Thermal and Rheological Properties of Carbon Nanoparticle Dispersions

  • Living reference work entry
  • First Online:
Handbook of Functionalized Carbon Nanostructures

Abstract

Carbon-based nanoparticles are being used extensively in polymers to achieve the special properties. According to their dimension, carbon nanoparticles can be found in four categories: zero dimension or fullerene and nanodiamonds, one dimension or carbon nanotubes, two dimension or graphenes, and three dimensional or graphites. Any of these carbon nanoparticles have specific impact on final dispersion characteristics including thermal and rheological properties. There are several rheological tests which help to characterize dispersion properties. There are a lot of rheological tests for investigating the complex fluids. In this chapter, we will review the most popular rheological tests including frequency sweep and shear rate sweep. For studying thermal properties, rheological experiments are a strong tool in both steady and oscillatory shear for carbon nanoparticle–based nanofluids. We also discuss the effect of carbon nanoparticles based on their dimensions to thermal conductivity of the dispersions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Pan, Y., Guo, Z., Ran, S., Fang, Z.: Influence of fullerenes on the thermal and flame-retardant properties of polymeric materials. J. Appl. Polym. Sci. 137(1), 47538 (2020)

    Article  Google Scholar 

  2. Kumar, A., Sharma, K., Dixit, A.R.: A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J. Mater. Sci. 54, 5992–6026 (2019)

    Article  CAS  Google Scholar 

  3. Jóźwiak, B., Boncel, S.: Rheology of ionanofluids – a review. J. Mol. Liq. 302, 112568 (2020)

    Article  Google Scholar 

  4. Lee, J., Chen, Y., Liang, H., Kim, S.: Temperature-dependent rheological behavior of nanofluids rich in carbon-based nanoparticles. J. Mol. Liq. 325, 114659 (2021)

    Article  CAS  Google Scholar 

  5. Han, C.D.: Rheology and processing of polymeric materials: volume 1: polymer rheology. Oxford University Press. (2007)

    Google Scholar 

  6. Ghiassinejad, S., Ranjbar, B., Hosseinpour, A., Katbab, A., Nazockdast, H.: Structural recovery mechanism after shear induced orientation of multiwalled carbon nanotube in polypropylene matrix. Polym. Test. 63, 475–483 (2017)

    Article  CAS  Google Scholar 

  7. Ranjbar, B., Ghiassinejad, S., Nazockdast, H.: Structural recovery of high-aspect-ratio nanoparticle/polymer nanocomposites in simple shear flow. J. Macromol. Sci. Part B. 54, 549–561 (2015)

    Article  CAS  Google Scholar 

  8. Dawn, A., Kumari, H.: Low molecular weight supramolecular gels under shear: rheology as the tool for elucidating structure–function correlation. Chem. Eur. J. 24, 762–776 (2018)

    Article  CAS  Google Scholar 

  9. Marceau, S., Dubois, P., Fulchiron, R., Cassagnau, P.: Viscoelasticity of Brownian carbon nanotubes in PDMS semidilute regime. Macromolecules. 42, 1433 (2009)

    Article  CAS  Google Scholar 

  10. Abbasi, S., Carreau, P.J., Derdouri, A., Moan, M.: Rheological properties and percolation in suspensions of multiwalled carbon nanotubes in polycarbonate. Rheol. Acta. 48, 943–959 (2009)

    Article  CAS  Google Scholar 

  11. Park, M., Lee, H.S.: Rotational motions of repulsive graphene oxide domains in aqueous dispersion during slow shear flow. J. Rheol. 64, 29–41 (2020)

    Article  CAS  Google Scholar 

  12. Krishnamoorti, R., Chatterjee, T.: Rheology and processing of polymer nanocomposites. Soft Matter. 9, 9515–9529 (2013)

    Article  Google Scholar 

  13. Arrigo, R., Malucelli, G.: Rheological behavior of polymer/carbon nanotube composites: an overview. Materials. 13, 1–27 (2020)

    Article  Google Scholar 

  14. Hobbie, E.K.: Shear rheology of carbon nanotube suspensions. Rheol. Acta. 49, 323–334 (2010)

    Article  CAS  Google Scholar 

  15. Chatterjee, T., Krishnamoorti, R.: Rheology of polymer carbon nanotubes composites. Soft Matter. 9, 9515–9529 (2013)

    Article  CAS  Google Scholar 

  16. Pötschke, P., Bhattacharyya, A.R., Janke, A.: Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene. Carbon. 42, 965–969 (2004)

    Article  Google Scholar 

  17. Sabzi, M., Jiang, L., Nikfarjam, N.: Graphene nanoplatelets as rheology modifier for Polylactic acid: graphene aspect ratio dependent nonlinear rheological behavior. Ind. Eng. Chem. Res. 54, 8175–8182 (2015)

    Article  CAS  Google Scholar 

  18. Du, L., Namvari, M., Stadler, F.J.: Large amplitude oscillatory shear behavior of graphene derivative/polydimethylsiloxane nanocomposites. Rheol. Acta. 57, 429–443 (2018)

    Article  CAS  Google Scholar 

  19. Behera, M., Ram, S.: Strongly optical absorptive nanofluids and rheology in bonded fullerene C 60 via poly(vinyl pyrrolidone) molecules in water. Fuller. Nanotub. Carbon Nanostruct. 25(3), 143–150 (2017)

    Article  CAS  Google Scholar 

  20. Zhao, L., Song, P., Cao, Z., Fang, Z., Guo, Z.: Thermal stability and rheological behaviors of high-density polyethylene/fullerene nanocomposites. J. Nanomater. 1–6 (2012)

    Google Scholar 

  21. Tesfai, W., Singh, P., Shatilla, Y., Iqbal, M.Z., Abdala, A.A.: Rheology and microstructure of dilute graphene oxide suspension. J. Nanopart. Res. 15, 10 (2013)

    Article  Google Scholar 

  22. Vallés, C., Young, R.J., Lomax, D.J., Kinloch, I.A.: The rheological behaviour of concentrated dispersions of graphene oxide. J. Mater. Sci. 49, 6311–6320 (2014)

    Article  Google Scholar 

  23. Wan, D., Wang, Y., Wen, X., Qiu, J., Jiang, Z., Tan, H., Tang, T.: The rheological, thermostable, and mechanical properties of polypropylene/fullerene C 60 nanocomposites with improved interfacial interaction. Polym. Eng. Sci. 52, 1457–1463 (2012)

    Article  CAS  Google Scholar 

  24. Stanciu, N.-V., Stan, F., Sandu, I.-L., Susac, F., Fetecau, C., Rosculet, R.-T.: Mechanical, electrical and rheological behavior of ethylene-vinyl acetate/multi-walled carbon nanotube composites. Polymers. 11, 1300 (2019)

    Article  Google Scholar 

  25. Ma, A.W.K., Yearsley, K.M., Chinesta, F., Mackley, M.R., Chinesta, F.: A review of the optical microstructure and rheology of carbon nanotube suspensions. Proc. Inst. Mech. Eng., Part N: J. Nanoeng. Nanosyst. 222, 71–94 (2010)

    Google Scholar 

  26. Yang, Y., Grulke, E.A., Zhang, Z.G., Wu, G.: Thermal and rheological properties of carbon nanotube-in-oil dispersions. J. Appl. Phys. 99, 114307 (2006)

    Article  Google Scholar 

  27. Ilyas, S.U., Shamsuddin, R., Kai **ang, T., Estellé, P., Pendyala, R.: Rheological profile of graphene-based nanofluids in thermal oil with hybrid additives of carbon nanotubes and nanofibers. J. Mol. Liq. 376, 121443 (2023)

    Article  CAS  Google Scholar 

  28. Yasumaru, N., Miyazaki, K., Kiuchi, J.: Control of tribological properties of diamond-like carbon films with femtosecond-laser-induced nanostructuring. Appl. Surf. Sci. 254, 2364–2368 (2008)

    Article  CAS  Google Scholar 

  29. Handge, U.A., Pötschke, P.: Deformation and orientation during shear and elongation of a polycarbonate/carbon nanotubes composite in the melt. Rheol. Acta. 46, 889–898 (2007)

    Article  CAS  Google Scholar 

  30. Xu, J., Chatterjee, S., Koelling, K.W., Wang, Y., Bechtel, S.E.: Shear and extensional rheology of carbon nanofiber suspensions. Rheol. Acta. 44, 537–562 (2005)

    Article  CAS  Google Scholar 

  31. la Mantia, F.P., Ceraulo, M., Mistretta, M.C., Botta, L.: Effect of the elongational flow on morphology and properties of polypropylene/graphene nanoplatelets nanocomposites. Polym. Test. 71, 10–17 (2018)

    Article  Google Scholar 

  32. Bannov, A.G., Popov, M.V., Kurmashov, P.B.: Thermal analysis of carbon nanomaterials: advantages and problems of interpretation. J. Therm. Anal. Calorim. 142, 349–370 (2020)

    Article  CAS  Google Scholar 

  33. Zhou, H.Y., Dou, H.B., Chen, X.H.: Rheological properties of graphene/polyethylene composite modified asphalt binder. Materials. 14, 3986 (2021)

    Article  CAS  Google Scholar 

  34. Liu, J., Hao, P., Jiang, W., Sun, B.: Rheological properties of SBS modified asphalt incorporated polyvinylpyrrolidone stabilized graphene nanoplatelets. Constr. Build. Mater. 298, 123850 (2021)

    Article  CAS  Google Scholar 

  35. Li, X., Wang, Y.-M., Wu, Y.-L., Wang, H.-R., Chen, M., Sun, H.-D., Fan, L.: Properties and modification mechanism of asphalt with graphene as modifier. Constr. Build. Mater. 272, 121919 (2021)

    Article  CAS  Google Scholar 

  36. Vigilato, M.Á., Horn, M., Martins, V.C.A., Plepis, A.M.D.G.: Rheological study of gels based on chitosan and carbon nanotubes. Braz. J. Therm. Anal. 4, 35 (2015)

    Article  Google Scholar 

  37. Yang, Y., Grulke, E.A., Zhang, Z.G., Wu, G.: Temperature effects on the rheological properties of carbon nanotube-in-oil dispersions. Colloids Surf. A Physicochem. Eng. Asp. 298, 216–224 (2007)

    Article  CAS  Google Scholar 

  38. Bera, O., Trunec, M.: Oscillatory shear rheology of polystyrene melts filled with carbon black and fullerene. Plast. Rubber Compos. 41, 384–389 (2012)

    Article  CAS  Google Scholar 

  39. Chen, Q., Sai, T., Fang, Z., Guo, Z.: Thermal stability and oxygen resistance of polypropylene composites with fullerene/montmorillonite hybrid fillers. J. Therm. Anal. Calorim. 146, 1383–1392 (2021)

    Article  CAS  Google Scholar 

  40. Attia, N.F., Elashery, S.E.A., Zakria, A.M., Eltaweil, A.S., Oh, H.: Recent advances in graphene sheets as new generation of flame retardant materials. Mater. Sci. Eng. B. 274, 115460 (2021)

    Article  CAS  Google Scholar 

  41. Li, J., Zhang, Y.: A simple purification for single-walled carbon nanotubes. Phys. E. 28, 309–312 (2005)

    Article  Google Scholar 

  42. Xu, F., Sun, L.X., Zhang, J., Qi, Y.N., Yang, L.N., Ru, H.Y., Wang, C.Y., Meng, X., Lan, X.F., Jiao, Q.Z., Huang, F.L.: Thermal stability of carbon nanotubes. J. Therm. Anal. Calorim. 102, 785–791 (2010)

    Article  CAS  Google Scholar 

  43. Nguyen, T.K., Bannov, A.G., Popov, M.V., Yun, J.-W., Nguyen, A.D., Kim, Y.S.: High-temperature-treated multiwall carbon nanotubes for hydrogen evolution reaction. Int. J. Hydrog. Energy. 43, 6526–6531 (2018)

    Article  CAS  Google Scholar 

  44. Bom, D., Andrews, R., Jacques, D., Anthony, J., Chen, B., Meier, M.S., Selegue, J.P.: Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry. Nano Lett. 2, 615–619 (2002)

    Article  CAS  Google Scholar 

  45. Damasceno, J.P.V., Kubota, L.T.: Colloidal chemistry as a guide to design intended dispersions of carbon nanomaterials. Mater. Today Chem. 21, 100526 (2021)

    Article  CAS  Google Scholar 

  46. Pavia, M., Alajami, K., Estellé, P., Desforges, A., Vigolo, B.: A critical review on thermal conductivity enhancement of graphene-based nanofluids. Adv. Colloid Interf. Sci. 294, 102452 (2021)

    Article  CAS  Google Scholar 

  47. Hilo, A., Rahim, A., Talib, A., Rashid Nfawa, S., Thariq Hameed Sultan, M., Faisal Abdul Hamid, M., Bheekhun, N.: Heat transfer and thermal conductivity enhancement using graphene nanofluid: a review. J. Adv. Res. Fluid. Mech Therm. Sci. 55, 74–87 (2019)

    Google Scholar 

  48. Volkov, A.N., Zhigilei, L.V.: Scaling laws and mesoscopic modeling of thermal conductivity in carbon nanotube materials. Phys. Rev. Lett. 104(21), 215902 (2010)

    Article  Google Scholar 

  49. Kumanek, B., Janas, D.: Thermal conductivity of carbon nanotube networks: a review. J. Mater. Sci. 54, 7397–7427 (2019)

    Article  CAS  Google Scholar 

  50. Aliev, A.E., Guthy, C., Zhang, M., Fang, S., Zakhidov, A.A., Fischer, J.E., Baughman, R.H.: Thermal transport in MWCNT sheets and yarns. Carbon N Y. 45, 2880–2888 (2007)

    Article  CAS  Google Scholar 

  51. Yang, L., Ji, W., Nan, H.J., Xu, G.: An updated review on the influential parameters on thermal conductivity of nano-fluids. J. Mol. Liq. 296, 111780 (2019)

    Article  CAS  Google Scholar 

  52. Wang, X., Liman, C.D., Treat, N.D., Chabinyc, M.L., Cahill, D.G.: Ultralow thermal conductivity of fullerene derivatives. Phys. Rev. B. 88, 075310 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Ranjbar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ranjbar, B., Foroughirad, S., Ranjbar, Z. (2024). Thermal and Rheological Properties of Carbon Nanoparticle Dispersions. In: Barhoum, A., Deshmukh, K. (eds) Handbook of Functionalized Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-031-14955-9_41-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14955-9_41-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14955-9

  • Online ISBN: 978-3-031-14955-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation