The Cerebellar Neuroimmune System

  • Chapter
  • First Online:
Essentials of Cerebellum and Cerebellar Disorders
  • 92 Accesses

Abstract

Emerging research has revealed that glial cells of the brain can produce many of the same signaling factors as cells of the peripheral immune system and, as such, can function as a brain immune system, referred to as the neuroimmune system. Both neurons and glial cells of the brain express receptors and intracellular signaling pathways that can interpret the signals communicated by these factors, which are called neuroimmune factors when produced by brain cells, and in response adjust their function. The neuroimmune system serves many roles both in normal brain biology and in brain pathology. To date, the majority of studies on the characteristics and function of the neuroimmune system comes from brain regions outside of the cerebellum, but recent studies of the cerebellum have shown that the neuroimmune system plays an important role in cerebellar development, function, and disease. This new and expanding area of research will likely bring greater understanding to the cellular and molecular mechanisms that mediate cerebellar function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Araujo AP, Diniz LP, Eller CM, de Matos BG, Martinez R, Gomes FC (2016) Effects of transforming growth factor beta 1 in cerebellar development: role in synapse formation. Front Cell Neurosci 10:104

    Article  PubMed  PubMed Central  Google Scholar 

  • Araujo APB, Carpi-Santos R, Gomes FCA (2019) The role of astrocytes in the development of the cerebellum. Cerebellum (London, England) 18:1017–1035

    Article  CAS  PubMed  Google Scholar 

  • Bacher M, Meinhardt A, Lan HY, Dhabhar FS, Mu W, Metz CN, Chesney JA, Gemsa D, Donnelly T, Atkins RC, Bucala R (1998) MIF expression in the rat brain: implications for neuronal function. Mol Med 4:217–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajetto A, Bonavia R, Barbero S, Florio T, Schettini G (2001) Chemokines and their receptors in the central nervous system. Front Neuroendocrinol 22:147–184

    Article  CAS  PubMed  Google Scholar 

  • Balzano T, Arenas YM, Dadsetan S, Forteza J, Gil-Perotin S, Cubas-Nuñez L, Casanova B, Gracià F, Varela-Andrés N, Montoliu C, Llansola M, Felipo V (2020) Sustained hyperammonemia induces TNF-α in Purkinje neurons by activating the TNFR1-NF-κB pathway. J Neuroinflammation 17:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandtlow CE, Meyer M, Lindholm D, Spranger M, Heumann R, Thoenen H (1990) Regional and cellular codistribution of interleukin 1 beta and nerve growth factor mRNA in the adult rat brain: possible relationship to the regulation of nerve growth factor synthesis. J Cell Biol 111:1701–1711

    Article  CAS  PubMed  Google Scholar 

  • Banisadr G, Gosselin RD, Mechighel P, Kitabgi P, Rostène W, Parsadaniantz SM (2005) Highly regionalized neuronal expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) in rat brain: evidence for its colocalization with neurotransmitters and neuropeptides. J Comp Neurol 489:275–292

    Article  CAS  PubMed  Google Scholar 

  • Bellamy TC (2006) Interactions between Purkinje neurones and Bergmann glia. Cerebellum (London, England) 5:116–126

    Article  PubMed  Google Scholar 

  • Cerrato V (2020) Cerebellar astrocytes: much more than passive by standers in ataxia pathophysiology. J Clin Med 9:757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang CS, Powell HC, Gold LH, Samimi A, Campbell IL (1996) Macrophage/microglial-mediated primary demyelination and motor disease induced by the central nervous system production of interleukin-3 in transgenic mice. J Clin Invest 97:1512–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chibowska K, Korbecki J, Gutowska I, Metryka E, Tarnowski M, Goschorska M, Barczak K, Chlubek D, Baranowska-Bosiacka I (2020) Pre- and neonatal exposure to lead (pb) induces neuroinflammation in the forebrain cortex, hippocampus and cerebellum of rat pups. Int J Mol Sci 21:1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colonna M, Butovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 35:441–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conroy SM, Nguyen V, Quina LA, Blakely-Gonzales P, Ur C, Netzeband JG, Prieto AL, Gruol DL (2004) Interleukin-6 produces neuronal loss in develo** cerebellar granule neuron cultures. J Neuroimmunol 155:43–54

    Article  CAS  PubMed  Google Scholar 

  • Cowell RM, Silverstein FS (2003) Developmental changes in the expression of chemokine receptor CCR1 in the rat cerebellum. J Comp Neurol 457:7–23

    Article  CAS  PubMed  Google Scholar 

  • Cunningham C, Dunne A, Lopez-Rodriguez AB (2019) Astrocytes: heterogeneous and dynamic phenotypes in neurodegeneration and innate immunity. Neuroscientist 25:455–474

    Article  PubMed  Google Scholar 

  • Cvetanovic M, Ingram M, Orr H, Opal P (2015) Early activation of microglia and astrocytes in mouse models of spinocerebellar ataxia type 1. Neuroscience 289:289–299

    Article  CAS  PubMed  Google Scholar 

  • Dinarello CA (2007) Historical insights into cytokines. Eur J Immunol 37(Suppl 1):S34–S45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferro A, Sheeler C, Rosa JG, Cvetanovic M (2019) Role of microglia in ataxias. J Mol Biol 431:1792–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadient RA, Otten UH (1997) Interleukin-6 (IL-6)—a molecule with both beneficial and destructive potentials. Prog Neurobiol 52:379–390

    Article  CAS  PubMed  Google Scholar 

  • Gayle D, Ilyin SE, Plata-Salamán CR (1997) Interleukin-1 receptor type I mRNA levels in brain regions from male and female rats. Brain Res Bull 42:463–467

    Article  CAS  PubMed  Google Scholar 

  • Giovannelli A, Limatola C, Ragozzino D, Mileo AM, Ruggieri A, Ciotti MT, Mercanti D, Santoni A, Eusebi F (1998) CXC chemokines interleukin-8 (IL-8) and growth-related gene product alpha (GROalpha) modulate Purkinje neuron activity in mouse cerebellum. J Neuroimmunol 92:122–132

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Nicola D, Valle-Argos B, Pita-Thomas DW, Nieto-Sampedro M (2008) Interleukin 15 expression in the CNS: blockade of its activity prevents glial activation after an inflammatory injury. Glia 56:494–505

    Article  PubMed  Google Scholar 

  • Gruol DL, Melkonian C, Huitron-Resendiz S, Roberts AJ (2020) Alcohol alters IL-6 signal transduction in the CNS of transgenic mice with increased astrocyte expression of IL-6. Cell Mol Neurobiol 442:124–137

    CAS  Google Scholar 

  • Hickman S, Izzy S, Sen P, Morsett L, El Khoury J (2018) Microglia in neurodegeneration. Nat Neurosci 21:1359–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoxha E, Balbo I, Miniaci MC, Tempia F (2018) Purkinje cell signaling deficits in animal models of ataxia. Front Synaptic Neurosci 10:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Jha MK, Jo M, Kim JH, Suk K (2019) Microglia-astrocyte crosstalk: an intimate molecular conversation. Neuroscientist 25:227–240

    Article  CAS  PubMed  Google Scholar 

  • Kana V et al (2019) CSF-1 controls cerebellar microglia and is required for motor function and social interaction. J Exp Med 216:2265–2281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur C, Sivakumar V, Zou Z, Ling EA (2014) Microglia-derived proinflammatory cytokines tumor necrosis factor-alpha and interleukin-1beta induce Purkinje neuronal apoptosis via their receptors in hypoxic neonatal rat brain. Brain Struct Funct 219:151–170

    Article  CAS  PubMed  Google Scholar 

  • Kempuraj D, Thangavel R, Natteru PA, Selvakumar GP, Saeed D, Zahoor H, Zaheer S, Iyer SS, Zaheer A (2016) Neuroinflammation induces neurodegeneration. J Neurol Neurosurg Spine 1:1003

    PubMed  PubMed Central  Google Scholar 

  • Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170

    Article  CAS  PubMed  Google Scholar 

  • Ma SH, Li B, Huang HW, Peng YP, Qiu YH (2012) Interleukin-6 inhibits L-type calcium channel activity of cultured cerebellar granule neurons. J Physiol Sci 62:385–392

    Article  CAS  PubMed  Google Scholar 

  • Mandolesi G, Musella A, Gentile A, Grasselli G, Haji N, Sepman H, Fresegna D, Bullitta S, De Vito F, Musumeci G, Di Sanza C, Strata P, Centonze D (2013) Interleukin-1β alters glutamate transmission at Purkinje cell synapses in a mouse model of multiple sclerosis. J Neurosci 33:12105–12121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcián V, Filip P, BareÅ¡ M, Brázdil M (2016) Cerebellar dysfunction and ataxia in patients with epilepsy: coincidence, consequence, or cause? Tremor Other Hyperkinet Mov (N Y) 6:376

    Article  PubMed  Google Scholar 

  • Meera P, Pulst SM, Otis TS (2016) Cellular and circuit mechanisms underlying spinocerebellar ataxias. J Physiol 594:4653–4660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng SZ, Oka A, Takashima S (1999) Developmental expression of monocyte chemoattractant protein-1 in the human cerebellum and brainstem. Brain and Development 21:30–35

    Article  CAS  PubMed  Google Scholar 

  • Motoki K, Kishi H, Hori E, Tajiri K, Nishijo H, Muraguchi A (2009) The direct excitatory effect of IL-1beta on cerebellar Purkinje cell. Biochem Biophys Res Commun 379:665–668

    Article  CAS  PubMed  Google Scholar 

  • Nakayama H, Abe M, Morimoto C, Iida T, Okabe S, Sakimura K, Hashimoto K (2018) Microglia permit climbing fiber elimination by promoting GABAergic inhibition in the develo** cerebellum. Nat Commun 9:2830

    Article  PubMed  PubMed Central  Google Scholar 

  • Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530

    Article  CAS  PubMed  Google Scholar 

  • Nelson TE, Campbell IL, Gruol DL (1999) Altered physiology of Purkinje neurons in cerebellar slices from transgenic mice with chronic central nervous system expression of interleukin-6. Neuroscience 89:127–136

    Article  CAS  PubMed  Google Scholar 

  • Nelson TE, Ur CL, Gruol DL (2002) Chronic interleukin-6 exposure alters electrophysiological properties and calcium signaling in develo** cerebellar Purkinje neurons in culture. J Neurophysiol 88:475–486

    Article  CAS  PubMed  Google Scholar 

  • Nelson TE, Netzeband JG, Gruol DL (2004) Chronic interleukin-6 exposure alters metabotropic glutamate receptor-activated calcium signalling in cerebellar Purkinje neurons. Eur J Neurosci 20:2387–2400

    Article  PubMed  Google Scholar 

  • Oldreive CE, Doherty GH (2010) Effects of tumour necrosis factor-alpha on develo** cerebellar granule and Purkinje neurons in vitro. J Mol Neurosci 42:44–52

    Article  CAS  PubMed  Google Scholar 

  • Ozawa PM, Ariza CB, Ishibashi CM, Fujita TC, Banin-Hirata BK, Oda JM, Watanabe MA (2016) Role of CXCL12 and CXCR4 in normal cerebellar development and medulloblastoma. Int J Cancer 138:10–13

    Article  CAS  PubMed  Google Scholar 

  • Palomo J, Dietrich D, Martin P, Palmer G, Gabay C (2015) The interleukin (IL)-1 cytokine family—Balance between agonists and antagonists in inflammatory diseases. Cytokine 76:25–37

    Article  CAS  PubMed  Google Scholar 

  • Park CR, Kim DK, Cho EB, You DJ, do Rego JL, Vaudry D, Sun W, Kim H, Seong JY, Hwang JI (2012) Spatiotemporal expression and functional implication of CXCL14 in the develo** mice cerebellum. Mol Cells 34:289–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pringle AK, Gardner CR, Walker RJ (1996) Reduction of cerebellar GABAA responses by interleukin-1 (IL-1) through an indomethacin insensitive mechanism. Neuropharmacology 35:147–152

    Google Scholar 

  • Qiu Z, Sweeney DD, Netzeband JG, Gruol DL (1998) Chronic interleukin-6 alters NMDA receptor-mediated membrane responses and enhances neurotoxicity in develo** CNS neurons. J Neurosci 18:10445–10456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragozzino D (2002) CXC chemokine receptors in the central nervous system: role in cerebellar neuromodulation and development. J Neurovirol 8:559–572

    Article  CAS  PubMed  Google Scholar 

  • Ragozzino D, Giovannelli A, Mileo AM, Limatola C, Santoni A, Eusebi F (1998) Modulation of the neurotransmitter release in rat cerebellar neurons by GRO beta. Neuroreport 9:3601–3606

    Article  CAS  PubMed  Google Scholar 

  • Revuelta M, Scheuer T, Chew LJ, Schmitz T (2020) Glial factors regulating white matter development and pathologies of the cerebellum. Neurochem Res 45:643–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schobitz B, de Kloet ER, Sutanto W, Holsboer F (1993) Cellular localization of interleukin 6 mRNA and interleukin 6 receptor mRNA in rat brain. Eur J Neurosci 5:1426–1435

    Article  CAS  PubMed  Google Scholar 

  • Schobitz B, De Kloet ER, Holsboer F (1994) Gene expression and function of interleukin 1, interleukin 6 and tumor necrosis factor in the brain. Prog Neurobiol 44:397–432

    Article  CAS  PubMed  Google Scholar 

  • Stoessel MB, Majewska AK (2021) Little cells of the little brain: microglia in cerebellar development and function. Trends Neurosci 44:564–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stowell RD, Wong EL, Batchelor HN, Mendes MS, Lamantia CE, Whitelaw BS, Majewska AK (2018) Cerebellar microglia are dynamically unique and survey Purkinje neurons in vivo. Dev Neurobiol 78:627–644

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiveron MC, Cremer H (2008) CXCL12/CXCR4 signalling in neuronal cell migration. Curr Opin Neurobiol 18:237–244

    Article  CAS  PubMed  Google Scholar 

  • Tomita M, Holman BJ, Williams LS, Pang KC, Santoro TJ (2001) Cerebellar dysfunction is associated with overexpression of proinflammatory cytokine genes in lupus. J Neurosci Res 64:26–33

    Article  CAS  PubMed  Google Scholar 

  • Vainchtein ID, Molofsky AV (2020) Astrocytes and microglia: in sickness and in health. Trends Neurosci 43:144–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Gassen KL, Netzeband JG, de Graan PN, Gruol DL (2005) The chemokine CCL2 modulates Ca2+ dynamics and electrophysiological properties of cultured cerebellar Purkinje neurons. Eur J Neurosci 21:2949–2957

    Article  PubMed  Google Scholar 

  • Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57:67–81

    Article  CAS  PubMed  Google Scholar 

  • Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98:239–389

    Article  CAS  PubMed  Google Scholar 

  • Vilz TO, Moepps B, Engele J, Molly S, Littman DR, Schilling K (2005) The SDF-1/CXCR4 pathway and the development of the cerebellar system. Eur J Neurosci 22:1831–1839

    Article  PubMed  Google Scholar 

  • Wicher G, Husic E, Nilsson G, Forsberg-Nilsson K (2013) Developmental expression of IL-33 in the mouse brain. Neurosci Lett 555:171–176

    Article  CAS  PubMed  Google Scholar 

  • Wong ML, Licinio J (1994) Localization of interleukin 1 type I receptor mRNA in rat brain. Neuroimmunomodulation 1:110–115

    Article  CAS  PubMed  Google Scholar 

  • Wright-** EC, Gutmann DH (2019) Microglia as dynamic cellular mediators of brain function. Trends Mol Med 25:967–979

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu T, Huang H, Li HF (2010) Stromal cell-derived factor-1 promotes migration of cells from the upper rhombic lip in cerebellar development. J Neurosci Res 88:2775–2786

    CAS  PubMed  Google Scholar 

  • Zhuang JL, Wang CY, Zhou MH, Duan KZ, Mei YA (2012) TGF-β1 enhances Kv2.1 potassium channel protein expression and promotes maturation of cerebellar granule neurons. J Cell Physiol 227:297–307

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna L. Gruol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gruol, D.L. (2023). The Cerebellar Neuroimmune System. In: Gruol, D.L., Koibuchi, N., Manto, M., Molinari, M., Schmahmann, J.D., Shen, Y. (eds) Essentials of Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-031-15070-8_47

Download citation

Publish with us

Policies and ethics

Navigation