Neurotoxicity of Exogenous Cannabinoids

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

The endogenous cannabinoid system regulates diverse aspects of physiological functions via specific cannabinoid receptors (CB) expressed in the brain and periphery. CB1 receptors mediate various neurological processes, whereas CB2 receptors mainly regulate immune responses and are involved in development of drug addiction and neuroinflammation. The cannabinoids are a heterogeneous group of endo-, phyto-, and synthetic cannabinoids. Cannabis and its products have been used for millennia, and these remain the most frequently used substances around the world. Δ9-Tetrahydrocannabinol (Δ9-THC), the main psychoactive constituent of cannabis, produces psychotic-like symptoms. Acute and chronic cannabis use may impair learning and memory, attention, and psychomotor functions; however, studies on the life-lasting effects of cannabis on brain structure are ambiguous. During the last decade, a worrying trend has been observed regarding the increasing popularity of more potent, addictive, and harmful synthetic cannabinoids (SCs). Unlike Δ9-THC, SCs use may lead to severe adverse effects including seizures, agitation, aggression, violence, anxiety, and panic attacks. Acute intoxication may be life-threatening or lead to persistent impairments in emotional and cognitive processing as a result of irreversible brain damage. This chapter describes the current state of knowledge regarding various aspects of the neurotoxicity of exogenous cannabinoids, including the harmful effects of their use during pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 1,283.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 1,283.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2-AG:

2-Arachidonoylglycerol

AEA:

N-arachidonoylethanolamine

CB1:

Type 1 cannabinoid receptor

CB2:

Type 2 cannabinoid receptor

CBC:

Cannabichromene

CBD:

Cannabidiol

CBG:

Cannabigerol

CBN:

Cannabinol

CPP:

Conditioned place preference

CUD:

Cannabis use disorder

DAG:

Diacylglycerol

DAGLα:

Diacylglycerol lipase-α

EMCDDA:

European Monitoring Centre for Drugs and Drug Addiction

FAAH:

Fatty acid amide hydrolase

IVSA:

Intravenous self-administration

ICSS:

Intracranial self-stimulation

MAGL:

Monoacylglycerol lipase

NPS:

New psychoactive substances

SCs:

Synthetic cannabinoids

UNODC:

United Nations Office on Drugs and Crime

Δ9-THC:

Δ9-Tetrahydrocannabinol

References

  • Alipour, A., Patel, P. B., Shabbir, Z., & Gabrielson, S. (2019). Review of the many faces of synthetic cannabinoid toxicities. The Mental Health Clinician, 9(2), 93–99.

    Article  Google Scholar 

  • Alpar, A., Di Marzo, V., & Harkany, T. (2016). At the tip of an iceberg: Prenatal marijuana and its possible relation to neuropsychiatric outcome in the offspring. Biological Psychiatry, 79(7), e33–e45.

    Article  Google Scholar 

  • Alves, V. L., Gonçcalves, J. L., Agular, J., Teixeira, H. M., & Câmara, J. S. (2020). The synthetic cannabinoids phenomenon: From structure to toxicological properties. A review. Critical Reviews in Toxicology, 50(5), 359–382.

    Article  Google Scholar 

  • Antinori, S., & Fattore, L. (2017). How CB1 receptor activity and distribution contribute to make the male and female brain different toward cannabinoid-induced effects. In M. Melis (Ed.), Endocannabinoids and Lipid Mediators in Brain Functions (pp. 27–51). Springer.

    Google Scholar 

  • Antonelli, T., Tomasini, M. C., Tattoli, M., Cassano, T., Finetti, S., Mazzoni, E., Trabace, L., Carratù, M. R., Cuomo, V., Tanganelli, S., & Ferraro, L. (2006). Prenatal exposure to the cannabinoid receptor agonist WIN 55,212-2 and carbon monoxide reduces extracellular glutamate levels in primary rat cerebral cortex cell cultures. Neurochemistry International, 49(6), 568–576.

    Article  Google Scholar 

  • Bahji, A., Stephenson, C., Tyo, R., Hawken, E. R., & Seitz, D. P. (2020). Prevalence of cannabis withdrawal symptoms among people with regular or dependent use of cannabinoids: A systematic review and meta-analysis. JAMA Network Open, 3, e202370.

    Article  Google Scholar 

  • Banister, S. D., & Connor, M. (2018). The chemistry and pharmacology of synthetic cannabinoid receptor agonists as new psychoactive substances: Origins. Handbook of Experimental Pharmacology, 252, 165–190.

    Google Scholar 

  • Barratt, M. J., Cakic, V., & Lenton, S. (2013). Patterns of synthetic cannabinoid use in Australia. Drug and Alcohol Review, 32(2), 141–146.

    Article  Google Scholar 

  • Bertrand, K. A., Hanan, N. J., Honerkamp-Smith, G., Best, B. M., & Chambers, C. D. (2018). Marijuana use by breastfeeding mothers and cannabinoid concentrations in breast milk. Pediatrics, 142(3), e20181076.

    Article  Google Scholar 

  • Bilel, S., Tirri, M., Arfè, R., Stopponi, S., Soverchia, L., Ciccocioppo, R., Frisoni, P., Strano-Rossi, S., Miliano, C., De-Giorgio, F., Serpelloni, G., Fantinati, A., De Luca, M. A., Neri, M., & Marti, M. (2019). Pharmacological and behavioral effects of the synthetic cannabinoid AKB48 in rats. Frontiers in Neuroscience, 13, 1163.

    Google Scholar 

  • Blest-Hopley, G., Giampietro, V., & Bhattacharyya, S. (2020). A systematic review of human neuroimaging evidence of memory-related functional alterations associated with cannabis use complemented with preclinical and human evidence of memory performance alterations. Brain Sciences, 10, 102.

    Article  Google Scholar 

  • Bonnet, U., & Preuss, U. W. (2017). The cannabis withdrawal syndrome: Current insights. Substance Abuse and Rehabilitation, 8, 9–37.

    Article  Google Scholar 

  • Breivogel, C. S., Wells, J. R., Jonas, A., Mistry, A. H., Gravley, M. L., Patel, R. M., Whithorn, B. E., & Brenseke, B. M. (2020). Comparison of the neurotoxic and seizure-inducing effects of synthetic and endogenous cannabinoids with Δ9-tetrahydrocannabinol. Cannabis and Cannabinoid Research, 5(1), 32–34.

    Article  Google Scholar 

  • Campolongo, P., Trezza, V., Palmery, M., Trabace, L., & Cuomo, V. (2009). Developmental exposure to cannabinoids causes subtle and enduring neurofunctional alterations. International Reviews of Neurobiology, 85, 117–133.

    Article  Google Scholar 

  • Campos, A. C., Fogaça, M. V., Sonego, A. B., & Guimarães, F. S. (2016). Cannabidiol, neuroprotection and neuropsychiatric disorders. Pharmacological Research, 112, 119–127.

    Article  Google Scholar 

  • Canazza, I., Ossato, A., Vincenzi, F., Gregori, A., Di Rosa, F., Nigro, F., Rimessi, A., Pinton, P., Varani, K., Borea, P. A., & Marti, M. (2017). Pharmaco-toxicological effects of the novel third-generation fluorinate synthetic cannabinoids, 5F-ADBINACA, AB-FUBINACA, and STS-135 in mice. In vitro and in vivo studies. Human Psychopharmacology: Clinical and Experimental, 32(3), e:2601.

    Article  Google Scholar 

  • Castelli, M. P., Fadda, P., Casu, A., Spano, M. S., Casti, A., Fratta, W., & Fattore, L. (2014). Male and female rats differ in brain cannabinoid CB1 receptor density and function and in behavioural traits predisposing to drug addiction: Effect of ovarian hormones. Current Pharmaceutical Design, 20(13), 2100–2113.

    Article  Google Scholar 

  • Cengel, H. Y., Bozkurt, M., Evren, C., Umut, G., Keskinkilic, C., & Agachanli, R. (2018). Evaluation of cognitive functions in individuals with synthetic cannabinoid use disorder and comparison to individuals with cannabis use disorder. Psychiatry Research, 262, 46–54.

    Article  Google Scholar 

  • Chan, G. C., Hinds, T. R., Impey, S., & Storm, D. R. (1998). Hippocampal neurotoxicity of Δ9-tetrahydrocannabinol. The Journal of Neuroscience, 18(14), 5322–5332.

    Article  Google Scholar 

  • Chandra, S., Radwan, M. M., Majumdar, C. G., Church, J. C., Freeman, T. P., & ElSohly, M. A. (2019). New trends in cannabis potency in USA and Europe during the last decade (2008–2017). European Archives of Psychiatry and Clinical Neuroscience, 269, 5–15.

    Article  Google Scholar 

  • Chen, D. J., Gao, M., Gao, F. F., Su, Q. X., & Wu, J. (2017). Brain cannabinoid receptor 2: Expression, function and modulation. Acta Pharmacologica Sinica, 38(3), 312–316.

    Article  Google Scholar 

  • Chye, Y., Kirkham, R., Lorenzetti, V., McTavish, E., Solowij, N., & Yücel, M. (2021). Cannabis, cannabinoids, and brain morphology: A review of the evidence. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6(6), 627-635.

    Google Scholar 

  • Cohen, K., Mama, Y., Rosca, P., Pinhasov, A., & Weinstein, A. (2020). Chronic use of synthetic cannabinoids is associated with impairment in working memory and mental flexibility. Frontiers in Psychiatry, 11, 602.

    Article  Google Scholar 

  • Colizzi, M., & Bhattacharyya, S. (2017). Does cannabis composition matter? Differential effects of delta-9-tetrahydrocannabinol and cannabidiol on human cognition. Current Addiction Reports, 4, 62–74.

    Article  Google Scholar 

  • Cooper, Z. D., & Craft, R. M. (2018). Sex-dependent effects of cannabis and cannabinoids: A translational perspective. Neuropsychopharmacology, 43(1), 34–51.

    Article  Google Scholar 

  • Cooper, Z. D., & Haney, M. (2009). Actions of delta-9-tetrahydrocannabinol in cannabis: Relation to use, abuse, dependence. International Review of Psychiatry, 21(2), 104–112.

    Article  Google Scholar 

  • Davis, J. P., Smith, D. C., Morphew, J. W., Lei, X., & Zhang, S. (2016). Cannabis withdrawal, posttreatment abstinence, and days to first cannabis use among emerging adults in substance use treatment: A prospective study. Journal of Drug Issues, 46(1), 64–83.

    Article  Google Scholar 

  • De Luca, M. A., & Fattore, L. (2018). Therapeutic use of synthetic cannabinoids: Still an open Issue? Clinical Therapeutics, 40(9), 1457–1466.

    Article  Google Scholar 

  • De Luca, M. A., Castelli, M. P., Loi, B., Porcu, A., Martorelli, M., Miliano, C., Kellett, K., Davidson, C., Stair, L. J., Schifano, F., & Di Chiara, G. (2016). Native CB1 receptor affinity, intrinsic activity and accumbens shell dopamine stimulant properties of third generation SPICE/K2 cannabinoids: BB-22, 5F-PB-22, 5F-AKB-48 and STS-135. Neuropharmacology, 105, 630–638.

    Article  Google Scholar 

  • del Arco, I., Muñoz, R., Rodríguez De Fonseca, F., Escudero, L., Martín-Calderón, J. L., Navarro, M., & Villanúa, M. A. (2000). Maternal exposure to the synthetic cannabinoid HU-210: Effects on the endocrine and immune systems of the adult male offspring. Neuroimmunomodulation, 7(1), 16–26.

    Article  Google Scholar 

  • DiNieri, J. A., Wang, X., Szutorisz, H., Spano, S. M., Kaur, J., Casaccia, P., Dow-Edwards, D., & Hurd, Y. L. (2011). Maternal cannabis use alters ventral striatal dopamine D2 gene regulation in the offspring. Biological Psychiatry, 70(8), 763–769.

    Article  Google Scholar 

  • Downer, E., Boland, B., Fogarty, M., & Campbell, V. (2001). Δ9-Tetrahydrocannabinol induces the apoptotic pathway in cultured cortical neurones via activation of the CB1 receptor. Neuroreport, 12(18), 3973–3978.

    Article  Google Scholar 

  • El Marroun, H., Tiemeier, H., Franken, I. H., Jaddoe, V. W., van der Lugt, A., Verhulst, F. C., Lahey, B. B., & White, T. (2016). Prenatal cannabis and tobacco exposure in relation to brain morphology: A prospective neuroimaging study in young children. Biological Psychiatry, 79(12), 971–979.

    Article  Google Scholar 

  • ElSohly, M. A., Radwan, M. M., Gul, W., Chandra, S., & Galal, A. (2017). Phytochemistry of Cannabis sativa L. Progress in Chemistry of Organic Natural Products, 103, 1–36.

    Article  Google Scholar 

  • EMCDDA. (2019a). EMCDDA operating guidelines for the European Union Early Warning System on new psychoactive substances. https://www.emcdda.europa.eu/system/files/publications/12213/EWS%20guidelines_final.pdf. Accessed 12 Nov 2020.

  • EMCDDA. (2019b). European drug report 2019: Trends and developments. https://www.emcdda.europa.eu/publications/edr/trends-developments/2019. Accessed 29 Oct 2020.

  • EMCDDA. (2019c). Developments in the European cannabis market. https://www.emcdda.europa.eu/publications/emcdda-papers/developments-in-the-european-cannabis-market. Accessed 3 Feb 2021.

  • EMCDDA. (2020). European drug report 2020: Trends and developments. https://www.emcdda.europa.eu/system/files/publications/13236/TDAT20001ENN_web.pdf. Accessed 2 Nov 2020.

  • Fattore, L. (2016). Synthetic cannabinoids – Further evidence supporting the relationship between cannabinoids and psychosis. Biological Psychiatry, 79(7), 539–548.

    Article  Google Scholar 

  • Fattore, L., & Fratta, W. (2011). Beyond THC: The new generation of cannabinoid designer drugs. Frontiers in Behavioral Neuroscience, 5, 60.

    Article  Google Scholar 

  • Fattore, L., Cossu, G., Martellotta, C. M., & Fratta, W. (2001). Intravenous self-administration of the cannabinoid CB1 receptor agonist WIN 55,212-2 in rats. Psychopharmacology (Berl), 156(4), 410–416.

    Article  Google Scholar 

  • Fattore, L., Spano, M. S., Altea, S., Fadda, P., & Fratta, W. (2010). Drug- and cue-induced reinstatement of cannabinoid-seeking behaviour in male and female rats: Influence of ovarian hormones. British Journal of Pharmacology, 160(3), 724–735.

    Article  Google Scholar 

  • Fattore, L., Marti, M., Mostallino, R., & Castelli, M. P. (2020). Sex and gender differences in the effects of Novel Psychoactive Substances. Brain Sciences, 10(9), 606.

    Article  Google Scholar 

  • Ford, T. C., Hayley, A. C., Downey, L. A., & Parrott, A. C. (2017). Cannabis: An overview of its adverse acute and chronic effects and its implications. Current Drug Abuse Reviews, 10(1), 6–18.

    Article  Google Scholar 

  • Frau, R., Miczán, V., Traccis, F., Aroni, S., Pongor, C. I., Saba, P., Serra, V., Sagheddu, C., Fanni, S., Congiu, M., Devoto, P., Cheer, J. F., Katona, I., & Melis, M. (2019). Prenatal THC exposure produces a hyperdopaminergic phenotype rescued by pregnenolone. Nature Neuroscience, 22(12), 1975–1985.

    Article  Google Scholar 

  • Freels, T. G., Baxter-Potter, L. N., Lugo, J. M., Glodosky, N. C., Wright, H. R., Baglot, S. L., Petrie, G. N., Yu, Z., Clowers, B. H., Cuttler, C., Fuchs, R. A., Hill, M. N., & McLaughlin, R. J. (2020). Vaporized cannabis extracts have reinforcing properties and support conditioned drug-seeking behavior in rats. The Journal of Neuroscience, 40(9), 1897–1908.

    Article  Google Scholar 

  • Freeman, T. P., Groshkova, T., Cunningham, A., Sedefov, R., Griffiths, P., & Lynskey, M. T. (2019). Increasing potency and price of cannabis in Europe, 2006–2016. Addiction, 114(6), 1015–1023.

    Article  Google Scholar 

  • Funada, M., & Takebayashi-Ohsawa, M. (2018). Synthetic cannabinoid AM2201 induces seizures: Involvement of cannabinoid CB1 receptors and glutamatergic transmission. Toxicology and Applied Pharmacology, 338, 1–8.

    Article  Google Scholar 

  • Gamage, T. F., Farquhar, C. E., Lefever, T. W., Marusich, J. A., Kevin, R. C., McGregor, I. S., Wiley, J. L., & Thomas, B. F. (2018). Molecular and behavioral pharmacological characterization of abused synthetic cannabinoids MMB- and MDMB-FUBINACA, MN-18, NNEI, CUMYL-PICA, and 5-Fluoro-CUMYL-PICA. The Journal of Pharmacology and Experimental Therapeutics, 365(2), 437–446.

    Article  Google Scholar 

  • Gatch, M. B., & Forster, M. J. (2019). Cannabinoid-like effects of five novel carboxamide synthetic cannabinoids. Neurotoxicology, 70, 72–79.

    Article  Google Scholar 

  • Gilbert, G. L., Kim, H. J., Waataja, J. J., & Thayer, S. A. (2007). Δ9-Tetrahydrocannabinol protects hippocampal neurons from excitotoxicity. Brain Research, 1128, 61–69.

    Article  Google Scholar 

  • Gilbert, M. T., Sulik, K. K., Fish, E. W., Baker, L. K., Dehart, D. B., & Parnell, S. E. (2016). Dose-dependent teratogenicity of the synthetic cannabinoid CP-55,940 in mice. Neurotoxicology and Teratology, 58, 15–22.

    Article  Google Scholar 

  • Ginsburg, B. C., Schulze, D. R., Hruba, L., & McMahon, L. R. (2012). JWH-018 and JWH-073: Δ9-tetrahydrocannabinol-like discriminative stimulus effects in monkeys. The Journal of Pharmacology and Experimental Therapeutics, 340, 37–45.

    Article  Google Scholar 

  • Giorgetti, A., Busardò, F. P., Tittarelli, R., Auwärter, V., & Giorgetti, R. (2020). Post-mortem toxicology: A systematic review of death cases involving synthetic cannabinoid receptor agonists. Frontiers in Psychiatry, 11, 464.

    Article  Google Scholar 

  • Gunderson, E. W., Haughey, H. M., Ait-Daoud, N., Joshi, A. S., & Hart, C. L. (2014). A survey of synthetic cannabinoid consumption by current cannabis users. Substance Abuse, 35, 184–189.

    Article  Google Scholar 

  • Hampson, A. J., Grimaldi, M., Axelrod, J., & Wink, D. (1998). Cannabidiol and (−)Δ9-tetrahydrocannabinol are neuroprotective antioxidants. Proceedings of the National Academy of Sciences of the United States of America, 95(14), 8268–8273.

    Article  Google Scholar 

  • Hirvonen, J., Goodwin, R. S., Li, C.-T., Terry, G. T., Zoghbi, S. S., Morse, C., Pike, V. W., Volkow, N. D., Huestis, M. A., & Innis, R. B. (2012). Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers. Molecular Psychiatry, 17(6), 642–649.

    Article  Google Scholar 

  • Howlett, A. C., & Abood, M. E. (2017). CB1 and CB2 receptor pharmacology. Advances in Pharmacology, 80, 169–206.

    Article  Google Scholar 

  • Jacobus, J., & Tapert, S. F. (2014). Effects of cannabis on the adolescent brain. Current Pharmaceutical Design, 20(13), 2186–2193.

    Article  Google Scholar 

  • Kim, D., & Thayer, S. A. (2001). Cannabinoids inhibit the formation of new synapses between hippocampal neurons in culture. The Journal of Neuroscience, 21(10), RC146.

    Article  Google Scholar 

  • Lenzi, M., Cocchi, V., Cavazza, L., Bilel, S., Hrelia, P., & Marti, M. (2020). Genotoxic properties of synthetic cannabinoids on TK6 human cells by flow cytometry. International Journal of Molecular Sciences, 21(3), 1150.

    Article  Google Scholar 

  • Livne, O., Shmulewitz, D., Lev-Ran, S., & Hasin, D. S. (2019). DSM-5 cannabis withdrawal syndrome: Demographic and clinical correlates in U.S. adults. Drug and Alcohol Dependence, 195, 170–177.

    Article  Google Scholar 

  • Livny, A., Cohen, K., Tik, N., Tsarfaty, G., Rosca, P., & Weinstein, A. (2018). The effects of synthetic cannabinoids (SCs) on brain structure and function. European Neuropsychopharmacology, 28(9), 1047–1057.

    Article  Google Scholar 

  • Lu, H. C., & Mackie, K. (2016). An introduction to the endogenous cannabinoid system. Biological Psychiatry, 79(7), 516–525.

    Article  Google Scholar 

  • Malyshevskaya, O., Aritake, K., Kaushik, M. K., Uchiyama, N., Cherasse, Y., Kikura-Hanajiri, R., & Urade, Y. (2017). Natural (Δ9-THC) and synthetic (JWH-018) cannabinoids induce seizures by acting through the cannabinoid CB1 receptor. Scientific Reports, 7(1), 10516.

    Article  Google Scholar 

  • Mashhoon, Y., Sava, S., Sneider, J. T., Nickerson, L. D., & Silveri, M. M. (2015). Cortical thinness and volume differences associated with marijuana abuse in emerging adults. Drug and Alcohol Dependence, 155, 275–283.

    Article  Google Scholar 

  • Mathews, E. M., Jeffries, E., Hsieh, C., Jones, G., & Buckner, J. D. (2019). Synthetic cannabinoid use among college students. Addictive Behaviors, 93, 219–224.

    Article  Google Scholar 

  • Melis, M., De Felice, M., Lecca, S., Fattore, L., & Pistis, M. (2013). Sex-specific tonic 2-arachidonoylglycerol signaling at inhibitory inputs onto dopamine neurons of Lister Hooded rats. Frontiers in Integrative Neuroscience, 7, 93.

    Article  Google Scholar 

  • Mensen, V. T., Vreeker, A., Nordgren, J., Atkinson, A., de la Torre, R., Farré, M., Ramaekers, J. G., & Brunt, T. M. (2019). Psychopathological symptoms associated with synthetic cannabinoid use: A comparison with natural cannabis. Psychopharmacology (Berl), 236(9), 2677–2685.

    Article  Google Scholar 

  • Mereu, G., Fà, M., Ferraro, L., Cagiano, R., Antonelli, T., Tattoli, M., Ghiglieri, V., Tanganelli, S., Gessa, G. L., & Cuomo, V. (2003). Prenatal exposure to a cannabinoid agonist produces memory deficits linked to dysfunction in hippocampal long-term potentiation and glutamate release. Proceedings of the National Academy of Sciences of the United States of America, 100(8), 4915–4920.

    Article  Google Scholar 

  • Navarrete, F., García-Gutiérrez, M. S., Gasparyan, A., Austrich-Olivares, A., Femenía, T., & Manzanares, J. (2020). Cannabis use in pregnant and breastfeeding women: Behavioral and neurobiological consequences. Frontiers in Psychiatry, 11, 586447.

    Article  Google Scholar 

  • Ossato, A., Canazza, I., Trapella, C., Vincenzi, F., De Luca, M. A., Rimondo, C., Varani, K., Borea, P. A., Serpelloni, G., & Marti, M. (2016). Effect of JWH-250, JWH-073 and their interaction on “tetrad”, sensorimotor, neurological and neurochemical responses in mice. Progress in Neuropsychopharmacology and Biological Psychiatry, 67, 31–50.

    Article  Google Scholar 

  • Ossato, A., Uccelli, L., Bilel, S., Canazza, I., Di Domenico, G., Pasquali, M., Pupillo, G., De Luca, M. A., Boschi, A., Vincenzi, F., Rimondo, C., Beggiato, S., Ferraro, L., Varani, K., Borea, P. A., Serpelloni, G., De-Giorgio, F., & Marti, M. (2017). Psychostimulant effect of the synthetic cannabinoid JWH-018 and AKB48: Behavioral, neurochemical, and dopamine transporter scan imaging studies in mice. Frontiers in Psychiatry, 8, 130.

    Article  Google Scholar 

  • Pertwee, R. G. (2001). Cannabinoids and the gastrointestinal tract. Gut, 48(6), 859–867.

    Article  Google Scholar 

  • Pertwee, R. G. (2008). Ligands that target cannabinoid receptors in the brain: From THC to anandamide and beyond. Addiction Biology, 13(2), 147–159.

    Article  Google Scholar 

  • Saez, T. M., Aronne, M. P., Caltana, L., & Brusco, A. H. (2014). Prenatal exposure to the CB1 and CB2 cannabinoid receptor agonist WIN 55,212-2 alters migration of early-born glutamatergic neurons and GABAergic interneurons in the rat cerebral cortex. Journal of Neurochemistry, 129(4), 637–648.

    Article  Google Scholar 

  • Sagheddu, C., Traccis, F., Serra, V., Congiu, M., Frau, R., Cheer, J. F., & Melis, M. (2021). Mesolimbic dopamine dysregulation as a signature of information processing deficits imposed by prenatal THC exposure. Progress in Neuropsychopharmacology and Biological Psychiatry, 105, 110128.

    Google Scholar 

  • Schoeder, C. T., Hess, C., Madea, B., Meiler, J., & Müller, C. E. (2018). Pharmacological evaluation of new constituents of “Spice”: Synthetic cannabinoids based on indole, indazole, benzimidazole and carbazole scaffolds. Forensic Toxicology, 36, 385–403.

    Article  Google Scholar 

  • Schreiber, S., Bader, M., Lenchinski, T., Meningher, I., Rubovitch, V., Katz, Y., Cohen, E., Gabet, Y., Rotenberg, M., Wolf, E. U., & Pick, C. G. (2019). Functional effects of synthetic cannabinoids versus Δ9-THC in mice on body temperature, nociceptive threshold, anxiety, cognition, locomotor/exploratory parameters and depression. Addiction Biology, 24(3), 414–425.

    Article  Google Scholar 

  • Shabani, M., Hosseinmardi, N., Haghani, M., Shaibani, V., & Janahmadi, M. (2011). Maternal exposure to the CB1 cannabinoid agonist WIN 55212-2 produces robust changes in motor function and intrinsic electrophysiological properties of cerebellar Purkinje neurons in rat offspring. Neuroscience, 172, 139–152.

    Article  Google Scholar 

  • Shapira, B., Rosca, P., Berkovitz, R., Gorjaltsan, I., & Neumark, Y. (2020). The switch from one substance-of-abuse to another: Illicit drug substitution behaviors in a sample of high-risk drug users. PeerJ, 8, e9461.

    Article  Google Scholar 

  • Struik, D., Sanna, F., & Fattore, L. (2018). The modulating role of sex and anabolic-androgenic steroid hormones in cannabinoid sensitivity. Frontiers in Behavioral Neuroscience, 12, 249.

    Article  Google Scholar 

  • Sun, X., & Dey, S. K. (2014). Synthetic cannabinoids and potential reproductive consequences. Life Sciences, 97(1), 72–77.

    Article  Google Scholar 

  • Szutorisz, H., & Hurd, Y. L. (2018). High times for cannabis: Epigenetic imprint and its legacy on brain and behavior. Neuroscience and Biobehavioral Reviews, 85, 93–101.

    Article  Google Scholar 

  • Tait, R. J., Caldicott, D., Mountain, D., Hill, S. L., & Lenton, S. (2016). A systematic review of adverse events arising from the use of synthetic cannabinoids and their associated treatment. Clinical Toxicology (Philadelphia, Pa), 54(1), 1–13.

    Article  Google Scholar 

  • Tanda, G. (2016). Preclinical studies on the reinforcing effects of cannabinoids. A tribute to the scientific research of Dr. Steve Goldberg. Psychopharmacology (Ber), 233(10), 1845–1866.

    Article  Google Scholar 

  • Tomiyama, K., & Funada, M. (2014). Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: The involvement of cannabinoid CB1 receptors and apoptotic cell death. Toxicology and Applied Pharmacology, 274(1), 17–23.

    Article  Google Scholar 

  • Trezza, V., Cuomo, V., & Vanderschuren, L. J. (2008). Cannabis and the develo** brain: Insights from behavior. European Journal of Pharmacology, 585(2-3), 441–452.

    Article  Google Scholar 

  • Umut, G., Evren, C., Atagun, M. I., Yilmaz Cengel, H., Bozkurt, M., & Keskinkilic, C. (2020). Impact of at least 2 years of synthetic cannabinoid use on cognitive and psychomotor functions among treatment-seeking male outpatients. Cannabis and Cannabinoid Research, 5(2), 164–171.

    Article  Google Scholar 

  • UNODC. (2018). Analysis of drug markets. Opiates, cocaine, cannabis, synthetic drugs. https://www.unodc.org/wdr2018/prelaunch/WDR18_Booklet_3_DRUG_MARKETS.pdf. Accessed 2 Nov 2020.

  • UNODC. (2019). Global overview of drug demand and supply. https://wdr.unodc.org/wdr2019/prelaunch/WDR19_Booklet_2_DRUG_DEMAND.pdf. Accessed 2 Nov 2020.

  • UNODC. (2020). World drug report 2020. Cross-cutting issues: Evolving trends and new challenges. https://wdr.unodc.org/wdr2020/field/WDR20_BOOKLET_4.pdf. Accessed 2 Nov 2020.

  • Wang, X., Dow-Edwards, D., Anderson, V., Minkoff, H., & Hurd, Y. L. (2004). In utero marijuana exposure associated with abnormal amygdala dopamine D2 gene expression in the human fetus. Biological Psychiatry, 56(12), 909–915.

    Article  Google Scholar 

  • Wiley, J. L., Marusich, J. A., Lefever, T. W., Antonazzo, K. R., Wallgren, M. T., Cortes, R. A., Patel, P. R., Grabenauer, M., Moore, K. N., & Thomas, B. F. (2015). AB-CHMINACA, AB-PINACA, and FUBIMINA: Affinity and potency of novel synthetic cannabinoids in producing Δ9-tetrahydrocannabinol-like effects in mice. The Journal of Pharmacology and Experimental Therapeutics, 354(3), 328–339.

    Article  Google Scholar 

  • Wiley, J. L., Lefever, T. W., Glass, M., & Thomas, B. F. (2019). Do you feel it now? Route of administration and Δ9-tetrahydrocannabinol-like discriminative stimulus effects of synthetic cannabinoids in mice. Neurotoxicology, 73, 161–167.

    Article  Google Scholar 

  • Wilkerson, J. L., Schulze, D. R., & McMahon, L. R. (2019). Tolerance and dependence to Δ9-tetrahydrocannabinol in rhesus monkeys: Activity assessments. PLoS One, 14(3), e0209947.

    Article  Google Scholar 

  • Wojcieszak, J., Krzemień, W., & Zawilska, J. B. (2016). JWH-133, a selective cannabinoid CB2 receptor agonist, exerts toxic effects on neuroblastoma SH-SY5Y cells. Journal of Molecular Neurosciences, 58(4), 441–445.

    Article  Google Scholar 

  • Zawilska, J. B., & Wojcieszak, J. (2014). Spice/K2 drugs – more than innocent substitutes for marijuana. International Journal of Neuropsychopharmacology, 7(3), 509–525.

    Article  Google Scholar 

  • Zorlu, N., Angelique Di Biase, M., Kalaycı, Ç. Ç., Zalesky, A., Bağcı, B., Oğuz, N., Gelal, F., Beşiroğlu, L., Gülseren, Ş., Sarıçiçek, A., Bora, E., & Pantelis, C. (2016). Abnormal white matter integrity in synthetic cannabinoid users. European Neuropsychopharmacology, 26(11), 1818–1825.

    Article  Google Scholar 

Download references

Acknowledgments

Supported by the Medical University of Lodz, Poland (Grant No 503/3-011-01/503-31-002-19), and Ministero dell’Istruzione, dell’Università e della Ricerca (PRIN 2017SXEXT5) and Regione Sardegna (RASSR03071), Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanta B. Zawilska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zawilska, J.B., Kuczyńska, K., Bratzu, J., Fattore, L. (2022). Neurotoxicity of Exogenous Cannabinoids. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-031-15080-7_206

Download citation

Publish with us

Policies and ethics

Navigation