Renin Angiotensin System in Aging and Regeneration

  • Chapter
  • First Online:
The Renin Angiotensin System in Cardiovascular Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 24))

  • 495 Accesses

Abstract

Age is an independent risk factor for develo** various diseases related to the cardiovascular system, kidney, nervous system, diabetes etc. Renin Angiotensin System (RAS) is the main regulator of normal physiology, body fluid homeostasis, normal organ development and cardiovascular functions. Blockage in the RAS system has been shown to induce longevity and to prevent the age-related reduction in the multiple organ functions. RAS has deleterious effects in the acceleration of age-related phenotypes through the over activation of Angiotensin-II receptor type 1 (ATR-1). This promotes excessive cellular growth, inflammation and oxidative damage which leads to ageing. Other pathway is anti-inflammatory and counter-regulatory, which involves Angiotensin-II receptor type 2/Angiotensin converting enzyme/Angiotensin 1-7/Mas receptor or ATR2/ACE2/Ang1-7/MasR axis. This chapter focuses on the mechanisms of involvement of RAS in age-related diseases and the therapeutic strategies from an interdisciplinary clinical perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Bibliography

  1. Morris BJ (2005) A forkhead in the road to longevity: the molecular basis of lifespan becomes clearer. J Hypertens 23(7):1285–1309

    Article  CAS  Google Scholar 

  2. Oliverio MI, Kim HS, Ito M, Le T, Audoly L, Best CF et al (1998) Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc Natl Acad Sci U S A 95(26):15496–15501

    Article  CAS  Google Scholar 

  3. Gomez RA, Norwood VF (1995) Developmental consequences of the renin-angiotensin system. Am J Kidney Dis 26(3):409–431

    Article  CAS  Google Scholar 

  4. Conti S, Cassis P, Benigni A (2012) aging and the renin-angiotensin system. Hypertension 60(4):878–883

    Article  CAS  Google Scholar 

  5. Stegbauer J, Coffman TM (2011) New insights into angiotensin receptor actions: from blood pressure to aging. Curr Opin Nephrol Hypertens 20(1):84–88

    Article  CAS  Google Scholar 

  6. Oliverio MI, Coffman TM (2000) Angiotensin II receptor physiology using gene targeting. News Physiol Sci Int J Physiol Prod Jointly Int Union Physiol Sci Am Physiol Soc 15:171–175

    CAS  Google Scholar 

  7. Akazawa H, Yano M, Yabumoto C, Kudo-Sakamoto Y, Komuro I (2013) Angiotensin II Type 1 and Type 2 receptor-induced cell signaling. Curr Pharm Des 19(17):2988–2995

    Article  CAS  Google Scholar 

  8. Lambert DW, Clarke NE, Turner AJ (2010) Not just angiotensinases: new roles for the angiotensin-converting enzymes. Cell Mol Life Sci CMLS 67(1):89–98

    Article  CAS  Google Scholar 

  9. Angiotensin-converting enzyme 2 and angiotensin 1–7: novel therapeutic targets | Nature Reviews Cardiology [Internet]. [cited 2022 Mar 5]. Available from: https://www.nature.com/articles/nrcardio.2014.59

  10. Saravi B, Li Z, Lang CN, Schmid B, Lang FK, Grad S et al (2021) The tissue renin-angiotensin system and its role in the pathogenesis of major human diseases: Quo Vadis? Cells 10(3):650

    Article  CAS  Google Scholar 

  11. Ras Induces Vascular Smooth Muscle Cell Senescence and Inflammation in Human Atherosclerosis | Circulation [Internet]. [cited 2022 Mar 9]. Available from: https://www.ahajournals.org/doi/full/https://doi.org/10.1161/01.CIR.0000093274.82929.22

  12. Min L-J, Mogi M, Iwai M, Horiuchi M (2009) Signaling mechanisms of angiotensin II in regulating vascular senescence. Ageing Res Rev 8(2):113–121

    Article  CAS  Google Scholar 

  13. Folkow B (1982) Physiological aspects of primary hypertension. Physiol Rev 62(2):347–504

    Article  CAS  Google Scholar 

  14. Julius S, Nesbitt SD, Egan BM, Weber MA, Michelson EL, Kaciroti N et al (2006) Feasibility of treating prehypertension with an angiotensin-receptor blocker. N Engl J Med 354(16):1685–1697

    Article  CAS  Google Scholar 

  15. Linz W, Jessen T, Becker RH, Schölkens BA, Wiemer G (1997) Long-term ACE inhibition doubles lifespan of hypertensive rats. Circulation 96(9):3164–3172

    Article  CAS  Google Scholar 

  16. Ferrario CM, Strawn WB (2006) Role of the renin-angiotensin-aldosterone system and proinflammatory mediators in cardiovascular disease. Am J Cardiol 98(1):121–128

    Article  CAS  Google Scholar 

  17. Schmieder RE, Hilgers KF, Schlaich MP, Schmidt BMW (2007) Renin-angiotensin system and cardiovascular risk. Lancet Lond Engl. 369(9568):1208–1219

    Article  CAS  Google Scholar 

  18. Kim S, Iwao H (2000) Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev 52(1):11–34

    CAS  Google Scholar 

  19. Jugdutt BI, Balghith M (2001) Enhanced regional AT(2)-receptor and PKC(epsilon) expression during cardioprotection induced by AT(1)-receptor blockade after reperfused myocardial infarction. J Renin-Angiotensin-Aldosterone Syst JRAAS 2(2):134–40

    Google Scholar 

  20. Xu Y, Menon V, Jugdutt BI (2000) Cardioprotection after angiotensin II type 1 blockade involves angiotensin II type 2 receptor expression and activation of protein kinase C-epsilon in acutely reperfused myocardial infarction in the dog. Effect of UP269-6 and losartan on AT1 and AT2-receptor expression and IP3 receptor and PKCepsilon proteins. J Renin-Angiotensin-Aldosterone Syst JRAAS 1(2):184–95

    Google Scholar 

  21. Liu Y-H, Yang X-P, Shesely EG, Sankey SS, Carretero OA (2004) Role of angiotensin II type 2 receptors and kinins in the cardioprotective effect of angiotensin II type 1 receptor antagonists in rats with heart failure. J Am Coll Cardiol 43(8):1473–1480

    Article  CAS  Google Scholar 

  22. Drexler H (1994) Endothelial dysfunction in heart failure and potential for reversal by ACE inhibition. Br Heart J 72(Suppl 3):S11–S14

    Article  CAS  Google Scholar 

  23. Liu YH, Yang XP, Sharov VG, Nass O, Sabbah HN, Peterson E, et al (1997) Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure. Role of kinins and angiotensin II type 2 receptors. J Clin Invest 99(8):1926–1935

    Google Scholar 

  24. Mielniczuk L, Stevenson LW (2005) Angiotensin-converting enzyme inhibitors and angiotensin II type I receptor blockers in the management of congestive heart failure patients: what have we learned from recent clinical trials? Curr Opin Cardiol 20(4):250–255

    Google Scholar 

  25. Yang H-C, Rossini M, Ma L-J, Zuo Y, Ma J, Fogo AB (2011) Cells derived from young bone marrow alleviate renal aging. J Am Soc Nephrol 22(11):2028–2036

    Article  CAS  Google Scholar 

  26. Lu X, Li N, Shushakova N, Schmitt R, Menne J, Susnik N et al (2011) C57BL/6 and 129/SV mice: genetic difference to renal ischemia-reperfusion. J Nephrol 15(25):738–743

    Google Scholar 

  27. Remuzzi G, Bertani T (1998) Pathophysiology of progressive nephropathies. N Engl J Med 339(20):1448–1456

    Article  CAS  Google Scholar 

  28. Remuzzi G, Perico N, Macia M, Ruggenenti P (2005) The role of renin-angiotensin-aldosterone system in the progression of chronic kidney disease. Kidney Int Suppl 99:S57-65

    Article  CAS  Google Scholar 

  29. Cheng S-Y, Chou Y-H, Liao F-L, Lin C-C, Chang F-C, Liu C-H et al (2016) Losartan reduces ensuing chronic kidney disease and mortality after acute kidney injury. Sci Rep 6(1):34265

    Article  CAS  Google Scholar 

  30. Change of telomere length in angiotensin ii-induced human glomerular mesangial cell senescence and the protective role of losartan [Internet]. [cited 2022 Mar 10]. Available from: https://www.spandidos-publications.com/mmr/4/2/255

  31. Dinh QN, Drummond GR, Kemp-Harper BK, Diep H, Silva TMD, Kim HA et al (2017) Pressor response to angiotensin II is enhanced in aged mice and associated with inflammation, vasoconstriction and oxidative stress. Aging 9(6):1595–1605

    Article  CAS  Google Scholar 

  32. Altered Renal Expression of Angiotensin II Receptors, Renin Receptor, and ACE-2 Precede the Development of Renal Fibrosis in Aging Rats—Abstract—American Journal of Nephrology 2010, vol 32, no 3. Karger Publishers [Internet]. [cited 2022 Mar 10]. Available from: https://www.karger.com/Article/Abstract/318607

  33. Gelosa P, Pignieri A, Fändriks L, de Gasparo M, Hallberg A, Banfi C et al (2009) Stimulation of AT2 receptor exerts beneficial effects in stroke-prone rats: focus on renal damage. J Hypertens 27(12):2444–2451

    Article  CAS  Google Scholar 

  34. Phillips IM (1987) Functions of angiotensin in the central nervous system. Annu Rev Physiol 49(1):413–433

    Article  CAS  Google Scholar 

  35. Labandeira-Garcia JL, Rodríguez-Perez AI, Garrido-Gil P, Rodriguez-Pallares J, Lanciego JL, Guerra MJ (2017) Brain renin-angiotensin system and microglial polarization: implications for aging and neurodegeneration. Front Aging Neurosci [Internet]. [cited 2022 Mar 10];9. Available from: https://www.frontiersin.org/article/https://doi.org/10.3389/fnagi.2017.00129

  36. Min L-J, Mogi M, Shudou M, **g F, Tsukuda K, Ohshima K et al (2012) Peroxisome proliferator-activated receptor-γ activation with angiotensin ii type 1 receptor blockade is pivotal for the prevention of blood-brain barrier impairment and cognitive decline in type 2 diabetic mice. Hypertension 59(5):1079–1088

    Article  CAS  Google Scholar 

  37. Wang J, Ho L, Chen L, Zhao Z, Zhao W, Qian X et al (2007) Valsartan lowers brain beta-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease. J Clin Invest 117(11):3393–3402

    Article  CAS  Google Scholar 

  38. Semprun-Prieto LC, Sukhanov S, Yoshida T, Rezk BM, Gonzalez-Villalobos RA, Vaughn C et al (2011) Angiotensin II induced catabolic effect and muscle atrophy are redox dependent. Biochem Biophys Res Commun 409(2):217–221

    Article  CAS  Google Scholar 

  39. Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W et al (2019) Sarcopenia: aging-related loss of muscle mass and function. Physiol Rev 99(1):427–511

    Article  Google Scholar 

  40. Takeshita H, Yamamoto K, Nozato S, Takeda M, Fukada S, Inagaki T et al (2018) Angiotensin-converting enzyme 2 deficiency accelerates and angiotensin 1–7 restores age-related muscle weakness in mice. J Cachexia Sarcopenia Muscle 9(5):975–986

    Article  Google Scholar 

  41. Gomes-Santos IL, Fernandes T, Couto GK, Ferreira-Filho JCA, Salemi VMC, Fernandes FB et al (2014) Effects of exercise training on circulating and skeletal muscle renin-angiotensin system in chronic heart failure rats. PLoS ONE 9(5):e98012

    Article  Google Scholar 

  42. Carlsson PO, Berne C, Jansson L (1998) Angiotensin II and the endocrine pancreas: effects on islet blood flow and insulin secretion in rats. Diabetologia 41(2):127–133

    Article  CAS  Google Scholar 

  43. Simões e Silva AC, Ferreira RN, Miranda AS (2017) The renin angiotensin system and diabetes. In: Kartha CC, Ramachandran S, Pillai RM (eds) Mechanisms of vascular defects in diabetes mellitus [Internet]. Springer International Publishing, Cham [cited 2022 Mar 10]. p 275–91. (Advances in Biochemistry in Health and Disease). Available from: https://doi.org/10.1007/978-3-319-60324-7_11

  44. Shimizu H, Nakagami H, Osako MK, Hanayama R, Kunugiza Y, Kizawa T et al (2008) Angiotensin II accelerates osteoporosis by activating osteoclasts. FASEB J Off Publ Fed Am Soc Exp Biol 22(7):2465–2475

    CAS  Google Scholar 

  45. Rejnmark L, Vestergaard P, Mosekilde L (2006) Treatment with beta-blockers, ACE inhibitors, and calcium-channel blockers is associated with a reduced fracture risk: a nationwide case-control study. J Hypertens 24(3):581–589

    Article  CAS  Google Scholar 

  46. Fujimoto Y, Sasaki T, Tsuchida A, Chayama K (2001) Angiotensin II type 1 receptor expression in human pancreatic cancer and growth inhibition by angiotensin II type 1 receptor antagonist. FEBS Lett 495(3):197–200

    Article  CAS  Google Scholar 

  47. Egami K, Murohara T, Shimada T, Sasaki K-I, Shintani S, Sugaya T et al (2003) Role of host angiotensin II type 1 receptor in tumor angiogenesis and growth. J Clin Invest 112(1):67–75

    Article  CAS  Google Scholar 

  48. Matsuura-Hachiya Y, Arai KY, Ozeki R, Kikuta A, Nishiyama T (2013) Angiotensin-converting enzyme inhibitor (enalapril maleate) accelerates recovery of mouse skin from UVB-induced wrinkles. Biochem Biophys Res Commun 442(1):38–43

    Article  CAS  Google Scholar 

  49. Hao S yun, Ren M, Yang C, Lin D zhu, Chen L hong, Zhu P, et al (2011) Activation of skin renin–angiotensin system in diabetic rats. Endocrine 39(3):242–50

    Google Scholar 

  50. A Novel Function of Angiotensin II in Skin Wound Healing—Journal of Biological Chemistry [Internet]. [cited 2022 Mar 11]. Available from: https://www.jbc.org/article/S0021-9258(19)74856-X/fulltext

  51. Faghih M, Hosseini SM, Smith B, Mehdi AA, Lay F, Ahmed AK, et al (2015) Knockout of Angiotensin AT2 receptors accelerates healing but impairs quality. Aging 7(12):1185–1197

    Google Scholar 

  52. Garten A, Petzold S, Körner A, Imai S-I, Kiess W (2009) Nampt: linking NAD biology, metabolism and cancer. Trends Endocrinol Metab TEM 20(3):130–138

    Article  CAS  Google Scholar 

  53. Dali-Youcef N, Lagouge M, Froelich S, Koehl C, Schoonjans K, Auwerx J (2007) Sirtuins: the “magnificent seven”, function, metabolism and longevity. Ann Med 39(5):335–345

    Article  CAS  Google Scholar 

  54. Bellizzi D, Rose G, Cavalcante P, Covello G, Dato S, Rango FD et al (2005) A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics 85(2):258–263

    Article  CAS  Google Scholar 

  55. Jacobs KM, Pennington JD, Bisht KS, Aykin-Burns N, Kim H-S, Mishra M, et al (2008) SIRT3 interacts with the daf-16 homolog FOXO3a in the Mitochondria, as well as increases FOXO3a Dependent Gene expression. Int J Biol Sci 291–299

    Google Scholar 

  56. Sinclair DA (2005) Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 126(9):987–1002

    Article  CAS  Google Scholar 

  57. Sundaresan NR, Samant SA, Pillai VB, Rajamohan SB, Gupta MP (2008) SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol 28(20):6384–6401

    Article  CAS  Google Scholar 

  58. Benigni A, Corna D, Zoja C, Sonzogni A, Latini R, Salio M et al (2009) Disruption of the Ang II type 1 receptor promotes longevity in mice. J Clin Invest 119(3):524–530

    Article  CAS  Google Scholar 

  59. Basso N, Cini R, Pietrelli A, Ferder L, Terragno NA, Inserra F (2007) Protective effect of long-term angiotensin II inhibition. Am J Physiol Heart Circ Physiol 293(3):H1351-1358

    Article  CAS  Google Scholar 

  60. Ferder L, Inserra F, Romano L, Ercole L, Pszenny V (1993) Effects of angiotensin-converting enzyme inhibition on mitochondrial number in the aging mouse. Am J Physiol 265(1 Pt 1):C15-18

    Article  CAS  Google Scholar 

  61. Sastre J, Pallardó FV, Viña J (2000) Mitochondrial oxidative stress plays a key role in aging and apoptosis. IUBMB Life 49(5):427–435

    Article  CAS  Google Scholar 

  62. Herbert KE, Mistry Y, Hastings R, Poolman T, Niklason L, Williams B (2008) Angiotensin II-mediated oxidative DNA damage accelerates cellular senescence in cultured human vascular smooth muscle cells via telomere-dependent and independent pathways. Circ Res 102(2):201–208

    Article  CAS  Google Scholar 

  63. Steckelings UM, Artuc M, Wollschläger T, Wiehstutz S, Henz BM (2001) Angiotensin-converting enzyme inhibitors as inducers of adverse cutaneous reactions. Acta Derm Venereol 81(5):321–325

    Article  CAS  Google Scholar 

  64. Liao X, **ao J, Li S-H, **ao L-L, Cheng B, Fu X-B et al (2019) Critical role of the endogenous renin-angiotensin system in maintaining self-renewal and regeneration potential of epidermal stem cells. Biochim Biophys Acta BBA—Mol Basis Dis. 1865(10):2647–2656

    Article  CAS  Google Scholar 

  65. Takeda H, Katagata Y, Hozumi Y, Kondo S (2004) Effects of angiotensin II receptor signaling during skin wound healing. Am J Pathol 165(5):1653–1662

    Article  CAS  Google Scholar 

  66. Koh SL, Ager EI, Christophi C (2010) Liver regeneration and tumour stimulation: implications of the renin–angiotensin system. Liver Int 30(10):1414–1426

    Article  CAS  Google Scholar 

  67. Nakano N, Moriguchi A, Morishita R, Kida I, Tomita N, Matsumoto K, et al (1997) Role of angiotensin II in the regulation of a novel vascular modulator, hepatocyte growth factor (HGF), in experimental hypertensive rats. Hypertens Dallas Tex 1979 30(6):1448–1454

    Google Scholar 

  68. Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Nakatani T et al (2001) Angiotensin-II type 1 receptor interaction is a major regulator for liver fibrosis development in rats. Hepatol Baltim Md 34(4 Pt 1):745–750

    Article  CAS  Google Scholar 

  69. Ramalho F, Ramalho L, Castro e Silva O, Zucoloto S, Corrêa F (2002) Effect of angiotensin-converting enzyme inhibitors on liver regeneration rats. Hepatogastroenterology 49:1347–1351

    Google Scholar 

  70. Cohn RD, van Erp C, Habashi JP, Soleimani AA, Klein EC, Lisi MT et al (2007) Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states. Nat Med 13(2):204–210

    Article  CAS  Google Scholar 

  71. Yoshida T, Galvez S, Tiwari S, Rezk BM, Semprun-Prieto L, Higashi Y et al (2013) Angiotensin II inhibits satellite cell proliferation and prevents skeletal muscle regeneration. J Biol Chem 288(33):23823–23832

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anupam Mittal or Madhu Khullar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rawal, N., Mittal, A., Khullar, M. (2023). Renin Angiotensin System in Aging and Regeneration. In: Dhalla, N.S., Bhullar, S.K., Shah, A.K. (eds) The Renin Angiotensin System in Cardiovascular Disease. Advances in Biochemistry in Health and Disease, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-031-14952-8_17

Download citation

Publish with us

Policies and ethics

Navigation