Regulation of Calcium in the Cerebellum

  • Chapter
  • First Online:
Essentials of Cerebellum and Cerebellar Disorders
  • 92 Accesses

Abstract

Ca2+ is an important ion in central nervous system (CNS) biology, where it plays a critical role in the basic functions of neurons, glia, and other cell types. In CNS neurons, Ca2+ is a generator of electrical signals, an inducer and regulator of synaptic transmission, and a second messenger that controls many biochemical processes. Ca2+ is also a signal transmitter and second messenger in glial cells. Ca2+ levels in neurons and glia are dynamic but judiciously controlled in order to maintain biological processes at a level compatible with life. An excess or deficit of Ca2+ can result in cell damage or death. A variety of cellular mechanisms, through a process referred to as Ca2+ signaling, enable or contribute to the changes in intracellular Ca2+ that are essential for normal cell function, some of which are present in all eukaryotic cells and others that are unique to the functions of a particular class of cells. This chapter will briefly describe the cellular mechanisms that contribute to Ca2+ signaling in cerebellar and other CNS neurons. These mechanisms are located throughout the neuron including at presynaptic sites (e.g., axon terminals) where they regulate transmitter release, at postsynaptic sites (e.g., dendrites) where they influence synaptic responses, in the cytosol where they regulate biochemical pathways and other physiological functions, and in the nucleus where they regulate gene transcription. Many of these mechanisms are also expressed in non-neuronal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 116.04
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bastianelli E (2003) Distribution of calcium-binding proteins in the cerebellum. Cerebellum (London, England) 2:242–262

    Article  CAS  PubMed  Google Scholar 

  • Begum R, Bakiri Y, Volynski KE, Kullmann DM (2016) Action potential broadening in a presynaptic channelopathy. Nat Commun 7:12102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brini M, Calì T, Ottolini D, Carafoli E (2014) Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci 71:2787–2814

    Article  CAS  PubMed  Google Scholar 

  • Brown SA, Loew LM (2012) Computational analysis of calcium signaling and membrane electrophysiology in cerebellar Purkinje neurons associated with ataxia. BMC Syst Biol 6:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheron G, Servais L, Dan B (2008) Cerebellar network plasticity: from genes to fast oscillation. Neuroscience 153:1–19

    Article  CAS  PubMed  Google Scholar 

  • Fiacco TA, McCarthy KD (2006) Astrocyte calcium elevations: properties, propagation, and effects on brain signaling. Glia 54:676–690

    Article  PubMed  Google Scholar 

  • Furuichi T, Yoshikawa S, Miyawaki A, Wada K, Maeda N, Mikoshiba K (1989) Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 342:32–38

    Article  CAS  PubMed  Google Scholar 

  • Gruol DL, Netzeband JG, Nelson TE (2010) Somatic Ca2+ signaling in cerebellar Purkinje neurons. J Neurosci Res 88:275–289

    Article  CAS  PubMed  Google Scholar 

  • Hartmann J, Konnerth A (2005) Determinants of postsynaptic Ca2+ signaling in Purkinje neurons. Cell Calcium 37:459–466

    Article  CAS  PubMed  Google Scholar 

  • Hisatsune C, Hamada K, Mikoshiba K (2018) Ca(2+) signaling and spinocerebellar ataxia. Biochim Biophys Acta, Mol Cell Res 1865:1733–1744

    Article  CAS  Google Scholar 

  • Hoogland TM, Kuhn B, Göbel W, Huang W, Nakai J, Helmchen F, Flint J, Wang SS (2009) Radially expanding transglial calcium waves in the intact cerebellum. Proc Natl Acad Sci U S A 106:3496–3501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoxha E, Balbo I, Miniaci MC, Tempia F (2018) Purkinje cell signaling deficits in animal models of ataxia. Front Synaptic Neurosci 10:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitamura K, Kano M (2013) Dendritic calcium signaling in cerebellar Purkinje cell. Neural Netw 47:11–17

    Article  PubMed  Google Scholar 

  • Ignarro LJ, Napoli C, Loscalzo J (2002) Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide - an overview. Circ Res 90:21–28

    Google Scholar 

  • Lalo U, Pankratov Y, Parpura V, Verkhratsky A (2011) Ionotropic receptors in neuronal–astroglial signalling: what is the role of “excitable” molecules in non-excitable cells. Biochim Biophys Acta 1813:992–1002

    Article  CAS  PubMed  Google Scholar 

  • Lamont MG, Weber JT (2012) The role of calcium in synaptic plasticity and motor learning in the cerebellar cortex. Neurosci Biobehav Rev 36:1153–1162

    Article  CAS  PubMed  Google Scholar 

  • Lin JW, Rudy B, Llinas R (1990) Funnel-web spider venom and a toxin fraction block calcium current expressed from rat brain mRNA in xenopus oocytes. Proc Natl Acad Sci U S A 87:4538–4542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llinas R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol 305:197–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchenko SM, Thomas RC (2006) Nuclear Ca2+ signalling in cerebellar Purkinje neurons. Cerebellum (London, England) 5:36–42

    Article  CAS  PubMed  Google Scholar 

  • Mark MD, Schwitalla JC, Groemmke M, Herlitze S (2017) Kee** our calcium in balance to maintain our balance. Biochem Biophys Res Commun 483:1040–1050

    Article  CAS  PubMed  Google Scholar 

  • Meera P, Pulst SM, Otis TS (2016) Cellular and circuit mechanisms underlying spinocerebellar ataxias. J Physiol 594:4653–4660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metea MR, Newman EA (2006) Calcium signaling in specialized glial cells. Glia 54:650–655

    Article  PubMed  PubMed Central  Google Scholar 

  • Mikoshiba K (2015) Role of IP3 receptor signaling in cell functions and diseases. Adv Biol Regul 57:217–227

    Article  CAS  PubMed  Google Scholar 

  • Müller T, Kettenmann H (1995) Physiology of Bergmann glial cells. Int Rev Neurobiol 38:341–359

    Article  PubMed  Google Scholar 

  • Nakamura M, Sato K, Fukaya M, Araishi K, Aiba A, Kano M, Watanabe M (2004) Signaling complex formation of phospholipase Cbeta4 with metabotropic glutamate receptor type 1alpha and 1,4,5-trisphosphate receptor at the perisynapse and endoplasmic reticulum in the mouse brain. Eur J Neurosci 20:2929–2944

    Article  PubMed  Google Scholar 

  • Prestori F, Moccia F, D’Angelo E (2019) Disrupted calcium signaling in animal models of human spinocerebellar ataxia (SCA). Int J Mol Sci 21:216

    Article  PubMed  PubMed Central  Google Scholar 

  • Puri BK (2020) Calcium signaling and gene expression. Adv Exp Med Biol 1131:537–545

    Article  CAS  PubMed  Google Scholar 

  • Rinaldo L, Hansel C (2010) Ataxias and cerebellar dysfunction: involvement of synaptic plasticity deficits? Funct Neurol 25:135–139

    CAS  PubMed  Google Scholar 

  • Schmahmann JD (2019) The cerebellum and cognition. Neurosci Lett 688:62–75

    Article  CAS  PubMed  Google Scholar 

  • Schwaller B, Meyer M, Schiffmann S (2002) ‘New’ functions for ‘old’ proteins: the role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum (London, England) 1:241–258

    Article  CAS  PubMed  Google Scholar 

  • Shigemoto R, Nakanishi S, Mizuno N (1992) Distribution of the mRNA for a metabotropic glutamate receptor (mGluR1) in the central nervous system: an in situ hybridization study in adult and develo** rat. J Comp Neurol 322:121–135

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Sukumaran P, Bandyopadhyay BC, Singh BB (2014) Physiological function and characterization of TRPCs in neurons. Cell 3:455–475

    Article  Google Scholar 

  • Verkhratsky A (2006) Glial calcium signaling in physiology and pathophysiology. Acta Pharmacol Sin 27:773–780

    Article  CAS  PubMed  Google Scholar 

  • Vincent M, Hadjikhani N (2007) The cerebellum and migraine. Headache 47:820–833

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu W, Zheng J, Jia Z (2021) Structural characterization of the mitochondrial ca(2+) uniporter provides insights into ca(2+) uptake and regulation. iScience 24:102895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna L. Gruol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gruol, D.L. (2023). Regulation of Calcium in the Cerebellum. In: Gruol, D.L., Koibuchi, N., Manto, M., Molinari, M., Schmahmann, J.D., Shen, Y. (eds) Essentials of Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-031-15070-8_45

Download citation

Publish with us

Policies and ethics

Navigation