Cerebellar Epigenetics: Transcription of microRNAs in Purkinje Neurons as an Approach to Neuronal Plasticity

  • Chapter
  • First Online:
Essentials of Cerebellum and Cerebellar Disorders
  • 95 Accesses

Abstract

Cerebellar plasticity is often investigated using brief electrical coactivation of climbing and parallel fiber pathways to evoke Long Term Depression (LTD), a temporary decrease in the excitability of Purkinje cell Simple Spikes (SSs). The mechanistic importance of individual proteins in climbing fiber-evoked depression of simple spikes can be approached by examining the longer-term role of regulated microRNA transcription. In this review, we examine the consequences of longer activation (1–30 h) of climbing fibers on the expression of microRNAs, mRNAs and proteins in targeted Purkinje cells of the mouse. Horizontal optokinetic stimulation (HOKS) of unanesthetized mice increases climbing fiber discharge of floccular Purkinje cells ipsilateral to the stimulated eye. This increased climbing fiber discharge increases the expression of several microRNA and mRNA transcripts. One of these transcripts, miR335, increases 18X after 24 h of HOKS. Pri-miR335 transcripts increase 28X after 24 h of HOKS. miR335 transcripts decay with a time constant of ~2.5 h. Increases in miR335 transcripts are coupled with decreases in the expression of calbindin, 14-3-3-θ and protein kinase C-γ (PKC-ɣ). This interaction is critical for the serine phosphorylation of the GABAA-ɣ2 receptor and its membrane expression in Purkinje cells and may contribute to homeostatic regulation of Purkinje cell discharge of SSs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alley K, Baker R, Simpson JI (1975) Afferents to the vestibulo-cerebellum and the origin of the visual climbing fibers in the rabbit. Brain Res 98:582–589

    Article  CAS  PubMed  Google Scholar 

  • Alsharafi WA, **ao B, Abuhamed MM, Luo Z (2015) miRNAs: biological and clinical determinants in epilepsy. Front Mol Neurosci 8:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  • Barmack NH, Hess DT (1980) Multiple-unit activity evoked in dorsal cap of inferior olive of the rabbit by visual stimulation. J Neurophysiol 43:151–164

    Article  CAS  PubMed  Google Scholar 

  • Barmack NH, Nelson BJ (1987) Influence of long-term optokinetic stimulation on eye movements of the rabbit. Brain Res 437:111–120

    Article  CAS  PubMed  Google Scholar 

  • Barmack NH, Qian Z (2002) Activity-dependent expression of calbindin in rabbit floccular Purkinje cells modulated by optokinetic stimulation. Neuroscience 113:235–250

    Article  CAS  PubMed  Google Scholar 

  • Barmack NH, Yakhnitsa V (2008) Functions of interneurons in mouse cerebellum. J Neurosci 28:1140–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barmack NH, Qian Z, Yakhnitsa V (2010) Climbing fibers induce microRNA transcription in cerebellar Purkinje cells. Neuroscience 171:655–665

    Article  CAS  PubMed  Google Scholar 

  • Barmack NH, Qian Z, Yakhnitsa V (2014) Long-term climbing fibre activity induces transcription of microRNAs in cerebellar Purkinje cells. Philos Trans R Soc Lond Ser B Biol Sci 369(1652):20130508

    Article  Google Scholar 

  • Barnes JA, Ebner BA, Duvick LA, Gao W, Chen G, Orr HT, Ebner TJ (2011) Abnormalities in the climbing fiber-Purkinje cell circuitry contribute to neuronal dysfunction in ATXN1 [82Q] mice. J Neurosci 31:12778–12789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bilen J, Liu N, Burnett BG, Pittman RN, Bonini NM (2006) MicroRNA pathways modulate polyglutamine-induced neurodegeneration. Mol Cell 24:157–163

    Article  CAS  PubMed  Google Scholar 

  • Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10:1957–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cajal SR (1911) Histologie du système nerveux de l'homme et des vertebrés. Maloine, Paris

    Google Scholar 

  • Crepel F (2009) Role of presynaptic kainate receptors at parallel fiber-Purkinje cell synapses in induction of cerebellar LTD: interplay with climbing fiber input. J Neurophysiol 102:965–973

    Article  CAS  PubMed  Google Scholar 

  • Cullen BR (2004) Transcription and processing of human microRNA precursors. Mol Cell 16:861–865

    Article  CAS  PubMed  Google Scholar 

  • De Zeeuw CI, Koekkoek SK (1997) Signal processing in the C2 module of the flocculus and its role in head movement control. Prog Brain Res 114:299–320

    Article  PubMed  Google Scholar 

  • Eccles JC, Llinás R, Sasaki K (1965) The inhibitory interneurones within the cerebellar cortex. Exp Brain Res 1:1–16

    Google Scholar 

  • Eccles JC, Llinás R, Sasaki K (1966a) The excitatory synaptic action of climbing fibers on the Purkinje cells of the cerebellum. J Physiol 182:268–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eccles JC, Llinás R, Sasaki K (1966b) The mossy fibre-granule cell relay of the cerebellum and its inhibitory control by Golgi cells. Exp Brain Res 1:82–101

    Article  CAS  PubMed  Google Scholar 

  • Eccles JC, Ito M, Szentágothai J (1967) The cerebellum as a neuronal machine. Springer, New York

    Book  Google Scholar 

  • Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E (2009) Deadenylation is a widespread effect of miRNA regulation. RNA 15:21–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox CA, Barnard JW (1957) A quantitative study of the Purkinje cell dendritic branchlets and their relationship to afferent fibres. J Anat 91:299–313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fox CA, Hillman DE, Siegesmund KA, Dutta CR (1967) The primate cerebellar cortex: a Golgi and electron microscopic study. In: Fox CA, Snider RS (eds) Progress in brain research, vol. 25: the cerebellum. Elsevier, New York, pp 174–225

    Google Scholar 

  • Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goossens J, Daniel H, Rancillac A, van der Steen J, Oberdick J, Crepel F, De Zeeuw CI, Frens MA (2001) Expression of protein kinase C inhibitor blocks cerebellar long-term depression without affecting Purkinje cell excitability in alert mice. J Neurosci 21:5813–5823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goossens HH, Hoebeek FE, Van Alphen AM, van der Steen J, Stahl JS, De Zeeuw CI, Frens MA (2004) Simple spike and complex spike activity of floccular Purkinje cells during the optokinetic reflex in mice lacking cerebellar long-term depression. Eur J Neurosci 19:687–697

    Article  CAS  PubMed  Google Scholar 

  • Granit R, Phillips CG (1956) Excitatory and inhibitory processes acting upon individual Purkinje cells of the cerebellum in cats. J Physiol 133:520–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haramati S, Chapnik E, Sztainberg Y, Eilam R, Zwang R, Gershoni N, McGlinn E, Heiser PW, Wills AM, Wirguin I, Rubin LL, Misawa H, Tabin CJ, Brown R Jr, Chen A, Hornstein E (2010) miRNA malfunction causes spinal motor neuron disease. Proc Natl Acad Sci U S A 107:13111–13116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harfe BD (2005) MicroRNAs in vertebrate development. Curr Opin Genet Dev 15:410–415

    Article  CAS  PubMed  Google Scholar 

  • Harvey RJ, Napper RM (1991) Quantitative studies on the mammalian cerebellum. Prog Neurobiol 36:437–463

    Article  CAS  PubMed  Google Scholar 

  • Hayes J, Peruzzi PP, Lawler S (2014) MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 20:460–469

    Article  CAS  PubMed  Google Scholar 

  • Hobert O (2008) Gene regulation by transcription factors and microRNAs. Science 319:1785–1786

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Sakurai M, Tongroach P (1982) Climbing fibre induced depression on both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol 324:113–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston M, Hutvagner G (2011) Posttranslational modification of Argonautes and their role in small RNA-mediated gene regulation. Silence 2:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konnerth A, Llano I, Armstrong CM (1990) Synaptic currents in cerebellar Purkinje cells. Proc Natl Acad Sci U S A 87:2662–2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konopka W, Schütz G, Kaczmarek L (2011) The microRNA contribution to learning and memory. Neuroscientist 17:468–474

    Article  CAS  PubMed  Google Scholar 

  • Kosik KS (2006) The neuronal microRNA system. Nat Rev Neurosci 7:911–920

    Article  CAS  PubMed  Google Scholar 

  • Landgraf P et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    Article  CAS  PubMed  Google Scholar 

  • Leonard CS, Simpson JI, Graf W (1988) Spatial organization of visual messages of the rabbit’s cerebellar flocculus. I. Typology of inferior olive neurons of the dorsal cap of Kooy. J Neurophysiol 60:2073–2090

    Article  CAS  PubMed  Google Scholar 

  • Linden DJ, Connor JA (2001) Long-term synaptic depression. Annu Rev Neurosci 18:319–357

    Article  Google Scholar 

  • Lund E, Dahlberg JE (2006) Substrate selectivity of exportin 5 and dicer in the biogenesis of microRNAs. Cold Spring Harb Symp Quant Biol 71:59–66

    Article  CAS  PubMed  Google Scholar 

  • Maekawa K, Simpson JI (1973) Climbing fiber responses evoked in vestibulocerebellum of rabbit from visual system. J Neurophysiol 36:649–666

    Article  CAS  PubMed  Google Scholar 

  • Maekawa K, Takeda T (1976) Electrophysiological identification of the climbing and mossy fiber pathways from the rabbit’s retina to the contralateral cerebellar flocculus. Brain Res 109:169–174

    Article  CAS  PubMed  Google Scholar 

  • Mellios N, Sugihara H, Castro J, Banerjee A, Le C, Kumar A, Crawford B, Strathmann J, Tropea D, Levine SS, Edbauer D, Sur M (2011) miR-132, an experience-dependent microRNA, is essential for visual cortex plasticity. Nat Neurosci 14:1240–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narasimhan K, Linden DJ (1996) Defining a minimal computational unit for cerebellar long-term depression. Neuron 17:333–341

    Article  CAS  PubMed  Google Scholar 

  • O'Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 9:402

    Article  CAS  PubMed  Google Scholar 

  • Oyster CW, Simpson JI, Takahashi ES, Soodak RE (1980) Retinal ganglion cells projecting to the rabbit accessory optic system. J Comp Neurol 190:49–61

    Article  CAS  PubMed  Google Scholar 

  • Pettorossi VE, Errico P, Ferraresi A, Barmack NH (1999) Optokinetic and vestibular stimulation determines the spatial orientation of negative optokinetic afternystagmus in the rabbit. J Neurosci 19:1524–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian Z, Micorescu M, Yakhnitsa V, Barmack NH (2012) Climbing fiber activity reduces 14-3-3-θ regulated GABAA receptor phosphorylation in cerebellar Purkinje cells. Neuroscience 201:34–45

    Article  CAS  PubMed  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  CAS  PubMed  Google Scholar 

  • Robins H, Press WH (2005) Human microRNAs target a functionally distinct population of genes with AT-rich 3′ UTRs. Proc Natl Acad Sci U S A 102:15557–15562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai M (1987) Synaptic modification of parallel fibre-Purkinje cell transmission in in vitro guinea-pig cerebellar slices. J Physiol 394:463–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanes JR, Lichtman JW (1999) Can molecules explain long-term potentiation? Nat Neurosci 2:597–604

    Article  CAS  PubMed  Google Scholar 

  • Saurin AT, Durgan J, Cameron AJ, Faisal A, Marber MS, Parker PJ (2008) The regulated assembly of a PKCepsilon complex controls the completion of cytokinesis. Nat Cell Biol 10:891–901

    Article  CAS  PubMed  Google Scholar 

  • Schaefer A, O'Carroll D, Tan CL, Hillman D, Sugimori M, Llinas R, Greengard P (2007) Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med 204:1553–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schonewille M, Luo C, Ruigrok TJ, Voogd J, Schmolesky MT, Rutteman M, Hoebeek FE, De Jeu MT, De Zeeuw CI (2006) Zonal organization of the mouse flocculus: physiology, input, and output. J Comp Neurol 497:670–682

    Article  PubMed  Google Scholar 

  • Schonewille M, Gao Z, Boele HJ, Veloz MF, Amerika WE, Simek AA, De Jeu MT, Steinberg JP, Takamiya K, Hoebeek FE, Linden DJ, Huganir RL, De Zeeuw CI (2011) Reevaluating the role of LTD in cerebellar motor learning. Neuron 70:43–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schratt G (2009) microRNAs at the synapse. Nat Rev Neurosci 10:842–849

    Article  CAS  PubMed  Google Scholar 

  • Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289

    Article  CAS  PubMed  Google Scholar 

  • Simpson JI, Alley KE (1974) Visual climbing fiber input to rabbit vestibulocerebellum: a source of direction-specific information. Brain Res 82:302–308

    Article  CAS  PubMed  Google Scholar 

  • Simpson JI, Leonard CS, Soodak RE (1988) The accessory optic-system. Analyzer of self-motion. Ann N Y Acad Sci 545:170–179

    Article  CAS  PubMed  Google Scholar 

  • Smalheiser NR, Lugli G (2009) microRNA regulation of synaptic plasticity. Neuromol Med 11:133–140

    Article  CAS  Google Scholar 

  • Tognini P, Putignano E, Coatti A, Pizzorusso T (2011) Experience-dependent expression of miR-132 regulates ocular dominance plasticity. Nat Neurosci 14:1237–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakhnitsa V, Barmack NH (2006) Antiphasic Purkinje cell responses in mouse uvula-nodulus are sensitive to static roll-tilt and topographically organized. Neuroscience 143:615–626

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Cai X, Cullen BR (2005) Use of RNA polymerase II to transcribe artificial microRNAs. Methods Enzymol 392:371–380

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal H. Barmack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barmack, N.H. (2023). Cerebellar Epigenetics: Transcription of microRNAs in Purkinje Neurons as an Approach to Neuronal Plasticity. In: Gruol, D.L., Koibuchi, N., Manto, M., Molinari, M., Schmahmann, J.D., Shen, Y. (eds) Essentials of Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-031-15070-8_19

Download citation

Publish with us

Policies and ethics

Navigation