1D Versus 2D Carbon Nanostructures for Flexible and Ultrathin Solar Cells

  • Living reference work entry
  • First Online:
Handbook of Functionalized Carbon Nanostructures
  • 25 Accesses

Abstract

The development of flexible and ultrathin solar cells, which has various benefits including light weight, compatibility with roll-to-roll fabrication, tolerance to deformation, presence of curved surfaces, etc., represents a recent advancement in the photovoltaic (PV) domain. The vast application areas of these flexible and ultrathin solar cells include portable and wearable electronic devices, indoor photovoltaic systems, automobile, space and textile manufacturing fields, etc. Flexible and ultrathin solar cells can be developed under different categories, namely, dye-sensitized solar cells, organic solar cells, and perovskite solar cells. In this context, carbon nanostructures including carbon nanotubes, fullerene, carbon quantum dots, and graphene can be employed as the light absorber material, transport material, or even as an electrode material in all these categories of solar cells owing to their extraordinary conductivity, long-term stability, flexibility, and tunable bandgap. This chapter focuses on the use of aforementioned carbon nanostructures in dye-sensitized, organic and perovskite solar cells and the effect of dimensionality of carbon nanostructures on the performance of photovoltaic cells. The chapter also reviews the limitations of 1D and 2D carbon nanostructures when employed in such solar cell device architectures and their future perspectives also.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. iea.org: Technology Roadmap: Solar Photovoltaic Energy. International Energy Agency, Paris (2014)

    Google Scholar 

  2. Green, M., Dunlop, E., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N., Hao, X.: Solar cell efficiency tables (version 57). Prog. Photovolt. 29(1), 3–15 (2021)

    Article  Google Scholar 

  3. Kayes, B.M., Nie, H., Twist, R., Spruytte, S.G., Reinhardt, F., Kizilyalli, I.C., Higashi, G.S.: 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. In: 2011 37th IEEE Photovoltaic Specialists Conference, pp. 000004–000008. IEEE (2011, June)

    Google Scholar 

  4. Nakamura, M., Yamaguchi, K., Kimoto, Y., Yasaki, Y., Kato, T., Sugimoto, H.: Cd-free Cu (In, Ga)(Se, S) 2 thin-film solar cell with record efficiency of 23.35%. IEEE J-PV. 9(6), 1863–1867 (2019)

    Google Scholar 

  5. Andreani, L.C., Bozzola, A., Kowalczewski, P., Liscidini, M., Redorici, L.: Silicon solar cells: toward the efficiency limits. Adv. Phys. X. 4(1), 1548305 (2019)

    CAS  Google Scholar 

  6. Deepthi Jayan, K.: Bandgap tuning and input parameter optimization for Lead-free all-inorganic single, double, and ternary perovskite-based solar cells. Solar RRL. 6(4), 2100971 (2022)

    Article  CAS  Google Scholar 

  7. Deepthi, J.K.: Modelling and performance estimation of all inorganic double perovskite solar cells. In: 2022 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), Vol. 1, pp. 28–32. IEEE (2022, March)

    Google Scholar 

  8. Shaker, A., Salem, M.S., Jayan, K.D.: Analysis and design of pn homojunction Sb2Se3 solar cells by numerical simulation. Sol. Energy. 242, 276–286 (2022)

    Article  CAS  Google Scholar 

  9. Cheng, P., Zhan, X.: Stability of organic solar cells: challenges and strategies. Chem. Soc. Rev. 45(9), 2544–2582 (2016)

    Article  CAS  Google Scholar 

  10. Abate, A., Correa-Baena, J.P., Saliba, M., Su’ait, M.S., Bella, F.: Perovskite solar cells: from the laboratory to the assembly line. Chem. Eur. J. 24(13), 3083–3100 (2018)

    Article  CAS  Google Scholar 

  11. Polman, A., Knight, M., Garnett, E.C., Ehrler, B., Sinke, W.C.: Photovoltaic materials: present efficiencies and future challenges. Science. 352(6283), aad4424 (2016)

    Article  Google Scholar 

  12. Kang, S., Jeong, J., Cho, S., Yoon, Y.J., Park, S., Lim, S., Kim, J.Y., Ko, H.: Ultrathin, lightweight and flexible perovskite solar cells with an excellent power-per-weight performance. J. Mater. Chem. A. 7(3), 1107–1114 (2019)

    Article  CAS  Google Scholar 

  13. Xue, M., Nazif, K.N., Lyu, Z., Jiang, J., Lu, C.Y., Lee, N., Zang, K., Chen, Y., Zheng, T., Kamins, T.I., Brongersma, M.L.: Free-standing 2.7 μm thick ultrathin crystalline silicon solar cell with efficiency above 12.0%. Nano Energy. 70, 104466 (2020)

    Article  CAS  Google Scholar 

  14. Lin, C.C., Chuang, Y.J., Sun, W.H., Cheng, C., Chen, Y.T., Chen, Z.L., Chien, C.H., Ko, F.H.: Ultrathin single-crystalline silicon solar cells for mechanically flexible and optimal surface morphology designs. Microelectron. Eng. 145, 128–132 (2015)

    Article  CAS  Google Scholar 

  15. Hwang, I., Jeong, Y., Shiratori, Y., Park, J., Miyajima, S., Yoon, I., Seo, K.: Effective photon management of non-surface-textured flexible thin crystalline silicon solar cells. Cell Rep. Phys. Sci. 1(11), 100242 (2020)

    Article  Google Scholar 

  16. Gerthoffer, A., Roux, F., Emieux, F., Faucherand, P., Fournier, H., Grenet, L., Perraud, S.: CIGS solar cells on flexible ultra-thin glass substrates: characterization and bending test. Thin Solid Films. 592, 99–104 (2015)

    Article  CAS  Google Scholar 

  17. Kim, D., Shin, S.S., Lee, S.M., Cho, J.S., Yun, J.H., Lee, H.S., Park, J.H.: Flexible and semi-transparent ultra-thin CIGSe solar cells prepared on ultra-thin glass substrate: a key to flexible bifacial photovoltaic applications. Adv. Funct. Mater. 30(36), 2001775 (2020)

    Article  CAS  Google Scholar 

  18. Zhang, C., Qi, T., Wang, W., Zhao, C., Xu, S., Ma, M., Feng, Y., Li, W., Chen, M., Yang, C., Li, W.: High efficiency CIGS solar cells on flexible stainless steel substrate with SiO2 diffusion barrier layer. Sol. Energy. 230, 1033–1039 (2021)

    Article  CAS  Google Scholar 

  19. Mahabaduge, H.P., Rance, W.L., Burst, J.M., Reese, M.O., Meysing, D.M., Wolden, C.A., Li, J., Beach, J.D., Gessert, T.A., Metzger, W.K., Garner, S.: High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates. App. Phys. Lett. 106(13), 133501 (2015)

    Article  Google Scholar 

  20. Teloeken, A.C., Lamb, D.A., Dunlop, T.O., Irvine, S.J.C.: Effect of bending test on the performance of CdTe solar cells on flexible ultra-thin glass produced by MOCVD. Sol. Energy Mater. Sol. Cells. 211, 110552 (2020)

    Article  CAS  Google Scholar 

  21. Wang, W., Song, M., Bae, T.S., Park, Y.H., Kang, Y.C., Lee, S.G., Kim, S.Y., Kim, D.H., Lee, S., Min, G., Lee, G.H.: Transparent ultrathin oxygen-doped silver electrodes for flexible organic solar cells. Adv. Funct. Mater. 24(11), 1551–1561 (2014)

    Article  CAS  Google Scholar 

  22. Wang, Y., Chen, Q., Zhang, G., **ao, C., Wei, Y., Li, W.: Ultrathin flexible transparent composite electrode via semi-embedding silver nanowires in a colorless polyimide for high-performance ultraflexible organic solar cells. ACS Appl. Mater. Interfaces. 14(4), 5699–5708 (2022)

    Article  CAS  Google Scholar 

  23. Wu, J., Chen, P., Xu, H., Yu, M., Li, L., Yan, H., Huangfu, Y., **ao, Y., Yang, X., Zhao, L., Wang, W.: Ultralight flexible perovskite solar cells. Sci. China Mater. 65, 1–6 (2022)

    Article  Google Scholar 

  24. Lu, S., Lin, J., Liu, K., Yue, S., Ren, K., Tan, F., Wang, Z., **, P., Qu, S., Wang, Z.: Large area flexible polymer solar cells with high efficiency enabled by imprinted Ag grid and modified buffer layer. Acta Mater. 130, 208–214 (2017)

    Article  CAS  Google Scholar 

  25. Dou, B., Miller, E.M., Christians, J.A., Sanehira, E.M., Klein, T.R., Barnes, F.S., Shaheen, S.E., Garner, S.M., Ghosh, S., Mallick, A., Basak, D.: High-performance flexible perovskite solar cells on ultrathin glass: implications of the TCO. J. Phys. Chem. Lett. 8(19), 4960–4966 (2017)

    Article  CAS  Google Scholar 

  26. Zhang, X., Öberg, V.A., Du, J., Liu, J., Johansson, E.M.: Extremely lightweight and ultra-flexible infrared light-converting quantum dot solar cells with high power-per-weight output using a solution-processed bending durable silver nanowire-based electrode. Energy Environ. Sci. 11(2), 354–364 (2018)

    Article  CAS  Google Scholar 

  27. Yan, Z., Yang, M., Wang, Z., Zhang, F., **a, J., Shi, G., **a, L., Li, Y., **a, Y., **a, L.: A label-free immunosensor for detecting common acute lymphoblastic leukemia antigen (CD10) based on gold nanoparticles by quartz crystal microbalance. Sens. Actuators B Chem. 210, 248–253 (2015)

    Article  CAS  Google Scholar 

  28. Raj, A.M., Balachandran, M.: Coal-based fluorescent zero-dimensional carbon nanomaterials: a short review. Energy Fuel. 34(11), 13291–13306 (2020)

    Article  CAS  Google Scholar 

  29. Raja, I.S., Song, S.J., Kang, M.S., Lee, Y.B., Kim, B., Hong, S.W., Jeong, S.J., Lee, J.C., Han, D.W.: Toxicity of zero-and one-dimensional carbon nanomaterials. Nanomater. 9(9), 1214 (2019)

    Article  CAS  Google Scholar 

  30. Yang, L., Wang, S., Zeng, Q., Zhang, Z., Peng, L.M.: Carbon nanotube photoelectronic and photovoltaic devices and their applications in infrared detection. Small. 9(8), 1225–1236 (2013)

    Article  CAS  Google Scholar 

  31. Camacho, R.E., Morgan, A.R., Flores, M.C., McLeod, T.A., Kumsomboone, V.S., Mordecai, B.J., Bhattacharjea, R., Tong, W., Wagner, B.K., Flicker, J.D., Turano, S.P.: Carbon nanotube arrays for photovoltaic applications. JOM. 59(3), 39–42 (2007)

    Article  CAS  Google Scholar 

  32. Makal, P., Das, D.: Reduced graphene oxide-laminated one-dimensional TiO2–bronze nanowire composite: an efficient photoanode material for dye-sensitized solar cells. ACS Omega. 6(6), 4362–4373 (2021)

    Article  CAS  Google Scholar 

  33. Shin, D.H., Choi, S.H.: Use of graphene for solar cells. JKPS. 72(12), 1442–1453 (2018)

    Article  CAS  Google Scholar 

  34. Ariga, K., Shrestha, L.K.: Zero-to-one (or more) nanoarchitectonics: how to produce functional materials from zero-dimensional single-element unit, fullerene. Mater. Adv. 2(2), 582–597 (2021)

    Article  CAS  Google Scholar 

  35. Erdem, Ö., Derin, E., Zeibi Shire**i, S., Sagdic, K., Yilmaz, E.G., Yildiz, S., Akceoglu, G.A., Inci, F.: Carbon-based nanomaterials and sensing tools for wearable health monitoring devices. Adv. Mater. Technol. 7(3), 2100572 (2022)

    Article  CAS  Google Scholar 

  36. Scaria, J., Karim, A.V., Divyapriya, G., Nidheesh, P.V., Kumar, M.S.: Carbon-supported semiconductor nanoparticles as effective photocatalysts for water and wastewater treatment. In: Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants, pp. 245–278. Elsevier, Amsterdam (2020)

    Chapter  Google Scholar 

  37. Hu, D., Yang, Q., Chen, H., Wobben, F., Le Corre, V.M., Singh, R., Liu, T., Ma, R., Tang, H., Koster, L.J.A., Duan, T.: 15.34% efficiency all-small-molecule organic solar cells with an improved fill factor enabled by a fullerene additive. Energy Environ. Sci. 13(7), 2134–2141 (2020)

    Article  CAS  Google Scholar 

  38. Yan, D., **n, J., Li, W., Liu, S., Wu, H., Ma, W., Yao, J., Zhan, C.: 13%-Efficiency quaternary polymer solar cell with nonfullerene and fullerene as mixed electron acceptor materials. ACS Appl. Mater. Interfaces. 11(1), 766–773 (2018)

    Article  Google Scholar 

  39. Lee, H.J., Cho, Y.R., Yeo, Y.S., Park, S.H., Shin, W.S., **, S.H., Lee, J.K., Kim, M.R.: Dye-sensitized solar cells with P3HT/Fullerene derivatives. In: 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, Vol. 1, pp. 259–262. IEEE (2006, May)

    Google Scholar 

  40. Pascual, J., Collavini, S., Völker, S.F., Phung, N., Palacios-Lidon, E., Irusta, L., Grande, H.J., Abate, A., Tena-Zaera, R., Delgado, J.L.: Unravelling fullerene–perovskite interactions introduces advanced blend films for performance-improved solar cells. Sustain. Energy Fuels. 3(10), 2779–2787 (2019)

    Article  CAS  Google Scholar 

  41. Abdalla, S., Al-Marzouki, F., Al-Ghamdi, A.A., Abdel-Daiem, A.: Different technical applications of carbon nanotubes. Nanoscale Res. Lett. 10(1), 1–10 (2015)

    Article  CAS  Google Scholar 

  42. Luo, Q., Ma, H., Hao, F., Hou, Q., Ren, J., Wu, L., Yao, Z., Zhou, Y., Wang, N., Jiang, K., Lin, H.: Carbon nanotube based inverted flexible perovskite solar cells with all-inorganic charge contacts. Adv. Funct. Mater. 27(42), 1703068 (2017)

    Article  Google Scholar 

  43. Du, J., Bittner, F., Hecht, D.S., Ladous, C., Ellinger, J., Oekermann, T., Wark, M.: A carbon nanotube-based transparent conductive substrate for flexible ZnO dye-sensitized solar cells. Thin Solid Films. 531, 391–397 (2013)

    Article  CAS  Google Scholar 

  44. Aitola, K., Sveinbjörnsson, K., Correa-Baena, J.P., Kaskela, A., Abate, A., Tian, Y., Johansson, E.M., Grätzel, M., Kauppinen, E.I., Hagfeldt, A., Boschloo, G.: Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells. Energy Environ. Sci. 9(2), 461–466 (2016)

    Article  CAS  Google Scholar 

  45. Yen, C.Y., Lin, Y.F., Liao, S.H., Weng, C.C., Huang, C.C., Hsiao, Y.H., Ma, C.C.M., Chang, M.C., Shao, H., Tsai, M.C., Hsieh, C.K.: Preparation and properties of a carbon nanotube-based nanocomposite photoanode for dye-sensitized solar cells. Nanotechnology. 19(37), 375305 (2008)

    Article  Google Scholar 

  46. Karlicky, F., Kumara Ramanatha Datta, K., Otyepka, M., Zboril, R.: Halogenated graphenes: rapidly growing family of graphene derivatives. ACS Nano. 7(8), 6434–6464 (2013)

    Article  CAS  Google Scholar 

  47. Mahmoudi, T., Wang, Y., Hahn, Y.B.: Graphene and its derivatives for solar cells application. Nano Energy. 47, 51–65 (2018)

    Article  CAS  Google Scholar 

  48. Miao, X., Tongay, S., Petterson, M.K., Berke, K., Rinzler, A.G., Appleton, B.R., Hebard, A.F.: High efficiency graphene solar cells by chemical do**. Nano Lett. 12(6), 2745–2750 (2012)

    Article  CAS  Google Scholar 

  49. Agresti, A., Pescetelli, S., Taheri, B., Del Rio Castillo, A.E., Cinà, L., Bonaccorso, F., Di Carlo, A.: Graphene–perovskite solar cells exceed 18% efficiency: a stability study. ChemSusChem. 9(18), 2609–2619 (2016)

    Article  CAS  Google Scholar 

  50. Rehman, M.A., Roy, S.B., Akhtar, I., Bhopal, M.F., Choi, W., Nazir, G., Khan, M.F., Kumar, S., Eom, J., Chun, S.H., Seo, Y.: Thickness-dependent efficiency of directly grown graphene based solar cells. Carbon. 148, 187–195 (2019)

    Article  CAS  Google Scholar 

  51. Zhong, M., Xu, D., Yu, X., Huang, K., Liu, X., Qu, Y., Xu, Y., Yang, D.: Interface coupling in graphene/fluorographene heterostructure for high-performance graphene/silicon solar cells. Nano Energy. 28, 12–18 (2016)

    Article  CAS  Google Scholar 

  52. Huang, P., Xu, S., Zhang, M., Zhong, W., **ao, Z., Luo, Y.: Carbon quantum dots improving photovoltaic performance of CdS quantum dot-sensitized solar cells. Opt. Mater. 110, 110535 (2020)

    Article  CAS  Google Scholar 

  53. Zhang, Q., Zhang, G., Sun, X., Yin, K., Li, H.: Improving the power conversion efficiency of carbon quantum dot-sensitized solar cells by growing the dots on a TiO2 photoanode in situ. Nanomater. 7(6), 130 (2017)

    Article  Google Scholar 

  54. Zhang, Y.Q., Ma, D.K., Zhang, Y.G., Chen, W., Huang, S.M.: N-doped carbon quantum dots for TiO2-based photocatalysts and dye-sensitized solar cells. Nano Energy. 2(5), 545–552 (2013)

    Article  CAS  Google Scholar 

  55. Meng, Y., Zhang, Y., Sun, W., Wang, M., He, B., Chen, H., Tang, Q.: Biomass converted carbon quantum dots for all-weather solar cells. Electrochim. Acta. 257, 259–266 (2017)

    Article  CAS  Google Scholar 

  56. Wen, Y., Zhu, G., Shao, Y.: Improving the power conversion efficiency of perovskite solar cells by adding carbon quantum dots. J. Mater. Sci. 55(7), 2937–2946 (2020)

    Article  CAS  Google Scholar 

  57. Gupta, V., Chaudhary, N., Srivastava, R., Sharma, G.D., Bhardwaj, R., Chand, S.: Luminscent graphene quantum dots for organic photovoltaic devices. J. Am. Chem. Soc. 133(26), 9960–9963 (2011)

    Article  CAS  Google Scholar 

  58. Zhu, Z., Ma, J., Wang, Z., Mu, C., Fan, Z., Du, L., Bai, Y., Fan, L., Yan, H., Phillips, D.L., Yang, S.: Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J. Am. Chem. Soc. 136(10), 3760–3763 (2014)

    Article  CAS  Google Scholar 

  59. Fang, X., Li, M., Guo, K., Li, J., Pan, M., Bai, L., Luoshan, M., Zhao, X.: Graphene quantum dots optimization of dye-sensitized solar cells. Electrochim. Acta. 137, 634–638 (2014)

    Article  CAS  Google Scholar 

  60. Chen, T., Qiu, L., Cai, Z., Gong, F., Yang, Z., Wang, Z., Peng, H.: Intertwined aligned carbon nanotube fiber based dye-sensitized solar cells. Nano Lett. 12(5), 2568–2572 (2012)

    Article  CAS  Google Scholar 

  61. Sharma, K., Sharma, V., Sharma, S.S.: Dye-sensitized solar cells: fundamentals and current status. Nanoscale Res. Lett. 13(1), 1–46 (2018)

    Article  Google Scholar 

  62. Hou, W., **ao, Y., Han, G., Fu, D., Wu, R.: Serrated, flexible and ultrathin polyaniline nanoribbons: an efficient counter electrode for the dye-sensitized solar cell. J. Power Sources. 322, 155–162 (2016)

    Article  CAS  Google Scholar 

  63. Jiang, S., Yin, X., Zhang, J., Zhu, X., Li, J., He, M.: Vertical ultrathin MoS2 nanosheets on a flexible substrate as an efficient counter electrode for dye-sensitized solar cells. Nanoscale. 7(23), 10459–10464 (2015)

    Article  CAS  Google Scholar 

  64. Nassiri Nazif, K., Daus, A., Hong, J., Lee, N., Vaziri, S., Kumar, A., Nitta, F., Chen, M.E., Kananian, S., Islam, R., Kim, K.H.: High-specific-power flexible transition metal dichalcogenide solar cells. Nat. Commun. 12(1), 1–9 (2021)

    Article  Google Scholar 

  65. Sun, J., Li, Y., Peng, Q., Hou, S., Zou, D., Shang, Y., Li, Y., Li, P., Du, Q., Wang, Z., **a, Y.: Macroscopic, flexible, high-performance graphene ribbons. ACS Nano. 7(11), 10225–10232 (2013)

    Article  CAS  Google Scholar 

  66. Wang, W., Zhao, Q., Li, H., Wu, H., Zou, D., Yu, D.: Transparent, double-sided, ITO-free, flexible dye-sensitized solar cells based on metal wire/ZnO nanowire arrays. Adv. Funct. Mater. 22(13), 2775–2782 (2012)

    Article  CAS  Google Scholar 

  67. Wang, J., Fang, Z., Zhu, H., Gao, B., Garner, S., Cimo, P., Barcikowski, Z., Mignerey, A., Hu, L.: Flexible, transparent, and conductive defrosting glass. Thin Solid Films. 556, 13–17 (2014)

    Article  CAS  Google Scholar 

  68. Hoang, T.T., Nguyen, P.H., Huynh, T.P., Nguyen, T.V.: Enhanced charge transfer of liquid and gel electrolytes using nano platinum in dye-sensitized solar cells. In: 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), pp. 2713–2715. IEEE (2013, June)

    Google Scholar 

  69. Bella, F., Lamberti, A., Sacco, A., Bianco, S., Chiodoni, A., Bongiovanni, R.: Novel electrode and electrolyte membranes: towards flexible dye-sensitized solar cell combining vertically aligned TiO2 nanotube array and light-cured polymer network. J. Membr. Sci. 470, 125–131 (2014)

    Article  CAS  Google Scholar 

  70. Lipomi, D.J., Tee, B.C.K., Vosgueritchian, M., Bao, Z.: Stretchable organic solar cells. Adv. Mater. 23(15), 1771–1775 (2011)

    Article  CAS  Google Scholar 

  71. Kaltenbrunner, M., White, M.S., Głowacki, E.D., Sekitani, T., Someya, T., Sariciftci, N.S., Bauer, S.: Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 3(1), 1–7 (2012)

    Article  Google Scholar 

  72. Ghosh, D.S., Liu, Q., Mantilla-Perez, P., Chen, T.L., Mkhitaryan, V., Huang, M., Garner, S., Martorell, J., Pruneri, V.: Highly flexible transparent electrodes containing ultrathin silver for efficient polymer solar cells. Adv. Funct. Mater. 25(47), 7309–7316 (2015)

    Article  CAS  Google Scholar 

  73. Xu, M., Feng, J., Fan, Z.J., Ou, X.L., Zhang, Z.Y., Wang, H.Y., Sun, H.B.: Flexible perovskite solar cells with ultrathin Au anode and vapour-deposited perovskite film. Sol. Energy Mater. Sol. Cells. 169, 8–12 (2017)

    Article  CAS  Google Scholar 

  74. You, J., Hong, Z., Yang, Y., Chen, Q., Cai, M., Song, T.B., Chen, C.C., Lu, S., Liu, Y., Zhou, H., Yang, Y.: Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano. 8(2), 1674–1680 (2014)

    Article  CAS  Google Scholar 

  75. Dkhissi, Y., Huang, F., Rubanov, S., **ao, M., Bach, U., Spiccia, L., Caruso, R.A., Cheng, Y.B.: Low temperature processing of flexible planar perovskite solar cells with efficiency over 10%. J. Power Sources. 278, 325–331 (2015)

    Article  CAS  Google Scholar 

  76. Liu, D., Kelly, T.L.: Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photon. 8(2), 133–138 (2014)

    Article  CAS  Google Scholar 

  77. Ameen, S., Akhtar, M.S., Seo, H.K., Nazeeruddin, M.K., Shin, H.S.: An insight into atmospheric plasma jet modified ZnO quantum dots thin film for flexible perovskite solar cell: optoelectronic transient and charge trap** studies. J. Phys. Chem. C. 119(19), 10379–10390 (2015)

    Article  CAS  Google Scholar 

  78. Liu, X., Guo, X., Lv, Y., Hu, Y., Lin, J., Fan, Y., Zhang, N., Liu, X.: Enhanced performance and flexibility of perovskite solar cells based on microstructured multilayer transparent electrodes. ACS Appl. Mater. Interfaces. 10(21), 18141–18148 (2018)

    Article  CAS  Google Scholar 

  79. Li, X., Wang, J.: One-dimensional and two-dimensional synergized nanostructures for high-performing energy storage and conversion. Info Mat. 2(1), 3–32 (2020)

    Google Scholar 

  80. Yue, G., Liu, X., Mao, Y., Zheng, H., Zhang, W.: A promising hybrid counter electrode of vanadium sulfide decorated with carbon nanotubes for efficient dye-sensitized solar cells. Mater. Today Energy. 4, 58–65 (2017)

    Article  Google Scholar 

  81. Lin, C.H., Tsai, C.H., Tseng, F.G., Ma, C.C.M., Wu, H.C., Hsieh, C.K.: Three-dimensional vertically aligned hybrid nanoarchitecture of two-dimensional molybdenum disulfide nanosheets anchored on directly grown one-dimensional carbon nanotubes for use as a counter electrode in dye-sensitized solar cells. J. Alloys Compd. 692, 941–949 (2017)

    Article  CAS  Google Scholar 

  82. Lin, C., Liao, W., Wang, W., Sun, D., Cui, Q., Zuo, X., Yang, Q., Tang, H., **, S., Li, G.: Self-assembled one-dimensional co coated with N-doped carbon nanotubes for dye-sensitized solar cells with high activity and remarkable durability. Cryst. Eng. Comm. 23(44), 7831–7838 (2021)

    Article  CAS  Google Scholar 

  83. Lin, J.Y., Tai, S.Y., Chou, S.W.: Bifunctional one-dimensional hierarchical nanostructures composed of cobalt sulfide nanoclusters on carbon nanotubes backbone for dye-sensitized solar cells and supercapacitors. J. Phys. Chem. C. 118(2), 823–830 (2014)

    Article  CAS  Google Scholar 

  84. Yang, N., Zhai, J., Wang, D., Chen, Y., Jiang, L.: Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano. 4(2), 887–894 (2010)

    Article  CAS  Google Scholar 

  85. Yen, M.Y., Hsiao, M.C., Liao, S.H., Liu, P.I., Tsai, H.M., Ma, C.C.M., Pu, N.W., Ger, M.D.: Preparation of graphene/multi-walled carbon nanotube hybrid and its use as photoanodes of dye-sensitized solar cells. Carbon. 49(11), 3597–3606 (2011)

    Article  CAS  Google Scholar 

  86. Zheng, X., Deng, J., Wang, N., Deng, D., Zhang, W.H., Bao, X., Li, C.: Podlike N-doped carbon nanotubes encapsulating FeNi alloy nanoparticles: high-performance counter electrode materials for dye-sensitized solar cells. Angew. Chem. Int. Ed. 53(27), 7023–7027 (2014)

    Article  CAS  Google Scholar 

  87. Wei, W., Hu, Y.H.: Synthesis of carbon nanomaterials for dye-sensitized solar cells. IJER. 39(6), 842–850 (2015)

    CAS  Google Scholar 

  88. Areerob, Y., Hamontree, C., Sricharoen, P., Limchoowong, N., Nijpanich, S., Nachaithong, T., Oh, W.C., Pattarith, K.: Synthesis of novel MoWO4 with ZnO nanoflowers on multi-walled carbon nanotubes for counter electrode application in dye-sensitized solar cells. Sci. Rep. 12(1), 1–11 (2022)

    Article  Google Scholar 

  89. Akilimali, R., Selopal, G.S., Mohammadnezhad, M., Ka, I., Wang, Z.M., Lopinski, G.P., Zhao, H., Rosei, F.: Structural effect of low-dimensional carbon nanostructures on long-term stability of dye sensitized solar cells. J. Chem. Eng. 435, 135037 (2022)

    Article  CAS  Google Scholar 

  90. Sarilmaz, A., Ozen, A., Akyildiz, H., Gultekin, S.S., Kus, M., Ozel, F.: Carbon nanotube supported thiospinel quantum dots as counter electrodes for dye sensitized solar cells. Sol. Energy. 221, 243–253 (2021)

    Article  CAS  Google Scholar 

  91. Kim, K., Bae, S.H., Toh, C.T., Kim, H., Cho, J.H., Whang, D., Lee, T.W., Özyilmaz, B., Ahn, J.H.: Ultrathin organic solar cells with graphene doped by ferroelectric polarization. ACS Appl. Mater. Interfaces. 6(5), 3299–3304 (2014)

    Article  CAS  Google Scholar 

  92. Wang, S., Zhao, Y., Lian, H., Peng, C., Yang, X., Gao, Y., Peng, Y., Lan, W., Elmi, O.I., Stiévenard, D., Wei, B.: Towards all-solution-processed top-illuminated flexible organic solar cells using ultrathin Ag-modified graphite-coated poly (ethylene terephthalate) substrates. Nano. 8(2), 297–306 (2019)

    CAS  Google Scholar 

  93. Choi, J.Y., Park, I.P., Heo, S.W.: Ultra-flexible organic solar cell based on indium-zinc-tin oxide transparent electrode for power source of wearable devices. Nanomater. 11(10), 2633 (2021)

    Article  CAS  Google Scholar 

  94. Delacou, C., Jeon, I., Seo, S., Nakagawa, T., Kauppinen, E.I., Maruyama, S., Matsuo, Y.: Indium tin oxide-free small molecule organic solar cells using single-walled carbon nanotube electrodes. ECS J. Solid State Sci. Technol. 6(6), M3181 (2017)

    Article  CAS  Google Scholar 

  95. Rowell, M.W., Topinka, M.A., McGehee, M.D., Prall, H.J., Dennler, G., Sariciftci, N.S., Hu, L., Gruner, G.: Organic solar cells with carbon nanotube network electrodes. Appl. Phys. Lett. 88(23), 233506 (2006)

    Article  Google Scholar 

  96. Landi, B.J., Raffaelle, R.P., Castro, S.L., Bailey, S.G.: Single-wall carbon nanotube–polymer solar cells. Prog. Photovolt. Res. Appl. 13(2), 165–172 (2005)

    Article  CAS  Google Scholar 

  97. Van De Lagemaat, J., Barnes, T.M., Rumbles, G., Shaheen, S.E., Coutts, T.J., Weeks, C., Levitsky, I., Peltola, J., Glatkowski, P.: Organic solar cells with carbon nanotubes replacing in 2 O 3: Sn as the transparent electrode. Appl. Phys. Lett. 88(23), 233503 (2006)

    Article  Google Scholar 

  98. Lee, J.M., Park, J.S., Lee, S.H., Kim, H., Yoo, S., Kim, S.O.: Selective electron-or hole-transport enhancement in bulk-heterojunction organic solar cells with N-or B-doped carbon nanotubes. Adv. Mater. 23(5), 629–633 (2011)

    Article  CAS  Google Scholar 

  99. Mehdi, S.M.Z., Liu, H., Abbas, S.Z., Vikraman, D., Hussain, S., Kang, J., Lee, N.: The effect of boron-doped carbon nanotubes blended with active layers in achieving high-efficiency polymer solar cells and X-ray detectors. J. Alloys Compd. 922, 166137 (2022)

    Article  CAS  Google Scholar 

  100. Koo, D., Jung, S., Seo, J., Jeong, G., Choi, Y., Lee, J., Lee, S.M., Cho, Y., Jeong, M., Lee, J., Oh, J.: Flexible organic solar cells over 15% efficiency with polyimide-integrated graphene electrodes. Joule. 4(5), 1021–1034 (2020)

    Article  CAS  Google Scholar 

  101. Yoon, J., Kim, U., Yoo, Y., Byeon, J., Lee, S.K., Nam, J.S., Kim, K., Zhang, Q., Kauppinen, E.I., Maruyama, S., Lee, P.: Foldable perovskite solar cells using carbon nanotube-embedded ultrathin polyimide conductor. Adv. Sci. 8(7), 2004092 (2021)

    Article  CAS  Google Scholar 

  102. Wang, J., Zhang, R., Xu, H., Chen, Y., Zhang, H., Park, N.G.: Polyacrylic acid grafted carbon nanotubes for immobilization of Lead (II) in perovskite solar cell. ACS Energy Lett. 7(5), 1577–1585 (2022)

    Article  CAS  Google Scholar 

  103. Mahmoodpoor, A., Verkhogliadov, G., Melnikov, R., Saranin, D.S., Voroshilov, P.M., Sapori, D., Haroldson, R., Nasibulin, A.G., Ishteev, A.R., Ulyantsev, V., Makarov, S.V.: Ionic liquid gating in perovskite solar cells with fullerene/carbon nanotube collectors. Energy Technol. 10(9), 2200485 (2022)

    Article  CAS  Google Scholar 

  104. Cifuentes-Rius, A., Boase, N.R., Font, I., Coronas, N., Ramos-Perez, V., Thurecht, K.J., Borros, S.: In vivo fate of carbon nanotubes with different physicochemical properties for gene delivery applications. ACS Appl. Mater. Interfaces. 9(13), 11461–11471 (2017)

    Article  CAS  Google Scholar 

  105. Moore, K., Wei, W.: Applications of carbon nanomaterials in perovskite solar cells for solar energy conversion. Nano Mater. Sci. 3(3), 276–290 (2021)

    Article  CAS  Google Scholar 

  106. Jeon, I., Seo, S., Sato, Y., Delacou, C., Anisimov, A., Suenaga, K., Kauppinen, E.I., Maruyama, S., Matsuo, Y.: Perovskite solar cells using carbon nanotubes both as cathode and as anode. J. Phys. Chem. C. 121(46), 25743–25749 (2017)

    Article  CAS  Google Scholar 

  107. Heo, J.H., Shin, D.H., Song, D.H., Kim, D.H., Lee, S.J., Im, S.H.: Super-flexible bis (trifluoromethanesulfonyl)-amide doped graphene transparent conductive electrodes for photo-stable perovskite solar cells. J. Mater. Chem. A. 6(18), 8251–8258 (2018)

    Article  CAS  Google Scholar 

  108. Luo, Q., Ma, H., Hou, Q., Li, Y., Ren, J., Dai, X., Yao, Z., Zhou, Y., **ang, L., Du, H., He, H.: All-carbon-electrode-based endurable flexible perovskite solar cells. Adv. Funct. Mater. 28(11), 1706777 (2018)

    Article  Google Scholar 

  109. Yoon, J., Sung, H., Lee, G., Cho, W., Ahn, N., Jung, H.S., Choi, M.: Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ. Sci. 10, 337 (2017)

    Article  CAS  Google Scholar 

  110. Heo, J.H., Shin, D.H., Lee, M.L., Kang, M.G., Im, S.H.: Efficient organic–inorganic hybrid flexible perovskite solar cells prepared by lamination of polytriarylamine/CH3NH3PbI3/anodized Ti metal substrate and graphene/PDMS transparent electrode substrate. ACS Appl. Mater. Interfaces. 10(37), 31413–31421 (2018)

    Article  CAS  Google Scholar 

  111. Xu, X., Wang, H., Wang, J., Muhammad, M., Wang, Z., Chen, P., Zhao, W., Kang, B., Zhang, J., Li, C., Duan, Y.: Surface functionalization of a graphene cathode to facilitate ALD growth of an electron transport layer and realize high-performance flexible perovskite solar cells. ACS Appl. Energy Mater. 3(5), 4208–4216 (2020)

    Article  CAS  Google Scholar 

  112. Liu, F.L., **ao, P., Fang, H.L., Dai, H.F., Qiao, L., Zhang, Y.H.: Single-walled carbon nanotube-based biosensors for the detection of volatile organic compounds of lung cancer. Phys. E Low Dimens. 44(2), 367–372 (2011)

    CAS  Google Scholar 

  113. Shobha, B.N., Muniraj, N.J.R.: Design, modeling and performance analysis of carbon nanotube with DNA strands as biosensor for prostate cancer. Microsystem. 21(4), 791–800 (2015)

    Article  CAS  Google Scholar 

  114. Wang, X., Sun, G., Routh, P., Kim, D.H., Huang, W., Chen, P.: Heteroatom-doped graphene materials: syntheses, properties and applications. Chem. Soc. Rev. 43(20), 7067–7098 (2014)

    Article  CAS  Google Scholar 

  115. Almosni, S., Delamarre, A., Jehl, Z., Suchet, D., Cojocaru, L., Giteau, M., Behaghel, B., Julian, A., Ibrahim, C., Tatry, L., Wang, H.: Material challenges for solar cells in the twenty-first century: directions in emerging technologies. STAM. 19(1), 336–369 (2018)

    CAS  Google Scholar 

  116. Brennan, L.J., Byrne, M.T., Bari, M., Gun’ko, Y.K.: Carbon nanomaterials for dye-sensitized solar cell applications: a bright future. Adv. Energy Mater. 1(4), 472–485 (2011)

    Article  CAS  Google Scholar 

  117. Wen, L., Li, F., Cheng, H.M.: Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv. Mater. 28(22), 4306–4337 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Deepthi Jayan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Deepthi Jayan, K. (2023). 1D Versus 2D Carbon Nanostructures for Flexible and Ultrathin Solar Cells. In: Barhoum, A., Deshmukh, K. (eds) Handbook of Functionalized Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-031-14955-9_44-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14955-9_44-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14955-9

  • Online ISBN: 978-3-031-14955-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation