately to the model for the underlying asset price. This chapter details option pricing based upon a so-called double subordination price model for the asset. Subordination models offer the ability to include more of the stylized facts of asset prices, increasing the accuracy of option prices. This chapter details the application of a double subordinated model to capture the mean, variance, skewness, and kurtosis, as well as intrinsic time features of the return process for one of the optimized domestic REIT portfolios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There are additional assumptions implied in the Black–Scholes–Merton formulation, one being that investors are risk-neutral (indifferent to risk) when making investment decisions.

  2. 2.

    “The different evolution of price series on different days is due to the fact that information is available to traders at a varying rate. On days when no new information is available, trading is slow, and the price process evolves slowly. On days when new information violates old expectations, trading is brisk, and the price process evolves much faster.” (Clark, 1973).

  3. 3.

    Fallahgoul and Nam (2020) have pointed out a subtle error in the Carr and Wu paper. By introducing a correlation between the driving Lévy process and its time-subordinator, the resulting Carr–Wu option pricing model is no longer arbitrage-free. For this reason, each subordinator should be independent of each other and of the driving (Brownian or Lévy) process.

  4. 4.

    The accuracy, and indeed the ability, of the VIX to predict future volatility is a matter of debate. See Goldstein and Taleb (2007) and Adhikari and Hilliard (2014).

  5. 5.

    We have already indicated that stable, non-Gaussian processes are inappropriate choices for subordinators due to their heavy tails. Use of (finite variation) gamma processes as subordinators in appropriate but may require additional Brownian motions, which would increase the number of parameters in the model.

  6. 6.

    This discretizes strike prices K = ek over the range \( \left[{e}^{-{\overline{k}}_l},{e}^{{\overline{k}}_h}\right] \). As the k-grid is evenly spaced, strike prices will be exponentially spaced.

  7. 7.

    An alternate minimization that uses the first five normalized moment differences ΔM1, …, ΔM5 must begin to deal with the fact that higher order moments of rT95 get noisier and noisier, providing no valid signal beyond a certain order.

  8. 8.

    This result using the bound h(v) < 1 is presented in Carr and Madan (1998).

  9. 9.

    https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=billrates

  10. 10.

    Figure 12.9 provides evidence that the VIX methodology, used carefully, does reproduce historical (in-sample) volatility. In practice and as intended, with actively traded options the VIX computation will also capture additional volatility induced by option trader sentiment.

References

  • Adhikari, B. K., & Hilliard, J. E. (2014). The VIX, VXO and realised volatility: A test of lagged and contemporaneous relationships. International Journal of Financial Markets and Derivatives, 3(3), 222–240.

    Article  Google Scholar 

  • Aloud, M., Tsang, E., Olsen, R. B., & Dupuis, A. (2012). A directional-change event approach for studying financial time series. Economics: The Open-Access, Open-Assessment E-Journal, 6(36), 1–17.

    Google Scholar 

  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. The Journal of Political Economy, 81(3), 637–654.

    Article  Google Scholar 

  • Bochner, S. (1995). Harmonic analysis and the theory of probability. University of California Press.

    Google Scholar 

  • Boyle, P. P. (1977). Options: A Monte Carlo approach. Journal of Financial Economics., 4(3), 323–338.

    Article  Google Scholar 

  • Broadie, M., & Glasserman, P. (1996). Estimating security price derivatives using simulation. Management Science, 42(2), 269–285.

    Article  Google Scholar 

  • Carr, P., & Madan, D. (1998). Option valuation using the fast Fourier transform. Journal of Computational Finance, 2, 61–73.

    Article  Google Scholar 

  • Carr, P., Geman, H., Madan, D. B., & Yor, M. (2003). Stochastic volatility for Lévy processes. Mathematical Finance, 13(3), 345–382.

    Article  Google Scholar 

  • Carr, P., & Wu, L. (2004). Time-changed Lévy processes and option pricing. Journal of Financial Economics, 71(1), 113–141.

    Article  Google Scholar 

  • Carriere, J. (1996). Valuation of the early-exercise price for options using simulations and nonparametric regression. Insurance: Mathematics and Economics., 19, 19–30.

    Google Scholar 

  • Cassidy, D. T., Hamp, M. J., & Ouyed, R. (2010). Pricing European options with a log Student’s t-distribution: A Gosset formula. Physica A: Statistical Mechanics and its Applications, 389(24), 5736–5748.

    Article  Google Scholar 

  • Cboe Exchange, Inc. (2019). Cboe VIX White Paper; Cboe Volatility Index. https://cdn.cboe.com/resources/vix/vixwhite.pdf

  • Clark, P. (1973). A subordinated stochastic process model with fixed variance for speculative prices. Econometrica, 41, 135–156.

    Article  Google Scholar 

  • Cox, J. C., Ross, S. A., & Rubinstein, M. (1979). Option pricing: A simplified approach. Journal of Financial Economics, 7(3), 229–263.

    Article  Google Scholar 

  • Delbaen, F., & Schachermayer, W. (1994). A general version of the fundamental theorem of asset pricing. Mathematische Annalen, 300(1), 463–520.

    Article  Google Scholar 

  • Demeterfi, K., Derman, E., Kamal, M., & Zou, J. (1999). More than you ever wanted to know about volatility swaps. Quantitative Strategies Research Notes. Goldman, Sachs & Co.

    Google Scholar 

  • Duffie, D. (2001). Dynamic asset pricing theory (3rd ed.). Princeton University Press.

    Google Scholar 

  • Fallagoul, H. A., & Nam, K. (2020). Time-changed Lévy processes and option pricing: A critical comment. SSRN Electronic Journal. https://ssrn.com/abstract=3226748

  • Geman, H., Madan, D., & Yor, M. (2001). Time changes for Lévy processes. Mathematics of Finance, 11, 79–96.

    Article  Google Scholar 

  • Gerber, H. U., & Shiu, E. S. W. (1994). Option pricing by the Esscher transform. Transactions of Society of Actuaries, 46, 99–191.

    Google Scholar 

  • Goldstein, D. G., & Taleb, N. N. (2007). We don't quite know what we are talking about when we talk about volatility. Journal of Portfolio Management, 33(4), 84–86.

    Article  Google Scholar 

  • Guillaume, D. M., Dacorogua, M. M., Davé, R. R., Müller, U. A., Olsen, R. B., & Pictet, O. V. (1997). From the bird’s eye to the microscope: A survey of new stylized facts of the intra-daily foreign exchange markets. Finance and Stochastics, 1, 95–129.

    Article  Google Scholar 

  • Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies, 6(2), 327–343.

    Article  Google Scholar 

  • Hull, J. C. (2018). Options, futures and other derivatives (10th ed.). Pearson.

    Google Scholar 

  • Hull, J. C., & White, A. (1987). The pricing of options on assets with stochastic volatilities. The Journal of Finance, 42(2), 281–300.

    Article  Google Scholar 

  • Hurst, S. R., Platen, E., & Rachev, S. T. (1997). Subordinated market index models: A comparison. Financial Engineering and the Japanese Markets, 4(2), 97–124.

    Article  Google Scholar 

  • Klingler, S., Kim, Y. S., Rachev, S. T., & Fabozzi, F. J. (2013). Option pricing with time-changed Lévy processes. Applied Financial Economics, 23(15), 1231–1238.

    Article  Google Scholar 

  • Lundtofte, F., & Wilhelmsson, A. (2013). Risk premia: Exact solutions vs. log-linear approximations. Journal of Banking & Finance, 37, 4256–4264.

    Article  Google Scholar 

  • Mandelbrot, B. B., & Taylor, H. M. (1967). On the distribution of stock price differences. Journal of Operations Research, 15, 1057–1062.

    Article  Google Scholar 

  • Merton, R. C. (1973). Theory of rational option pricing. The Bell Journal of Economics and Management Science, 4(1), 141–183.

    Article  Google Scholar 

  • Nögel, U. (2004). Option pricing using stochastic volatility models. In A. Buikis, R. Čiegis, & A. D. Fitt (Eds.), Progress in industrial mathematics at ECMI 2002 (The European Consortium for Mathematics in Industry) (Vol. 5, pp. 221–225). Springer.

    Chapter  Google Scholar 

  • Petrov, V., Golub, A., & Olsen, R. (2019). Instantaneous volatility seasonality of high-frequency markets in directional-change intrinsic time. Journal of Risk and Financial Management, 12(2), 1–31.

    Article  Google Scholar 

  • Rebonato, R. (1999). Volatility and correlation in the pricing of equity, FX and interest-rate options. Wiley.

    Google Scholar 

  • Sato, K.-I. (1999). Lévy processes and infinitely divisible distributions. Cambridge Studies in Advanced Mathematics.

    Google Scholar 

  • Schoutens, W. (2003). Lévy processes in finance: Pricing financial derivatives. Wiley.

    Book  Google Scholar 

  • Shirvani, A., Rachev, S. T., & Fabozzi, F. J. (2020). Multiple subordinated modeling of asset returns: Implications for option pricing. Econometric Reviews, 40(3), 290–319.

    Article  Google Scholar 

  • Shirvani, A., Stoyanov, S., Fabozzi, F. J., & Rachev, S. T. (2021a). Equity premium puzzle or faulty economic modelling? Review of Quantitative Finance and Accounting, 56, 1329–1342.

    Article  Google Scholar 

  • Shirvani, A., Mittnik, S., Lindquist, W. B., & Rachev, S. T. (2021b). Bitcoin volatility and intrinsic time using double subordinated Lévy processes. ar**v:2109.15051.

    Google Scholar 

  • Tsang, E. (2010). Directional changes, definitions. Working Paper WP050-10, Center for Computational Finance and Economic Agents, University of Essex.

    Google Scholar 

  • Yao, L., Yang, G., & Yang, X. (2016). The mean correcting martingale measures for exponential additive processes. Applied Mathematics – A Journal of Chinese Universities, 31, 81–88.

    Article  Google Scholar 

  • Yu, J. (2004). Empirical characteristic function estimation and its applications. Econometric Reviews, 23, 93–123.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix 1

Although (12.13) implies that the model (12.10) has eight parameters, μ, γ, ρ, σ, μU, λU, μT, λT, only six are identifiable. Using the relationship (12.15) between the CF and the MGF, from (12.13) \( {K}_{X_1}(w) \) can be written as

$$ {K}_{X_1}(w)=\mu w+{c}_K\left(1-\sqrt{g(w)}\right), $$
$$ g(w)=1-2{c}_g\left(1-\sqrt{h(w)}\right)-2{d}_{\gamma }w, $$
$$ h(w)=1-2{d}_{\rho }w-{d}_{\sigma }{w}^2, $$
(12.61)

where cK = λU/μU, \( {c}_g={\mu_U}^2{\lambda}_{\mathcal{T}}/\left({\lambda}_U{\mu}_{\mathcal{T}}\right) \), \( {d}_{\gamma }=\gamma\ {\mu_U}^2/{\lambda}_U,\kern0.5em {d}_{\rho }=\rho\ {\mu_{\mathcal{T}}}^2/{\lambda}_{\mathcal{T}} \), and \( {d}_{\sigma }={\sigma}^2\ {\mu_{\mathcal{T}}}^2/{\lambda}_{\mathcal{T}} \). From (12.61) we have the following derivatives with respect to w:

$$ {h}^{\prime }(w)=-2{d}_{\rho }-2{d}_{\sigma }w, $$
$$ {h}^{\prime \prime }(w)=-2{d}_{\sigma }, $$
$$ {h}^{(p)}(w)=0,\kern0.5em p=3,4,\dots; $$
(12.62)
$$ {g}^{\prime }(w)={c}_g\left[{h}^{-1/2}{h}^{\prime}\right]-2{d}_{\gamma }, $$
$$ {g}^{\prime \prime }(w)={c}_g\left[-\frac{1}{2}{h}^{-3/2}{\left({h}^{\prime}\right)}^2+{h}^{-1/2}{h}^{\prime \prime}\right], $$
$$ {g}^{\prime \prime \prime }(w)={c}_g\left[\frac{3}{4}{h}^{-5/2}{\left({h}^{\prime}\right)}^3-\frac{3}{2}{h}^{-3/2}{h}^{\prime }{h}^{\prime \prime }+{h}^{-1/2}{h}^{\prime \prime \prime}\right], $$
$$ {g}^{(4)}(w)={c}_g\left[-\frac{15}{8}{h}^{-7/2}{\left({h}^{\prime}\right)}^4+\frac{9}{2}{h}^{-5/2}{\left({h}^{\prime}\right)}^2{h}^{\prime \prime }-\frac{1}{2}{h}^{-3/2}\left[3{\left({h}^{\prime \prime}\right)}^2+4{h}^{\prime }{h}^{\prime \prime \prime}\right]+{h}^{-1/2}{h}^{(4)}\right]; $$
(12.63)

and

$$ {K_{X_1}}^{\prime }(w)=\mu -\frac{c_K}{2}\left[{g}^{-1/2}{g}^{\prime}\right], $$
$$ {K_{X_1}}^{\prime \prime }(w)=-\frac{c_K}{2}\left[-\frac{1}{2}{g}^{-3/2}{\left({g}^{\prime}\right)}^2+{g}^{-1/2}{g}^{\prime \prime}\right], $$
$$ {K_{X_1}}^{\prime \prime \prime }(w)=-\frac{c_K}{2}\left[\frac{3}{4}{g}^{-5/2}{\left({g}^{\prime}\right)}^3-\frac{3}{2}{g}^{-3/2}{g}^{\prime }{g}^{\prime \prime }+{g}^{-1/2}{g}^{\prime \prime \prime}\right], $$
$$ {K_{X_1}}^{(4)}(w)=-\frac{c_K}{2}\left[-\frac{15}{8}{g}^{-7/2}{\left({g}^{\prime}\right)}^4+\frac{9}{2}{g}^{-5/2}{\left({g}^{\prime}\right)}^2{g}^{\prime \prime }-\frac{1}{2}{g}^{-3/2}\left[3{\left({g}^{\prime \prime}\right)}^2+4{g}^{\prime }{g}^{\prime \prime \prime}\right]+{g}^{-1/2}{g}^{(4)}\right]. $$
(12.64)

Noting that h(0) = g(0) = 1, the dependence of the derivatives in (12.62) through (12.64), when evaluated at w = 0, can be summarized as follows:

$$ {h}^{\prime }(0)={h}^{\prime}\left({d}_{\rho}\right), $$
$$ {h}^{\prime \prime }(0)={h}^{\prime \prime}\left({d}_{\sigma}\right), $$
$$ {h}^{(p)}(w)=0,\kern0.5em p=3,4,\dots; $$
(12.65)
$$ {g}^{\prime }(0)={g}^{\prime}\left({c}_g,{h}^{\prime }(0),{d}_{\gamma}\right)={g}^{\prime}\left({c}_g,{d}_{\rho },{d}_{\gamma}\right), $$
$$ {g}^{(p)}(0)={g}^{(p)}\left({c}_g,{h}^{\prime }(0),{h}^{\prime \prime }(0)\right)={g}^{(p)}\left({c}_g,{d}_{\rho },{d}_{\sigma}\right),p=2,3,\dots; $$
(12.66)

and

$$ {K_{X_1}}^{\prime }(0)={K_{X_1}}^{\prime}\left(\mu, {c}_K,{g}^{\prime }(0)\right)={K_{X_1}}^{\prime}\left(\mu, {c}_K,{c}_g,{d}_{\rho },{d}_{\gamma}\right), $$
$$ {K_{X_1}}^{(p)}(0)={K_{X_1}}^{(p)}\left({c}_K,{g}^{\prime }(0),{g}^{\prime \prime }(0),\dots, {g}^{(p)}(0)\right)={K_{X_1}}^{(p)}\left({c}_K,{c}_g,{d}_{\rho },{d}_{\gamma },{d}_{\sigma}\right), $$
$$ p=2,3,\dots . $$
(12.67)

Thus, all derivatives of \( {\left.{K}_{X_1}(w)\right|}_{w=0} \), or equivalently all moments of the process X1, depend only on the six identifiable parameters μ, cK,  cg, dρ, dγ, dσ.

Appendix 2

Using the definitions,

$$ \overline{a}=1+a,\kern0.5em {d}_{\lambda }=\frac{\lambda_{\mathcal{T}}}{\lambda_U},\kern0.5em {d}_{\rho }=\frac{\varrho }{\lambda_{\mathcal{T}}},\kern0.5em {d}_{\sigma }=\frac{\sigma^2}{\lambda_{\mathcal{T}}}, $$

the terms in (12.49) are

$$ {c}_1=1-2{d}_{\lambda }+2{d}_{\lambda }{\left({b}_1^2+{b}_2^2\right)}^{1/4}\cos \left(\frac{\theta_b}{2}\right),\kern0.5em {c}_2=2{d}_{\lambda }{\left({b}_1^2+{b}_2^2\right)}^{1/4}\sin \left(\frac{\theta_b}{2}\right), $$
$$ {\theta}_c=\mathrm{atan}\left(\frac{c_2}{c_1}\right)\in \left(\left.-\frac{\pi }{2},\frac{\pi }{2}\right]\right., $$

where

$$ {\displaystyle \begin{array}{ll}{b}_1=1-2{d}_{\rho}\overline{a}-{d}_{\upsigma}\left({\overline{a}}^2-{v}^2\right),& \kern0.5em {b}_2=-2\left({d}_{\rho }+\overline{a}{d}_{\upsigma}\right)v,\\ {}{\theta}_b=\mathrm{atan}\left(\frac{b_2}{b_1}\right)\in \left(\operatorname{}-\frac{\pi }{2},\frac{\pi }{2}\right]\operatorname{}.\end{array}} $$

For sufficiently large values of v, we have the approximations:

$$ {b}_1\approx {d}_{\sigma }{v}^2,\kern0.5em {b}_2=-2\left({d}_{\rho }+\overline{a}{d}_{\sigma}\right)v,\kern0.5em {\left({b}_1^2+{b}_2^2\right)}^{1/4}\approx {d}_{\sigma}^{1/2}v, $$
$$ \cos \left(\frac{\theta_b}{2}\right)\approx 1,\kern0.75em \sin \left(\frac{\theta_b}{2}\right)\approx -\frac{d_{\rho }+\overline{a}{d}_{\sigma }}{d_{\sigma }v}, $$
$$ {c}_1\approx 2{d}_{\lambda}\sqrt{d_{\sigma }}v,\kern0.5em {c}_2\approx -2{d}_{\lambda}\frac{d_{\rho }+\overline{a}{d}_{\sigma }}{\sqrt{d_{\sigma }}},\kern0.5em {\left({c}_1^2+{c}_2^2\right)}^{1/4}\approx \sqrt{c_1}, $$
$$ \cos \left(\frac{\theta_c}{2}\right)\approx 1. $$
(12.68)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lindquist, W.B., Rachev, S.T., Hu, Y., Shirvani, A. (2022). Option Pricing. In: Advanced REIT Portfolio Optimization. Dynamic Modeling and Econometrics in Economics and Finance, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-031-15286-3_12

Download citation

Publish with us

Policies and ethics

Navigation