Plasticity of the Cerebellum

  • Chapter
  • First Online:
Essentials of Cerebellum and Cerebellar Disorders

Abstract

Since 1990s, long-term depression of (LTD) at parallel fiber–Purkinje cell synapses has been regarded as a cellular phenomenon for motor learning. However, parallel fiber LTD by itself cannot account for motor learning. Here, we review a rich variety of use-dependent plasticity in the cerebellar cortex and nuclei, including long-term potentiation (LTP) and LTD at excitatory and inhibitory synapses, and persistent modulation of intrinsic excitability. Prevailing studies demonstrated that intrinsic and extrinsic factors, including neuronal excitation, specific molecular mechanisms, theta oscillation, and external neuromodulators, are essential to different forms of plasticity in the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aizenman CD, Manis PB, Linden DJ (1998) Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron 21:827–835

    Article  CAS  PubMed  Google Scholar 

  • Aizenman CD, Huang EJ, Linden DJ (2003) Morphological correlates of intrinsic electrical excitability in neurons of the deep cerebellar nuclei. J Neurophysiol 89:1738–1747

    Article  PubMed  Google Scholar 

  • Bear MF, Linden DJ (2000) The mechanisms and meaning of long-term synaptic depression in the mammalian brain. In: Cowan WM, Davies K (eds) The synapse. Johns Hopkins Univ Press, Baltimore, MD, pp 455–516

    Google Scholar 

  • Bouvier G, Higgins D, Spolidoro M et al (2016) Burst-dependent bidirectional plasticity in the cerebellum is driven by presynaptic NMDA receptors. Cell Rep 15:104–116

    Article  CAS  PubMed  Google Scholar 

  • Coesmans M, Weber JT, De Zeeuw CI et al (2004) Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron 44:691–700

    Article  CAS  PubMed  Google Scholar 

  • D’Angelo E, Rossi P, Armano S et al (1999) Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fibre–granule cell transmission in rat cerebellum. J Neurophysiol 81:277–287

    Article  PubMed  Google Scholar 

  • Ekerot CF, Kano M (1989) Stimulation parameters influencing climbing fibre induced long-term depression of parallel fibre synapses. Neurosci Res 6:264–268.

    Google Scholar 

  • Gall D, Prestori F, Sola E et al (2005) Intracellular calcium regulation by burst discharge determines bidirectional longterm synaptic plasticity at the cerebellum input stage. J Neurosci 25:4813–4822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grasselli G, Boele HJ, Titley HK et al (2020) SK2 channels in cerebellar Purkinje cells contribute to excitability modulation in motor-learning-specific memory traces. PLoS Biol 18:e3000596

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutierrez-Castellanos N, Da Silva-Matos CM, Zhou K et al (2017) Motor learning requires Purkinje cell synaptic potentiation through activation of AMPA-receptor subunit GluA3. Neuron 93:409–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansel C, Linden DJ (2000) Long-term depression of the cerebellar climbing fiber-Purkinje neuron synapse. Neuron 26:473–482

    Article  CAS  PubMed  Google Scholar 

  • Hansel C, Linden DJ, D’Angelo E (2001) Beyond parallel fiber LTD: the diversity of synaptic and nonsynaptic plasticity in the cerebellum. Nat Neurosci 4:467–475

    Article  CAS  PubMed  Google Scholar 

  • Häusser M, Clark BA (1997) Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 19:665–678

    Article  PubMed  Google Scholar 

  • Ito M, Sakurai M, Tongroach P (1982) Climbing fiber induced depression of both mossy fiber responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol Lond 324:113–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang DC, Shim HG, Kim SJ (2020) Intrinsic plasticity of cerebellar Purkinje cells contributes to motor memory consolidation. J Neurosci 40:4145–4157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kano M (1996) Long-lasting potentiation of GABAergic inhibitory synaptic transmission in cerebellar Purkinje cells: its properties and possible mechanisms. Behav Brain Sci 19:354–361

    Article  Google Scholar 

  • Kano M, Rexhausen U, Dreessen J et al (1992) Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature 356:601–604

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi S, Hirano T (2000) Suppression of inhibitory synaptic potentiation by presynaptic activity through postsynaptic GABAB receptors in a Purkinje neuron. Neuron 27:339–347

    Article  CAS  PubMed  Google Scholar 

  • Kono M, Kakegawa W, Yoshida K et al (2019) Interneuronal NMDA receptors regulate long-term depression and motor learning in the cerebellum. J Physiol 597:903–920

    Article  CAS  PubMed  Google Scholar 

  • Libster AM, Title B, Yarom Y (2015) Corticotropin-releasing factor increases Purkinje neuron excitability by modulating sodium, potassium, and Ih currents. J Neurophysiol 114:3339–3350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linden DJ (1998) Synaptically-evoked glutamate transport currents may be used to detect the expression of long-term potentiation in cerebellar culture. J Neurophysiol 79:3151–3156

    Article  CAS  PubMed  Google Scholar 

  • Lippiello P, Hoxha E, Speranza L et al (2016) The 5-HT7 receptor triggers cerebellar long-term synaptic depression via PKC-MAPK. Neuropharmacology 101:426–438

    Article  CAS  PubMed  Google Scholar 

  • Lonart G, Schoch S, Kaeser PS et al (2003) Phosphorylation of RIM1alpha by PKA triggers presynaptic long-term potentiation at cerebellar parallel fiber synapses. Cell 115:49–60

    Article  CAS  PubMed  Google Scholar 

  • Mark MD, Krause M, Boele HJ et al (2015) Spinocerebellar ataxia type 6 protein aggregates cause deficits in motor learning and cerebellar plasticity. J Neurosci 35:8882–8895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martín R, García-Font N, Suárez-Pinilla AS et al (2020) β-Adrenergic receptors/Epac signaling increases the size of the readily releasable pool of synaptic vesicles required for parallel fiber LTP. J Neurosci 40:8604–8617

    Article  PubMed  PubMed Central  Google Scholar 

  • Piochon C, Kruskal P, Maclean J, Hansel C (2013) Non-Hebbian spike-timing-dependent plasticity in cerebellar circuits. Front Neural Circuits 6:124

    Article  PubMed  PubMed Central  Google Scholar 

  • Pugh JR, Raman IM (2006) Potentiation of mossy fiber EPSCs in the cerebellar nuclei by NMDA receptor activation followed by postinhibitory rebound current. Neuron 51:113–123

    Article  CAS  PubMed  Google Scholar 

  • Ryu C, Jang DC, Jung D et al (2017) STIM1 regulates somatic Ca2+ signals and intrinsic firing properties of cerebellar Purkinje neurons. J Neurosci 37:8876–8894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safo PK, Regehr WG (2005) Endocannabinoids control the induction of cerebellar LTD. Neuron 48:647–659

    Article  CAS  PubMed  Google Scholar 

  • Salin PA, Malenka RC, Nicoll RA (1996) cAMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron 16:797–803

    Article  CAS  PubMed  Google Scholar 

  • Serulle Y, Zhang S, Ninan I et al (2007) A GluR1-cGKII interaction regulates AMPA receptor trafficking. Neuron 56:670–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Linden DJ (2005) Long-term potentiation of neuronal glutamate transporters. Neuron 46:715–722

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Hansel C, Linden DJ (2002) Glutamate release during LTD at cerebellar climbing fiber-Purkinje cell synapses. Nat Neurosci 5:725–726

    Article  CAS  PubMed  Google Scholar 

  • Shim HG, Jang SS, Jang DC et al (2016) mGlu1 receptor mediates homeostatic control of intrinsic excitability through Ih in cerebellar Purkinje cells. J Neurophysiol 115:2446–2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai PT, Hull C, Chu Y et al (2012) Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488:647–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YT, Linden DJ (2000) Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron 25:635–647

    Article  CAS  PubMed  Google Scholar 

  • Wang DJ, Su LD, Wang YN et al (2014) Long-term potentiation at cerebellar parallel fiber-Purkinje cell synapses requires presynaptic and postsynaptic signaling cascades. J Neurosci 34:2355–2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto M, Kim M, Imai H et al (2019) Microglia-triggered plasticity of intrinsic excitability modulates psychomotor behaviors in acute cerebellar inflammation. Cell Rep 28:2923–2938

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Yang D, Wang DJ et al (2015) Numb deficiency in cerebellar Purkinje cells impairs synaptic expression of metabotropic glutamate receptor and motor coordination. Proc Natl Acad Sci U S A 112:15474–15479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou JH, Wang XT, Zhou L et al (2017) Ablation of TFR1 in Purkinje cells inhibits mGlu1 trafficking and impairs motor coordination, but not autistic-like behaviors. J Neurosci 37:11335–11352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, XT., Shen, Y. (2023). Plasticity of the Cerebellum. In: Gruol, D.L., Koibuchi, N., Manto, M., Molinari, M., Schmahmann, J.D., Shen, Y. (eds) Essentials of Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-031-15070-8_43

Download citation

Publish with us

Policies and ethics

Navigation