Wet-Chemistry Synthesis of Carbon Nanostructures

  • Living reference work entry
  • First Online:
Handbook of Functionalized Carbon Nanostructures
  • 43 Accesses

Abstract

Carbon nanostructures have excellent physical and chemical properties with wide applications in optoelectronics, energy storage and conversion, bioimaging and drug delivery, catalysis, and so on. Many efforts have been made during the past several decades toward the synthesis of the various types of carbon nanomaterials, and, among them, the wet-chemistry synthesis methods such as hydrothermal, sol-gel, and coprecipitation methods play important roles. Herein, we briefly summarize the recent advances in the wet-chemistry synthesis of various types of carbon nanostructures, including zero-dimensional (graphene, diamond, n-diamond, C8 quantum dots, carbon nano onions, and fullerenes), one-dimensional (carbon nanotubes, nanohorns, nanofibers, and nanowires), two-dimensional (graphene, graphenylene, graphdiyne, carbon nitrides), and three-dimensional (nanographite, graphene nanocomposites, nanospheres) nanostructures. The virtues and deficiencies of the different synthesis routes are discussed. A glimpse of the challenges and future developments of the wet-chemistry synthesis methods of the carbon nanostructures is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

C60:

Fullerene

CD:

Carbon dot

CN:

Carbon nanosphere

CNH:

Carbon nanohorn

CNO:

Carbon nano onion

CNT:

Carbon nanotube

CVD:

Chemical vapor deposition

g-C3N4:

Graphitic carbon nitride

GNR:

Graphene nanoribbon

GO:

Graphene oxide

GQD:

Graphene quantum dot

HEB:

Hexaethynylbenzene

MWCNT:

Multiwalled carbon nanotube

NC:

Nanocrystal

ND:

Nanodiamond

SAED:

Selected-area electron diffraction

SWCNT:

Single-walled carbon nanotube

References

  1. Speranza, G.: Carbon nanomaterials: synthesis, functionalization and sensing applications. Nanomaterials. 11(4), 967 (2021)

    Article  CAS  Google Scholar 

  2. Ghaffarkhah, A., Hosseini, E., Kamkar, M., Sehat, A.A., Dordanihaghighi, S., Allahbakhsh, A., van der Kuur, C., Arjmand, M.: Synthesis, applications, and prospects of graphene quantum dots: a comprehensive review. Small. 18(2), e2102683 (2022)

    Article  Google Scholar 

  3. Wang, L., Wang, Y., Xu, T., Liao, H., Yao, C., Liu, Y., Li, Z., Chen, Z., Pan, D., Sun, L., Wu, M.: Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat. Commun. 5, 5357 (2014)

    Article  CAS  Google Scholar 

  4. Jeon, S.J., Kang, T.W., Ju, J.M., Kim, M.J., Park, J.H., Raza, F., Han, J., Lee, H.R., Kim, J.H.: Modulating the photocatalytic activity of graphene quantum dots via atomic tailoring for highly enhanced photocatalysis under visible light. Adv. Funct. Mater. 26(45), 8211–8219 (2016)

    Article  CAS  Google Scholar 

  5. Ye, R., **ang, C., Lin, J., Peng, Z., Huang, K., Yan, Z., Cook, N.P., Samuel, E.L.G., Hwang, C., Ruan, G., Ceriotti, G., Raji, A.O., Martí, A.A., Tour, J.M.: Coal as an abundant source of graphene quantum dots. Nat. Commun. 4, 2943 (2013)

    Article  Google Scholar 

  6. Lu, L., Zhu, Y., Shi, C., Pei, T.Y.: Large-scale synthesis of defects-selective graphene quantum dots by ultrasonic-assisted liquid-phase exfoliation. Carbon. 109, 373–383 (2016)

    Article  CAS  Google Scholar 

  7. Kurniawan, D., Weng, R.J., Setiawan, O., Ostrikov, K., Chiang, W.-H.: Microplasma nanoengineering of emission-tuneable colloidal nitrogen-doped graphene quantum dots as smart environmental-responsive nanosensors and nanothermometers. Carbon. 185, 501–513 (2021)

    Article  CAS  Google Scholar 

  8. Kang, S.H., Mhin, S., Han, H., Kim, K.M., Jones, J.L., Ryu, J.H., Kang, J.S., Kim, S.H., Shim, K.B.: Ultrafast method for selective design of graphene quantum dots with highly efficient blue emission. Sci. Rep. 6, 38423 (2016)

    Article  CAS  Google Scholar 

  9. Liu, P., Cao, Y.L., Wang, C.X., Chen, X.Y., Yang, G.W.: Micro- and nanocubes of carbon with C8-like and blue luminescence. Nano Lett. 8(8), 2570–2575 (2008)

    Article  Google Scholar 

  10. Mortazavil, S.Z., Parvin, P., Reyhani, A., Mirershadi, S., Sadighi-Bonabi, R.: Generation of various carbon nanostructures in water using IR/UV laser ablation. J. Phys. D. Appl. Phys. 46(16), 165303 (2013)

    Article  Google Scholar 

  11. Chen, X., Zhang, W., Wang, Q., Fan, J.: C8-structured carbon quantum dots: synthesis, blue and green double luminescence, and origins of surface defects. Carbon. 79, 165–173 (2014)

    Article  CAS  Google Scholar 

  12. Zhang, W., Fan, B., Zhang, Y., Fan, J.: Hydrothermal synthesis of well crystallized C8 and diamond nanocrystals and pH-controlled C8↔ diamond phase transition. CrystEngComm. 19(9), 1248–1252 (2017)

    Article  CAS  Google Scholar 

  13. Shen Y, Su S, Zhao W, Cheng S, Xu T, Yin K, Chen L, He L, Zhou Y, Bi H, Wan S, Zhang Q, Wang L, Ni Z, Banhart F, Botton GA, Ding F, Ruoff RS, Sun L Sub-4 nm nanodiamonds from graphene-oxide and nitrated polycyclic aromatic hydrocarbons at 423 K. ACS Nano 15(11), 17392–17400 (2021)

    Article  CAS  Google Scholar 

  14. Zhang, W., Niu, X., Chen, X., Guo, X., Wang, J., Fan, J.: Universal role of oxygen in full-visible-region photoluminescence of diamond nanocrystals. Carbon. 109, 40–48 (2016)

    Article  CAS  Google Scholar 

  15. Zhang, W., Wang, Z., Wang, Y., Yuan, S., Zhang, L., Qi, F.: Diamond quantum dots: room-temperature synthesis, concurrent multiband luminescence, and origins of surface defects. Phys. B Condens. Matter. 610, 412781 (2021)

    Article  CAS  Google Scholar 

  16. Ma, X., Liu, X., Li, Y., **, X., Yao, Q., Fan, J.: Influence of crystallization temperature on fluorescence of n-diamond quantum dots. Nanotechnology. 31(50), 505712 (2020)

    Article  CAS  Google Scholar 

  17. Dai, D., Li, Y., Fan, J.: Room-temperature synthesis of various allotropes of carbon nanostructures (graphene, graphene polyhedra, carbon nanotubes and nano-onions, n-diamond nanocrystals) with aid of ultrasonic shock using ethanol and potassium hydroxide. Carbon. 179, 133–141 (2021)

    Article  CAS  Google Scholar 

  18. Hirai, H., Kondo, K.-I.: Modified phases of diamond formed under shock compression and rapid quenching. Science. 253(5021), 772–774 (1991)

    Article  CAS  Google Scholar 

  19. **ao, J., Li, J.L., Liu, P., Yang, G.W.: A new phase transformation path from nanodiamond to new-diamond via an intermediate carbon onion. Nanoscale. 6, 15098–15106 (2014)

    Article  CAS  Google Scholar 

  20. Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: C60: Buckminsterfullerene. Nature. 318, 162–163 (1985)

    Article  CAS  Google Scholar 

  21. Ðorđević, L., Casimiro, L., Demitri, N., Baroncini, M., Silvi, S., Arcudi, F., Credi, A., Prato, M.: Light-controlled regioselective synthesis of fullerene bis-adducts. Angew. Chem. Int. Ed. 60(1), 313–320 (2021)

    Article  Google Scholar 

  22. Sano, N.: Formation of multi-shelled carbon nanoparticles by arc discharge in liquid benzene. Mater. Chem. Phys. 88(2–3), 235–238 (2004)

    Article  CAS  Google Scholar 

  23. Guo, A., Bao, K., Sang, S., Zhang, X., Shao, B., Zhang, C., Wang, Y., Cui, F., Yang, X.: Soft-chemistry synthesis, solubility and interlayer spacing of carbon nano-onions. RSC Adv. 11(12), 6850–6858 (2021)

    Article  CAS  Google Scholar 

  24. Sang, S., Yang, S., Guo, A., Gao, X., Wang, Y., Zhang, C., Cui, F., Yang, X.: Hydrothermal synthesis of carbon nano-onions from citric acid. Chem. Asian J. 15(21), 3428–3431 (2020)

    Article  CAS  Google Scholar 

  25. Yang, F., Wang, X., Si, J., Zhao, X., Qi, K., **, C., Zhang, Z., Li, M., Zhang, D., Yang, J., Zhang, Z., Xu, Z., Peng, L.-M., Bai, X., Li, Y.: Water-assisted preparation of high-purity semiconducting (14,4) carbon nanotubes. ACS Nano. 11(1), 186–193 (2017)

    Article  CAS  Google Scholar 

  26. Kang, Z., Wang, E., Mao, B., Su, Z., Gao, L., Lian, S., Xu, L.: Controllable fabrication of carbon nanotube and nanobelt with a polyoxometalate-assisted mild hydrothermal process. J. Am. Chem. Soc. 127(18), 6534–6535 (2005)

    Article  CAS  Google Scholar 

  27. Calderon Moreno, J.M., Yoshimura, M.: Hydrothermal processing of high-quality multiwall nanotubes from amorphous carbon. J. Am. Chem. Soc. 123(4), 741–742 (2001)

    Article  CAS  Google Scholar 

  28. Wang, W., Huang, J., Wang, D., Ren, Z.: Low-temperature hydrothermal synthesis of multiwall carbon nanotubes. Carbon. 43, 1328–1331 (2005)

    Article  CAS  Google Scholar 

  29. Liu, Z., Shen, Z., Zhu, T., Hou, S., Ying, L., Shi, Z., Gu, Z.: Organizing single-walled carbon nanotubes on gold using a wet chemical self-assembling technique. Langmuir. 16(8), 3569–3573 (2000)

    Article  CAS  Google Scholar 

  30. Grüneis, A., Rümmeli, M.H., Kramberger, C., Grimm, D., Gemming, T., Barreiro, A., Ayala, P., Pichler, T., Kuzmany, H., Schamann, C., Pfeiffer, R., Schumann, J., Büchner, B.: Growth of carbon nanotubes from wet chemistry and thin film multilayer catalysts. Phys. Status Solidi. 243(13), 3054–3057 (2006)

    Article  Google Scholar 

  31. Yang, X., Liu, L., Wu, M., Wang, W., Bai, X., Wang, E.: Wet-chemistry-assisted nanotube-substitution reaction for high-efficiency and bulk-quantity synthesis of boron- and nitrogen-codoped single-walled carbon nanotubes. J. Am. Chem. Soc. 133(34), 13216–13219 (2011)

    Article  CAS  Google Scholar 

  32. Kang, Z., Wang, E., Gao, L., Lian, S., Jiang, M., Hu, C., Xu, L.: One-step water-assisted synthesis of high-quality carbon nanotubes directly from graphite. J. Am. Chem. Soc. 125(45), 13652–13653 (2003)

    Article  CAS  Google Scholar 

  33. Sano, N.: Low-cost synthesis of single-walled carbon nanohorns using the arc in water method with gas injection. J. Phys. D. Appl. Phys. 37, L17–L20 (2004)

    Article  CAS  Google Scholar 

  34. Wang, H., Chhowalla, M., Sano, N., Jia, S., Amaratunga, G.A.J.: Large-scale synthesis of single-walled carbon nanohorns by submerged arc. Nanotechnology. 15, 546–550 (2004)

    Article  CAS  Google Scholar 

  35. Köhler, T., Brüll, R., Pursche, F., Langgartner, J., Seide, G., Gries, T.: High strength and low weight hollow carbon fibres. IOP Conf. Ser.: Mater. Sci. Eng. 254(4), 042017 (2017)

    Article  Google Scholar 

  36. Shirolkar, N., Maffe, A., DiLoreto, E., Arias-Monje, P.J., Lu, M., Ramachandran, J., Gulgunje, P., Gupta, K., Park, J.G., Shih, K., Kirmani, M.H., Sharits, A., Nepal, D., Nieh, M., Liang, R., Tsotsis, T., Kumar, S.: Multichannel hollow carbon fibers: processing, structure, and properties. Carbon. 174, 730–740 (2021)

    Article  CAS  Google Scholar 

  37. Flores-López, S.L., Villanueva, S.F., Montes-Morán, M.A., Arenillas, A.: Synthesis of carbon fibers arrays by the sol-gel process. J. Sol-Gel Sci. Technol. 98, 31–34 (2021)

    Article  Google Scholar 

  38. Mi, Y., Hu, W., Dan, Y.: Synthesis of carbon micro-rods via a solvothermal route. Mater. Res. Bull. 44(4), 950–952 (2009)

    Article  CAS  Google Scholar 

  39. **ong, Y., Zhang, X., Richter, A.F., Li, Y., Doring, A., Kasak, P., Popelka, A., Schneider, J., Kershaw, S.V., Yoo, S.J., Kim, J.G., Zhang, W., Zheng, W., Ushakova, E.V., Feldmann, J., Rogach, A.L.: Chemically synthesized carbon nanorods with dual polarized emission. ACS Nano. 13(10), 12024–12031 (2019)

    Article  CAS  Google Scholar 

  40. Pachfule, P., Shinde, D., Majumder, M., Xu, Q.: Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nat. Chem. 8(7), 718–724 (2016)

    Article  CAS  Google Scholar 

  41. Qin, Z., Li, Z.J., Yang, B.C.: Synthesis of carbon nanowires as electrochemical electrode materials. Mater. Lett. 69, 55–58 (2012)

    Article  CAS  Google Scholar 

  42. Wyss, K.M., Luong, D.X., Tour, J.M.: Large-scale syntheses of 2D materials: flash Joule heating and other methods. Adv. Mater. 34(8), e2106970 (2022)

    Article  Google Scholar 

  43. Luong, D.X., Bets, K.V., Algozeeb, W.A., Stanford, M.G., Kittrell, C., Chen, W., Salvatierra, R.V., Ren, M., Mchugh, E.A., Advincula, P.A., Wang, Z., Bhatt, M., Guo, H., Mancevski, V., Shahsavari, R., Yakobson, B.I., Tour, J.M.: Gram-scale bottom-up flash graphene synthesis. Nature. 577(7792), 647–651 (2020)

    Article  CAS  Google Scholar 

  44. Kolmer, M., Steiner, A.K., Izydorczyk, I., Ko, W., Engelund, M., Szymonski, M., Li, A.-P., Amsharov, K.: Rational synthesis of atomically precise graphene nanoribbons directly on metal oxide surfaces. Science. 369(6503), 571–575 (2020)

    Article  CAS  Google Scholar 

  45. Fang, Y., Liu, Y., Qi, L., Xue, Y., Li, Y.: 2D graphdiyne: an emerging carbon materials. Chem. Soc. Rev. 51(7), 2681–2709 (2022)

    Article  CAS  Google Scholar 

  46. Li, G., Li, Y., Liu, H., Guo, Y., Li, Y., Zhu, D.: Architecture of graphdiyne nanoscale films. Chem. Commun. 46(19), 3256–3258 (2010)

    Article  CAS  Google Scholar 

  47. Gao, X., Li, J., Du, R., Zhou, J., Huang, M., Liu, R., Li, J., **e, Z., Wu, L., Liu, Z., Zhang, J.: Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell. Adv. Mater. 29(9), 1605308 (2017)

    Article  Google Scholar 

  48. Matsuoka, R., Sakamoto, R., Hoshiko, K., Sasaki, S., Masunaga, H., Nagashio, K., Nishihara, H.: Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface. J. Am. Chem. Soc. 139(8), 3145–3152 (2017)

    Article  CAS  Google Scholar 

  49. Gao, X., Zhu, Y., Yi, D., Zhou, J., Zhang, S., Yin, C., Ding, F., Zhang, S., Yi, X., Wang, J., Tong, L., Han, Y., Liu, Z., Zhang, J.: Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy. Sci. Adv. 4(7), eaat6378 (2018)

    Article  Google Scholar 

  50. Yan, H., Chen, Y., Xu, S.: Synthesis of graphitic carbon nitride by directly heating sulfuric acid treated melamine for enhanced photocatalytic H2 production from water under visible light. Int. J. Hydrogen Energy. 37(1), 125–133 (2012)

    Article  CAS  Google Scholar 

  51. Hu, C., Chu, Y., Wang, M., Wu, X.: Rapid synthesis of g-C3N4 spheres using microwave-assisted solvothermal method for enhanced photocatalytic activity. J. Photochem. Photobiol. A. 348, 8–17 (2017)

    Article  CAS  Google Scholar 

  52. Wang, X., Maeda, K., Thomas, A., Takanabe, K., **n, G., Carlsson, J.M., Antonietti, M.: A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8(1), 76–80 (2009)

    Article  CAS  Google Scholar 

  53. Kumar, S., Battula, V.R., Kailasam, K.: Single molecular precursors for CxNy materials- blending of carbon and nitrogen beyond g-C3N4. Carbon. 183, 332–354 (2021)

    Article  CAS  Google Scholar 

  54. Li, J., Shen, B., Hong, Z., Lin, B., Gao, B., Chen, Y.: A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem. Commun. 48(98), 12017–12019 (2012)

    Article  CAS  Google Scholar 

  55. Liu, G., Niu, P., Sun, C., Smith, S.C., Chen, Z., Lu, G.Q., Cheng, H.M.: Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 132(33), 11642–11648 (2010)

    Article  CAS  Google Scholar 

  56. Liang, C., Chen, Y., Wu, M., Wang, K., Zhang, W., Gan, Y., Huang, H., Chen, J., **a, Y., Zhang, J., Zheng, S., Pan, H.: Green synthesis of graphite from CO2 without graphitization process of amorphous carbon. Nat. Commun. 12(1), 119 (2021)

    Article  CAS  Google Scholar 

  57. Jayaraman, S., Madhavi, S., Aravindan, V.: High energy Li-ion capacitor and battery using graphitic carbon spheres as an insertion host from cooking oil. J. Mater. Chem. A. 6(7), 3242–3248 (2018)

    Article  CAS  Google Scholar 

  58. Peng, J., Chen, N., He, R., Wang, Z., Dai, S., **, X.: Electrochemically driven transformation of amorphous carbons to crystalline graphite nanoflakes: a facile and mild graphitization method. Angew. Chem. Int. Ed. 56(7), 1751–1755 (2017)

    Article  CAS  Google Scholar 

  59. Deng, X., Shi, W., Zhong, Y., Zhou, W., Liu, M., Shao, Z.: Facile strategy to low-cost synthesis of hierarchically porous, active carbon of high graphitization for energy storage. ACS Appl. Mater. Interfaces. 10(25), 21573–21581 (2018)

    Article  CAS  Google Scholar 

  60. Tung, V.C., Chen, L.M., Allen, M.J., Wasser, J.K., Nelson, K., Kaner, R.B., Yang, Y.: Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett. 9(5), 1949–1955 (2009)

    Article  CAS  Google Scholar 

  61. Hong, T.K., Lee, D.W., Choi, H.J., Shin, H.S., Kim, B.: Transparent, flexible conducting hybrid multilayer thin films of multiwalled carbon nanotubes with graphene nanosheets. ACS Nano. 4(7), 3861–3868 (2010)

    Article  CAS  Google Scholar 

  62. Dong, L., Gari, R.R.S., Li, Z., Craig, M.M., Hou, S.: Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon. 48(3), 781–787 (2010)

    Article  CAS  Google Scholar 

  63. Zhang, X., Duan, L., Zhang, X., Li, X., Lü, W.: Preparation of Cu2S@rGO hybrid composites as anode materials for enhanced electrochemical properties of lithium ion battery. J. Alloy Compd. 816, 152539 (2020)

    Article  CAS  Google Scholar 

  64. Zhao, B., Yang, S., Deng, J., Pan, K.: Chiral graphene hybrid materials: structures, properties, and chiral applications. Adv. Sci. 8(7), 2003681 (2021)

    Article  CAS  Google Scholar 

  65. Liu, J., Wickramaratne, N.P., Qiao, S.Z., Jaroniec, M.: Molecular-based design and emerging applications of nanoporous carbon spheres. Nat. Mater. 14(8), 763–774 (2015)

    Article  CAS  Google Scholar 

  66. Du, X., Yang, H.M., Zhang, Y.L., Hu, Q.C., Li, S.B., He, W.X.: Synthesis of size-controlled carbon microspheres from resorcinol/formaldehyde for high electrochemical performance. New Carbon Mater. 36(3), 616–624 (2021)

    Article  CAS  Google Scholar 

  67. Zhang, L., Liu, L., Liu, M., Yu, Y., Hu, Z., Liu, B., Lv, H., Chen, A.: Controllable synthesis of N-doped hollow, yolk-shell and solid carbon spheres via template-free method. J. Alloy Compd. 778, 294–301 (2019)

    Article  CAS  Google Scholar 

  68. Yu, L., Su, P., Huang, S., Li, X., Yin, R., Wang, N., Sun, M., Wang, S.: Simple and efficient synthesis of purple-red carbon spheres and construction of fluorescence resonance energy system for hypochlorite detection. Dyes Pigments. 202, 110265 (2022)

    Article  CAS  Google Scholar 

  69. Wu, M., Li, S., Yang, Z., Zhang, X., Lin, R., Xu, C., Song, H., Ma, X., Chen, Y., Gao, J.: High capacitive storage behavior of hierarchically porous hollow-carbon spheres derived from the coupling of template-directing and post-activation methodology. Diam. Relat. Mater. 122, 108816 (2022)

    Article  CAS  Google Scholar 

  70. Xu, Z., Li, Z., Holt, C.M.B., Tan, X., Wang, H., Amirkhiz, B.S., Stephenson, T., Mitlin, D.: Electrochemical supercapacitor electrodes from sponge-like graphene nanoarchitectures with ultrahigh power density. J. Phys. Chem. Lett. 3(20), 2928–2933 (2012)

    Article  CAS  Google Scholar 

  71. Puthusseri, D., Aravindan, V., Madhavi, S., Ogale, S.: 3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: the magic of in situ porogen formation. Energy Environ. Sci. 7(2), 728–735 (2014)

    Article  CAS  Google Scholar 

  72. Saleem, A., Zhang, Y., Usman, M., Haris, M., Li, P.: Tailored architectures of mesoporous carbon nanostructures: from synthesis to applications. NanoToday. 46, 101607 (2022)

    Article  CAS  Google Scholar 

  73. Liu, X., Fechler, N., Antonietti, M.: Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chem. Soc. Rev. 42, 8237–8265 (2013)

    Article  CAS  Google Scholar 

  74. Hu, X., Dong, S.: Metal nanomaterials and carbon nanotubes–synthesis, functionalization and potential applications towards electrochemistry. J. Mater. Chem. 18, 1279–1295 (2008)

    Article  CAS  Google Scholar 

  75. Rasch, F., Schütt, F., Saure, L.M., Kaps, S., Strobel, J., Polonskyi, O., Nia, A.S., Lohe, M.R., Mishra, Y.K., Faupel, F., Kienle, L., Feng, X., Feng, X., Adelung, R.: Wet-chemical assembly of 2D nanomaterials into lightweight, microtube-shaped, and macroscopic 3D networks. ACS Appl. Mater. Interfaces. 11(47), 44652–44663 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyang Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dai, D., Fan, J. (2023). Wet-Chemistry Synthesis of Carbon Nanostructures. In: Barhoum, A., Deshmukh, K. (eds) Handbook of Functionalized Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-031-14955-9_20-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14955-9_20-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14955-9

  • Online ISBN: 978-3-031-14955-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation