Graphene Edge Structures: Folding, Tubing, and Twisting

  • Living reference work entry
  • First Online:
Handbook of Functionalized Carbon Nanostructures
  • 44 Accesses

Abstract

In this chapter, different methods to fabricate graphene like chemical vapor deposition, liquid-phase exfoliation, flame synthesis, and pulsed laser deposition and micromechanical exfoliation procedures will be discussed. For the characterization of graphene edge structures, a variety of techniques are cited. The most precise method for analyzing graphene edges is high resolution transmission electron microscopy (HRTEM). Besides, Raman spectroscopy, scanning tunneling microscopy (STM), and atomic force microscopy (AFM) are three of the complementary characterization methods. This chapter will discuss the conventional interface behaviors, giving instances of rehybridization, interface reorganization, restructuring, and chemical functionalization. Additionally, important novel topological distortions that take advantage of the existing additional third dimension will be examined, such as the graphene nanoribbon, an example of geometrically anisotropic graphene. Two different topological edge distortions, one parallel to the length of the strip and the other orthogonal to it, will be presented in an infinitely length graphene ribbon. While topological distortions, such as folding and tubing edge structures, can occur orthogonal to the ribbon axis, there can also be topological distortions parallel to the ribbon axis, resulting in twisting edge structures. In the final content, application area of graphene edges will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Tiwari, S.K., Mishra, K., Ha, K., Huczko, A.: Evolution of graphene oxide and graphene: from imagination to industrialization. ChemNanoMat. 4, 598–620 (2018). https://doi.org/10.1002/cnma.201800089

    Article  CAS  Google Scholar 

  2. Eletskii, A.V., Iskandarova, I.M., Knizhnik, A.A., Krasikov, D.N.: Graphene: fabrication methods and thermophysical properties. Physics-Uspekhi. 227, 227–258 (2011). https://doi.org/10.3367/UFNe.0181.201103a.0233

    Article  Google Scholar 

  3. Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. PNAS. 102, 10451–10453 (2005). https://doi.org/10.1073/pnas.0502848102

    Article  CAS  Google Scholar 

  4. Rudrapati, R.: Graphene: fabrication methods, properties, and applications in modern industries. In: Graphene Production and Application, pp. 9–22. IntechOpen, Rijeka (2020)

    Google Scholar 

  5. Luo, D., Choe, M., Bizao, R.A., Wang, M., Su, H., Huang, M., **, S., Li, Y., Kim, M., Pugno, N.M., Ren, B., Lee, Z., Ruoff, R.S.: Folding and fracture of single-crystal graphene grown on a Cu (111) foil. Adv. Mater. 34, 2110509 (2022). https://doi.org/10.1002/adma.202110509

    Article  CAS  Google Scholar 

  6. De Arco, L.G., Zhang, Y., Zhou, C.: Large scale graphene by chemical vapor deposition: synthesis, characterization and applications, graphene – synthesis, characterization, properties and applications. InTech (2011). https://doi.org/10.5772/22358

  7. Kauling, A.P., Seefeldt, A.T., Pisoni, D.P., Pradeep, R.C., Bentini, R., Oliveira, R.V.B., Novoselov, K.S., Neto, A.H.C.: The worldwide graphene flake production. Adv. Mater. 30, 1803784 (2018). https://doi.org/10.1002/adma.201803784

    Article  CAS  Google Scholar 

  8. Smith, H.M., Turner, A.F.: Vacuum deposited thin films using a ruby laser. Appl. Opt. 4, 147–148 (1965). https://doi.org/10.1364/AO.4.000147

    Article  Google Scholar 

  9. Bleu, Y., Bourquard, F., Tite, T., Loir, A., Maddi, C.: Review of graphene growth from a solid carbon source by pulsed laser deposition (PLD). Front Chem. 6, 572 (2018). https://doi.org/10.3389/fchem.2018.00572

    Article  CAS  Google Scholar 

  10. Memon, N.K., Tse, S.D., Al-sharab, J.F., Yamaguchi, H., Goncalves, A.B., Kear, B.H., Jaluria, Y., Andrei, E.Y.: Flame synthesis of graphene films in open environments. Carbon N. Y. 49, 5064–5070 (2011). https://doi.org/10.1016/j.carbon.2011.07.024

    Article  CAS  Google Scholar 

  11. Hyun, C., Yun, J., Cho, J., Myung, C.W., Park, J., Lee, G.: Graphene edges and beyond: temperature-driven structures and electromagnetic properties. ACS Nano. 9, 4669–4674 (2015). https://doi.org/10.1021/acsnano.5b02617

    Article  CAS  Google Scholar 

  12. Warner, J.H., Mark, H.R., Bachmatiuk, A.: Examining the stability of folded graphene edges against electron beam induced sputtering with atomic resolution. Nanotechnology. (2010). https://doi.org/10.1088/0957-4484/21/32/325702

  13. Areshkin, D.A., Gunlycke, D., White, C.T., Washington, G., Uni, V., Na, V.: Ballistic transport in graphene nanostrips in the presence of disorder: importance of edge effects. Nano Lett. 7, 204 (2007)

    Article  CAS  Google Scholar 

  14. Liu, B., Najari, A., Pan, C., Leclerc, M., **ao, D.: New low bandgap dithienylbenzothiadiazole vinylene based copolymers: synthesis and photovoltaic properties. Macromol. Rapid Commun. 31, 391–398 (2010). https://doi.org/10.1002/marc.200900654

    Article  CAS  Google Scholar 

  15. Liu, Z., Suenaga, K., Harris, P.J.F., Iijima, S.: Open and closed edges of graphene layers. Phys. Rev. Lett. 102, 015501 (2009). https://doi.org/10.1103/PhysRevLett.102.015501

    Article  CAS  Google Scholar 

  16. Siddiqui, S.I., Chaudhry, S.A.: A review on graphene oxide and its composites preparation and their use for the removal of As3+ and As5+ from water under the effect of various parameters: application of isotherm, kinetic and thermodynamics. Process. Saf. Environ. Prot. 119, 138–163 (2018). https://doi.org/10.1016/j.psep.2018.07.020

    Article  CAS  Google Scholar 

  17. Kumar, V., Kumar, A., Lee, D., Park, S.: Estimation of number of graphene layers using different methods: a focused review. Materials (Basel). 14, 1–22 (2021). https://doi.org/10.3390/ma14164590

    Article  CAS  Google Scholar 

  18. Tiberj, A., Huntzinger, J., Camassel, J., Hiebel, F., Mahmood, A., Mallet, P., Naud, C., Veuillen, J.: Multiscale investigation of graphene layers on 6H-SiC (000-1). Nanoscale Res. Lett. 6, 1–8 (2011). https://doi.org/10.1186/1556-276X-6-171

    Article  CAS  Google Scholar 

  19. Yan, K., Li, Z., Wang, W.: Distinguishing different edge structures of graphene nanoribbons with Raman spectra, studied by first-principles calculations. J. Raman Spectrosc. 53, 1062–1069 (2022). https://doi.org/10.1002/jrs.6336

    Article  CAS  Google Scholar 

  20. Ebbesen, B.T.W., Hiura, H.: Graphene in 3-dimensions: towards graphite origami. Adv. Mater. 305, 582–586 (1995). https://doi.org/10.1002/adma.19950070618

    Article  Google Scholar 

  21. Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Obergfell, D., Roth, S., Girit, C., Zettl, A.: On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 143, 101–109 (2007). https://doi.org/10.1016/j.ssc.2007.02.047

    Article  CAS  Google Scholar 

  22. Hiebel, F., Mallet, P., Magaud, L., Veuillen, J.: Atomic and electronic structure of monolayer graphene on 6 H -SiC(000¯1) (3 × 3): a scanning tunneling microscopy study. Phys. Rev. B. 80, 1–9 (2009). https://doi.org/10.1103/PhysRevB.80.235429

    Article  CAS  Google Scholar 

  23. Friedrich, N., Brandimarte, P., Li, J., Saito, S., Yamaguchi, S., Pozo, I., Peña, D., Frederiksen, T., Garcia-lekue, A., Sánchez-portal, D.: Magnetism of topological boundary states induced by boron substitution in graphene nanoribbons. Phys. Rev. Lett. 125, 146801 (2020). https://doi.org/10.1103/PhysRevLett.125.146801

    Article  CAS  Google Scholar 

  24. Chen, X., Zhang, L., Zhao, Y., Wang, X., Ke, C.: Graphene folding on flat substrates. J. Appl. Phys. 116, 164301 (2015). https://doi.org/10.1063/1.4898760

    Article  CAS  Google Scholar 

  25. Barhoum, A., Shalan, A.E., El-hout, S.I., Ali, G.A.M., Abdelbasir, S.M., Samy, E., Serea, A., Ibrahim, A.H., Pal, K.: A Broad Family of Carbon Nanomaterials: Classification, Properties, Synthesis, and Emerging Applications. Springer Nature, Switzerland (2019)

    Google Scholar 

  26. Gonser, U., Osgood Jr., R.M., Panish, M.B., Sakaki, H. (eds.): Optical Properties of Metal Clusters Materials Science. Springer Series. Springer, Berlin (1939)

    Google Scholar 

  27. Pachfule, P., Shinde, D., Majumder, M., Xu, Q.: Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nat. Chem. 8, 718 (2016). https://doi.org/10.1038/nchem.2515

    Article  CAS  Google Scholar 

  28. Wakabayashi, K., Dutta, S.: Nanoscale and edge effect on electronic properties of graphene. Solid State Commun. 152, 1420–1430 (2012). https://doi.org/10.1016/j.ssc.2012.04.025

    Article  CAS  Google Scholar 

  29. Posligua, V., Bustamante, J., Zambrano, C.H., Harris, P.J.F., Grau-crespo, R.: The closed-edge structure of graphite and the effect of electrostatic charging†. RSC Adv. 10, 7994–8001 (2020). https://doi.org/10.1039/c9ra09913a

    Article  CAS  Google Scholar 

  30. Yan, J., Li, C., Zhan, D., Liu, L., Shen, D., Kuo, J.: Graphene homojunction: closed-edge bilayer graphene by pseudospin interaction. Nanoscale. 8, 9102–9106 (2016). https://doi.org/10.1039/c5nr08083e

    Article  CAS  Google Scholar 

  31. Machon, D., Pischedda, V., Le Floch, S., San-Miguel, A.: Perspective: high pressure transformations in nanomaterials and opportunities in material design. J. Appl. Phys. 124, 160902 (2022)

    Article  Google Scholar 

  32. Acik, M., Chabal, Y.J.: Nature of graphene edges: a review. Jpn. J. Appl. Phys. 50, 070101. https://doi.org/10.1143/JJAP.50.070101

  33. Sigrist, M.: Electronic and magnetic properties of nanographite ribbons. Phys. Rev. B. 59, 8271–8282 (1999)

    Article  Google Scholar 

  34. Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S., Choi, W., Lahiri, I., Seelaboyina, R.: Synthesis of graphene and its applications: a review. Crit. Rev. Solid State Mater. Sci. 35, 8436 (2010). https://doi.org/10.1080/10408430903505036

    Article  CAS  Google Scholar 

  35. Transistors, N.F., Liang, G., Neophytou, N., Member, S., Nikonov, D.E., Member, S., Lundstrom, M.S.: Performance projections for ballistic graphene nanoribbon field-effect transistors. IEEE Trans. Electron Devices. 54, 677–682 (2007)

    Article  Google Scholar 

  36. Ayuela, A., Pelc, M., Santos, H., Chico, L.: Edge states and flat bands in graphene nanoribbons with arbitrary geometries. Phys. Rev. B. 83, 235424 (2011). https://doi.org/10.1103/PhysRevB.83.235424

    Article  CAS  Google Scholar 

  37. Baringhaus, J., Ruan, M., Edler, F., Tejeda, A., Sicot, M., Li, A., Jiang, Z., Conrad, E.H., Berger, C., Tegenkamp, C., De Heer, W.A.: Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature. (2014). https://doi.org/10.1038/nature12952

  38. Chen, Y., **e, Y., Yan, X., Cohen, M.L.: Topological carbon materials: a new perspective. Phys. Rep. 868, 1–32 (2020). https://doi.org/10.1016/j.physrep.2020.05.003

    Article  CAS  Google Scholar 

  39. Ivanovskaya, V.V., Wagner, P., Zobelli, A., Suarez-martinez, I., Yaya, A., Ewels, C.P.: Graphene edge structures: folding, scrolling, tubing, rippling and twisting. In: Ottavaino, L., Morandi, V. (eds) GraphITA 2011. Carbon Nanostructures. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-20644-3_10

  40. Zhou, G., Wang, D., Li, F., Zhang, L., Li, N., Wu, Z., Wen, L., Qing, G., Lu, M., Cheng, H.: Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 18, 5306–5313 (2010). https://doi.org/10.1021/cm101532x

    Article  CAS  Google Scholar 

  41. Rotkin, S., Gogotsi, Y.: Analysis of non-planar graphitic structures: from arched edge planes of graphite crystals to nanotubes. Mater. Res. Innov. 5, 191–200 (2002)

    Article  CAS  Google Scholar 

  42. Kim, K., Lee, Z., Malone, B.D., Chan, K.T., Gannett, W., Crommie, M.F., Cohen, M.L.: Multiply folded graphene. Phys. Rev. B. 83, 245433 (2011). https://doi.org/10.1103/PhysRevB.83.245433

    Article  CAS  Google Scholar 

  43. Cranford, S., Sen, D., Buehler, M.J., Cranford, S., Sen, D., Buehler, M.J.: Meso-origami: folding multilayer graphene sheets. Appl. Phys. Lett. 95, 123121 (2014). https://doi.org/10.1063/1.3223783

    Article  CAS  Google Scholar 

  44. Mpourmpakis, G., Tylianakis, E., Froudakis, G.E.: Carbon nanoscrolls: a promising material for hydrogen storage. Nano Lett. 7, 1893–1897 (2007). https://doi.org/10.1021/nl070530u

    Article  CAS  Google Scholar 

  45. Braga, S.F., Coluci, V.R., Legoas, S.B., Giro, R., Galva, D.S., Baughman, R.H.: Structure and dynamics of carbon nanoscrolls. Nano Lett. 4, 881–884 (2004)

    Article  CAS  Google Scholar 

  46. Fogler, M.M., Neto, A.H.C.: Effect of external conditions on the structure of scrolled graphene edges. Phys. Rev. B. 81, 161408(R) (2010). https://doi.org/10.1103/PhysRevB.81.161408

    Article  CAS  Google Scholar 

  47. Savin, A.V., Korznikova, E.A., Dmitriev, S.V., Soboleva, E.G.: Graphene nanoribbon winding around carbon nanotube. Comput. Mater. Sci. 135, 99–108 (2017). https://doi.org/10.1016/j.commatsci.2017.03.047

    Article  CAS  Google Scholar 

  48. Chen, Y., Lu, J., Gao, Z.: Structural and electronic study of nanoscrolls rolled up by a single graphene sheet. J. Phys. Chem. C. 111, 1625–1630 (2007)

    Article  CAS  Google Scholar 

  49. Pan, H., Feng, Y., Lin, J.: Ab initio study of electronic and optical properties of multiwall carbon nanotube structures made up of a single rolled-up graphite sheet. Phys. Rev. B. 72, 085415 (2005). https://doi.org/10.1103/PhysRevB.72.085415

    Article  CAS  Google Scholar 

  50. Wagner, P., Ivanovskaya, V.V., Melle-franco, M., Humbert, B., Adjizian, J., Briddon, P.R., Ewels, C.P.: Stable hydrogenated graphene edge types: normal and reconstructed Klein edges. Phys. Rev. B. 88, 094106 (2013). https://doi.org/10.1103/PhysRevB.88.094106

    Article  CAS  Google Scholar 

  51. Wagner, P., Ewels, C.P., Ivanovskaya, V.V., Briddon, P.R., Pateau, A., Humbert, B.: Ripple edge engineering of graphene nanoribbons. Phys. Rev. B. 84, 134110 (2011). https://doi.org/10.1103/PhysRevB.84.134110

    Article  CAS  Google Scholar 

  52. Thompson-Flagg, R.C., Moura, M.J.B., Marder, M.: Rippling of graphene. Eur. Phys. Lett. 85, 46002 (2009). https://doi.org/10.1209/0295-5075/85/46002

    Article  CAS  Google Scholar 

  53. Gunlycke, D., Li, J., Mintmire, J.W., White, C.T.: Edges bring new dimension to graphene. Nano Lett. 10, 3638–3642 (2010). https://doi.org/10.1021/nl102034c

    Article  CAS  Google Scholar 

  54. Antidormi, A., Royo, M., Rurali, R.: Electron and phonon transport in twisted graphene nanoribbons. J. Phys. D. Appl. Phys. 50 (2017). https://doi.org/10.1088/1361-6463/aa6fd3

  55. Caetano, E.W., Freire, V.N., Santos, S.G., Galvão, D.S., Sato, F.: Möbius and twisted graphene nanoribbons: stability, geometry, and electronic properties. J. Chem. Phys. 128, 164719 (2008). https://doi.org/10.1063/1.2908739

    Article  CAS  Google Scholar 

  56. Kheirabadi, N., Shafiekhani, A., Fathipour, M.: Review on graphene spintronic, new land for discovery. Superlattices Microstruct. (2014). https://doi.org/10.1016/j.spmi.2014.06.020

  57. Kivshar, Y.: Energy localization, fano resonances, and nonlinear meta-optics. Low Temp. Phys. 44, 726 (2018). https://doi.org/10.1063/1.5041440

    Article  CAS  Google Scholar 

  58. Wang, H., Upmanyu, M.: Saddles, twists, and curls: shape transitions in freestanding nanoribbons. Nanoscale. 4, 3620–3624 (2012). https://doi.org/10.1039/c2nr00011c

    Article  CAS  Google Scholar 

  59. Diniz, E.M.: Self-reconstruction and predictability of bonds disruption in twisted graphene nanoribbons self-reconstruction and predictability of bonds disruption in twisted graphene nanoribbons. Appl. Phys. Lett. 104, 083119 (2014). https://doi.org/10.1063/1.4867266

    Article  CAS  Google Scholar 

  60. Yue, S., Yan, Q., Zhu, Z.: First-principles study on electronic and magnetic properties of twisted graphene nanoribbon and Möbius strips first-principles study on electronic and magnetic properties of twisted graphene nanoribbon and Möbius strips. Carbon N. Y. 71, 150–158 (2014). https://doi.org/10.1016/j.carbon.2014.01.023

    Article  CAS  Google Scholar 

  61. Li, Y.: Twist-enhanced stretchability of graphene nanoribbons: a molecular dynamics study. J. Phys. D. Appl. Phys. 43, 495405 (2010). https://doi.org/10.1088/0022-3727/43/49/495405

    Article  CAS  Google Scholar 

  62. Wen, X., Wang, Y., Gong, J., Liu, J., Tian, N., Wang, Y., Jiang, Z., Qiu, J., Tang, T.: Thermal and flammability properties of polypropylene/carbon black nanocomposites. Polym. Degrad. Stab. 97, 793–801 (2012). https://doi.org/10.1016/j.polymdegradstab.2012.01.031

    Article  CAS  Google Scholar 

  63. Elsaid, K., Taha, E., Ali, M., Baroutaji, A., Olabi, A.G.: Science of the total environment environmental impact of desalination processes: mitigation and control strategies. Sci. Total Environ. 740, 140125 (2020). https://doi.org/10.1016/j.scitotenv.2020.140125

    Article  CAS  Google Scholar 

  64. El-khatib, A.M., Abbas, M.I., Elzaher, M.A., Badawi, M.S., Alabsy, M.T., Alharshan, G.A., Aloraini, D.A.: Gamma attenuation coefficients of nano cadmium oxide/high density polyethylene composites. Sci. Rep. 9, 1–11 (2019)

    Article  CAS  Google Scholar 

  65. Ali, I., Chul, K., Ayoub, A., Hoon, S.: Synergistic effect of thermal and chemical reduction of graphene oxide at the counter electrode on the performance of dye-sensitized solar cells. Sol. Energy. 190, 112–118 (2019). https://doi.org/10.1016/j.solener.2019.08.012

    Article  CAS  Google Scholar 

  66. Mathew, S., Yella, A., Gao, P., Humphry-baker, R., Curchod, B.F.E., Ashari-astani, N., Tavernelli, I., Rothlisberger, U., Nazeeruddin, K., Gra, M.: Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6, 242–247 (2014). https://doi.org/10.1038/nchem.1861

    Article  CAS  Google Scholar 

  67. Liu, X., Kofman, J.: Background and amplitude encoded fringe patterns for 3D surface-shape measurement. Opt. Lasers Eng. 94, 63–69 (2017). https://doi.org/10.1016/j.optlaseng.2017.02.014

    Article  Google Scholar 

  68. Neo, C.Y., Ouyang, J.: The production of organogels using graphene oxide as the gelator for use in high-performance quasi-solid state dye-sensitized solar cells. Carbon N. Y. 54, 48–57 (2012). https://doi.org/10.1016/j.carbon.2012.11.002

    Article  CAS  Google Scholar 

  69. Prabakaran, K., Jandas, P.J., Mohanty, S., Kumar, S.: Synthesis, characterization of reduced graphene oxide nanosheets and its reinforcement effect on polymer electrolyte for dye sensitized solar cell applications. Sol. Energy. 170, 442–453 (2018). https://doi.org/10.1016/j.solener.2018.05.008

    Article  CAS  Google Scholar 

  70. Menachem, C., Peled, E., Burstein, L., Rosenberg, Y.: Characterization of modified NG7 graphite as an improved anode for lithium-ion batteries. J. Power Sources. 68, 277–282 (1997). https://doi.org/10.1016/S0378-7753(96)02629-8

    Article  CAS  Google Scholar 

  71. Wang, S., Yang, B., Chen, H.: Reconfiguring graphene for high-performance metal-ion battery anodes. Energy Storage Mater. 16, 619–624 (2018). https://doi.org/10.1016/j.ensm.2018.07.013

    Article  Google Scholar 

  72. Ren, J., Wu, Q., Hong, G., Zhang, W., Wu, H.: Silicon – graphene composite anodes for high-energy lithium batteries. Energy Technol. 1, 77–84 (2013). https://doi.org/10.1002/ente.201200038

    Article  CAS  Google Scholar 

  73. Wang, Z., Xu, D., Xu, J., Zhang, L., Zhang, X.: Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2 batteries. Adv. Funct. Mater. 22(17), 3699–3705 (2020). https://doi.org/10.1002/adfm.201200403

    Article  CAS  Google Scholar 

  74. Zhu, Y., Murali, S., Stoller, M.D., Ganesh, K.J., Cai, W., Ferreira, P.J., Pirkle, A., Wallace, R.M., Cychosz, K.A., Thommes, M., Su, D., Stach, E.A., Ruoff, R.S.: Carbon-based supercapacitors produced by activation of graphene. Science. 332, 1537–1542 (2011)

    Article  CAS  Google Scholar 

  75. Shi, W., Zhu, J., Sim, H., Tay, Y., Lu, Z., Zhang, X., Sharma, Y., Srinivasan, M., Zhang, H., Hng, H., Yan, Q.: Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites†. J. Mater. Chem. 21, 3422–3427 (2011). https://doi.org/10.1039/c0jm03175e

    Article  CAS  Google Scholar 

  76. Cai, Y., Zhang, G., Zhang, Y.: Polarity-reversed robust carrier mobility in monolayer MoS2 nanoribbons. J. Am. Chem. Soc. 136, 6269–6275 (2014). https://doi.org/10.1021/ja4109787

    Article  CAS  Google Scholar 

  77. Aboutalebi, S.H., Jalili, R., Esrafilzadeh, D., Salari, M., Gholamvand, Z., Yamini, S.A., Konstantinov, K., Shepherd, R.L., Chen, J., Moulton, S.E., Innis, P.C., Minett, A.I., Razal, J.M., Wallace, G.G.: High-performance multifunctional graphene yarns: toward wearable all-carbon energy storage textiles. ACS Nano. 8, 2456–2466 (2014)

    Article  CAS  Google Scholar 

  78. Liu, L., Yu, Y., Yan, C., Li, K., Zheng, Z.: Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene–metallic textile composite electrodes. Nat. Commun. 6, Article number: 7260 (2015). https://doi.org/10.1038/ncomms8260

    Article  CAS  Google Scholar 

  79. Chem, J.M., Mao, L., Zhang, K., Sze, H., Chan, O., Wu, J.: Surfactant-stabilized graphene/polyaniline nanofiber composites for high performance supercapacitor electrode†. J. Mater. Chem. 22, 80–85 (2012). https://doi.org/10.1039/c1jm12869h

    Article  CAS  Google Scholar 

  80. Ke, Q., Tang, C., Liu, Y., Liu, H., Wang, J.: Intercalating graphene with clusters of Fe3O4 nanocrystals for electrochemical supercapacitors. Mater. Res. Express. 1, 025015. https://doi.org/10.1088/2053-1591/1/2/025015

  81. Li, Z., Wang, J., Liu, S., Liu, X., Yang, S.: Synthesis of hydrothermally reduced graphene/MnO2 composites and their electrochemical properties as supercapacitors. J. Power Sources. 196, 8160–8165 (2011). https://doi.org/10.1016/j.jpowsour.2011.05.036

    Article  CAS  Google Scholar 

  82. Wang, H., Casalongue, H.S., Liang, Y., Dai, H.: Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 132, 7472–7477 (2010)

    Article  CAS  Google Scholar 

  83. Boddula, R., Asiri, A.M.: Self-standing Substrates. Springer, Cham (2020)

    Google Scholar 

  84. Ke, Q., Wang, J.: Graphene-based materials for supercapacitor electrodes – a review. J. Mater. 2, 37–54 (2016). https://doi.org/10.1016/j.jmat.2016.01.001

    Article  Google Scholar 

  85. Wang, G., Sun, X., Lu, F., Sun, H., Yu, M., Jiang, W.: Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors. Small. 8, 452–459 (2012). https://doi.org/10.1002/smll.201101719

    Article  CAS  Google Scholar 

  86. Paek, S., Yoo, E., Honma, I.: Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 9, 72–75 (2009)

    Article  CAS  Google Scholar 

  87. Li, Y., Yan, X., Fan, J., Zhu, J., Zhou, W.: RETRACTED: feasibility of biogas production from anaerobic co-digestion of herbal-extraction residues with swine manure. Bioresour. Technol. 102, 6458–6463 (2011). https://doi.org/10.1016/j.biortech.2011.03.093

    Article  CAS  Google Scholar 

  88. Yang, X., Zhu, J., Qiu, L., Li, D.: Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv. Mater. 23, 2833–2838 (2011). https://doi.org/10.1002/adma.201100261

    Article  CAS  Google Scholar 

  89. An, N., An, Y., Hu, Z., Guo, B., Yang, Y., Lei, Z.: Graphene hydrogels non-covalently functionalized with alizarin: an ideal electrode material for symmetric supercapacitors†. J. Mater. Chem. A. 3, 22239–22246 (2015). https://doi.org/10.1039/C5TA05812K

    Article  CAS  Google Scholar 

  90. Cao, X., Shi, Y., Shi, W., Lu, G., Huang, X., Yan, Q.: Preparation of novel 3D graphene networks for supercapacitor applications. Small. 7, 3163–3168 (2011). https://doi.org/10.1002/smll.201100990

    Article  CAS  Google Scholar 

  91. Sayed, E.T., Eisa, T., Mohamed, H.O., Abdelkareem, M.A., Allagui, A., Alawadhi, H., Chae, K.: Direct urea fuel cells: challenges and opportunities. J. Power Sources. 417, 159–175 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.024

    Article  CAS  Google Scholar 

  92. Ali, M., Taha, E.: ScienceDirect synthesis and testing of cobalt leaf-like nanomaterials as an active catalyst for ethanol oxidation. Int. J. Hydrog. Energy. 45, 17311–17319 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.156

    Article  CAS  Google Scholar 

  93. Scheuermann, G.M., Rumi, L., Steurer, P., Bannwarth, W., Mu, R., Albert-ludwigs-uni, V.: Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki – Miyaura coupling reaction. J. Am. Chem. Soc. 131, 8262–8270 (2009)

    Article  CAS  Google Scholar 

  94. Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., Novoselov, K.S.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 6–9 (2007). https://doi.org/10.1038/nmat1967

    Article  CAS  Google Scholar 

  95. Said, Z., Assad, M.E.H., Hachicha, A.A., Bellos, E., Ali, M., Zeyad, D., Yousef, B.A.A.: Enhancing the performance of automotive radiators using nanofluids. Renew. Sust. Energ. Rev. 112, 183–194 (2019). https://doi.org/10.1016/j.rser.2019.05.052

    Article  CAS  Google Scholar 

  96. Bakthavatchalam, B., Habib, K., Saidur, R., Baran, B., Irshad, K.: Comprehensive study on nanofluid and ionanofluid for heat transfer enhancement: a review on current and future perspective distilled water. J. Mol. Liq. 305, 112787 (2020). https://doi.org/10.1016/j.molliq.2020.112787

    Article  CAS  Google Scholar 

  97. Wang, Z., Han, F., Ji, Y., Li, W.: Performance and exergy transfer analysis of heat. Energies. 13, 1762 (2020). https://doi.org/10.3390/en13071762

    Article  CAS  Google Scholar 

  98. Bahiraei, M., Mazaheri, N.: Application of a novel hybrid nanofluid containing graphene – platinum nanoparticles in a chaotic twisted geometry for utilization in miniature devices: thermal and energy efficiency considerations. Int. J. Mech. Sci. 138–139, 337–349 (2018). https://doi.org/10.1016/j.ijmecsci.2018.02.030

    Article  Google Scholar 

  99. Bahiraei, M., Heshmatian, S.: Thermal performance and second law characteristics of two new microchannel heat sinks operated with hybrid nanofluid containing graphene – silver nanoparticles. Energy Convers. Manag. 168, 357–370 (2018). https://doi.org/10.1016/j.enconman.2018.05.020

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdelkhalk Aboulouard or Mustafa Can .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Karaman, M., Yalcin, E., Aboulouard, A., Can, M. (2023). Graphene Edge Structures: Folding, Tubing, and Twisting. In: Barhoum, A., Deshmukh, K. (eds) Handbook of Functionalized Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-031-14955-9_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14955-9_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14955-9

  • Online ISBN: 978-3-031-14955-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation