European Alps

  • Chapter
  • First Online:
Periglacial Landscapes of Europe

Abstract

The European Alps cover an area of 190,900 km2, are arcuated in the western part, extend over a length of 1200 km, are up to 280 km wide, and reach their highest elevation at Mont Blanc (4807.8 m a.s.l.). Some 19% of the area exceed 2000 m. Up to 52% consist of carbonate rocks at the surface, which is relevant for karstification processes. During the Last Glacial Maximum, 55% of the Alps were covered by glaciers whereas the remaining area was impacted by moderate to severe periglacial conditions causing the formation of remarkable periglacial landforms still visible today particularly at the Alpine margin. During the Late Glacial period, previously glaciated areas were reshaped by periglacial processes forming for instance rock glaciers and solifluction landforms characterising many high-elevated regions in the Alps at present. Nowadays, active periglacial processes are restricted to elevations above 2000 m, at the central Alps to above 2400 m. Around 11% of the Alps are in this active periglacial belt, constrained by the potential treeline as the lower limit and the currently glaciated areas (1% of the Alps) as the upper limit. The widespread existence of relict and active periglacial landforms in the Alps inspired research of many scholars and scientists since centuries. Even Leonardo da Vinci made some periglacial-related observations in the late fifteenth century. Despite long traditions and comprehensive experiences in periglacial landform research, future periglacial research is still needed and will help to better understand the impact of ongoing climate change on the periglacial resha** of this remarkable mountain chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achleitner A (1995) Zum Alter des Höhleneises in der Eisgruben-Eishöhle im Sarstein (Oberösterreich). Die Höhle 46:1–5

    Google Scholar 

  • Agassiz L, Guyot AH, Desor É (1847) Système glaciaire ou recherches sur les glaciers, leur mécanisme, leur ancienne extension et le rôle qu’ils ont joué dans l’histoire de la terre. Masson, Paris, p 598

    Google Scholar 

  • Albertini R, Amedeo R, Capello CF, Dona F, Giacomini V, Giorcelli V (1955) Studi sui fenomeni crionivali (periglaciali partim) delle Alpi italiane, Fondaz. per i problemi montani dell’Arco alpino, Milano Frenshing, 11, Parma, p 148

    Google Scholar 

  • Allix A (1923) Nivation et sols polygonaux dans les Alpes françaises. La Géographie XXXIX:431–438

    Google Scholar 

  • Alpine Convention (2020) Perimeter of the Alpine Convention. https://www.atlas.alpconv.org/layers/geonode:Alpine_Convention_Perimeter_2018_v2

  • Andersson IG (1906) Solifluction, a component of subaerial denudation. J Geol 14:91–112

    Google Scholar 

  • Andrieux E, Bertran P, Saito K (2016) Spatial analysis of the French Pleistocene permafrost by a GIS database: French Pleistocene permafrost database. Permafr Periglac Process 27:17–30. https://doi.org/10.1002/ppp.1856

    Article  Google Scholar 

  • Arenson LU, Hoelzle M, Springman S (2002) Borehole deformation measurements and internal structure of some rock glaciers in Switzerland. Permafr Periglac Process 13:117–135. https://doi.org/10.1002/ppp.414

    Google Scholar 

  • Avian M, Kellerer-Pirklbauer A (2012) Modelling of potential permafrost distribution during the Younger Dryas, the Little Ice Age and at present in the Reisseck Mountains, Hohe Tauern Range. Austria. Austrian J Earth Sci 105(2):140–153

    Google Scholar 

  • Avian M, Kaufmann V, Lieb GK (2005) Recent and Holocene dynamics of a rock glacier system: The example of Langtalkar (Central Alps, Austria). Norsk Geogr Tidsskr 59:149–156

    Google Scholar 

  • Avian M, Kellerer-Pirklbauer A, Bauer A (2009) LiDAR for monitoring mass movements in permafrost environments at the cirque Hinteres Langtal, Austria, between 2000 and 2008. Nat Hazard Earth Sys 9:1087–1094

    Google Scholar 

  • Bachmann F (1966) Fossile Strukturböden und Eiskeile auf jungpleistocänen Schotterflächen im nordostschweizerischen Mittelland. Doctoral dissertation, University of Zurich

    Google Scholar 

  • Ballantyne CK (1998) Age and significance of mountain-top detritus. Permafr Periglac Process 9:327–345

    Google Scholar 

  • Ballantyne CK (2001) Measurement and theory of ploughing boulder movement. Permafr Periglac Process 12:267–288. https://doi.org/10.1002/ppp.389

    Article  Google Scholar 

  • Ballantyne CK (2018) Periglacial Geomorphology. Wiley-Blackwell, ISBN: 978-1-405-10006-9; p 472

    Google Scholar 

  • Baroni C, Carton A, Seppi R (2004) Distribution and behaviour of rock glaciers in the Adamello-Presanella Massif (Italian Alps). Permafr Periglac Process 15:243–259. https://doi.org/10.1002/ppp.497

    Google Scholar 

  • Barsch D (1969) Studien und Messungen an Blockgletschern in Macun, Unterengadin. Z Geomorphol Supp 8:11–30

    Google Scholar 

  • Barsch D (1993) Periglacial geomorphology in the 21st century. Geomorphology 7:141–163

    Google Scholar 

  • Barsch D (1996) Rockglaciers: indicators for the present and former geoecology on high mountain environments. Springer, Berlin, Germany, p 331

    Google Scholar 

  • Barsch D, Hell G (1975) Photogrammetrische Bewegungsmessungen am Blockgletscher Murtèl I, Oberengadin, Schweizer Alpen. Z Gletscherk Glazialgeol 11:111–142

    Google Scholar 

  • Bätzing W (2015) Die Alpen: Geschichte und Zukunft einer europäischen Kulturlandschaft. C.H.Beck, Munich, p 484

    Google Scholar 

  • Bauer F (1962) Nacheiszeitliche Karstformen in der österreichischen Kalkalpen. In: Proceedings of the 2nd International Congress of Speleology, Bari, pp 299–328

    Google Scholar 

  • Bauer A, Paar G, Kaufmann V (2003) Terrestrial laser scanning for rock glacier monitoring. In: Proceedings of the 8th International Conference on Permafrost, Zurich, Switzerland, pp 55–60

    Google Scholar 

  • Bauer F, Zötl J (1972) Chapter 7—Karst of Austria. In: Herak M, Stringfield VT (eds) Karst: Important Karst Regions of the Northern Hemisphere. Elsevier, Amsterdam, London, New York, pp 225–265

    Google Scholar 

  • Belloni S, Carton A, Dramis F, Smiraglia C (1993) Distribution of permafrost, glaciers and rock glaciers in the Italian mountains and correlations with climate: An attempt to synthesize. In: Proceedings of the 6th International Conference on Permafrost, Bei**g, China, pp 36–41

    Google Scholar 

  • Benedict JB (1970) Downslope soil movement in a Colorado alpine region: Rates, processes, and climate significance. Arctic Alpine Res 2:165–226

    Google Scholar 

  • Blum W (2006) Frost-induced structural soils in the Tennengebirge. Salzburg, Mitt Oster Bodenku G 73:133–143

    Google Scholar 

  • Boccali C, Žebre M, Colucci RR (2019) Geometry and paleo-ice content of rock glaciers in the southeastern Alps (NE Italy—NW Slovenia). J Maps 15(2):346–355. https://doi.org/10.1080/17445647.2019.1595753

    Article  Google Scholar 

  • Bock H (1913) Charakter Des Mittelsteirischen Karstes. Mitt. Höhlenkunde 6(4):5–19

    Google Scholar 

  • Bodin X, Krysiecki JM, Schoeneich P, Le Roux O, Lorier L, Echelard T, Peyron M, Walpersdorf A (2016) The 2006 Collapse of the Bérard Rock Glacier (Southern French Alps). Permafr Periglac Process 28:209–223. https://doi.org/10.1002/ppp.1887

    Article  Google Scholar 

  • Bodin X, Thibert E, Fabre D, Ribolini A, Schoeneich P, Francou B, Reynaud L, Fort M (2009) Two decades of responses (1986–2006) to climate by the Laurichard Rock Glacier, French Alps. Permafr Periglac Process 20:331–344. https://doi.org/10.1002/ppp.665

  • Boeckli L, Brenning A, Gruber S, Noetzli J (2012) Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics. Cryosphere 6(4):807–820. https://doi.org/10.5194/tc-6-807-2012

    Article  Google Scholar 

  • Bögli A (1980) Karst hydrology and physical speleology. Springer, Berlin, p 284

    Google Scholar 

  • Borsato A, Miorandi R, Flora O (2006) I depositi di ghiaccio ipogei della Grotta dello Specchio e del Castelletto di Mezzo (Dolomiti di Brenta, Trentino): morfologia, età ed evoluzione recente. Studi Trent Sci Nat Acta Geol 81:53–74

    Google Scholar 

  • Brevini F (2004) Rocce. Mondadori, Milano, 252 p

    Google Scholar 

  • Buchenauer HW (1990) Gletscher-und Blockgletschergeschichte der westlichen Schobergruppe (Osttirol). Marburger Geogr Schriften 117:1–376

    Google Scholar 

  • Buchroithner M, Gaisecker T (2020) Ice surface changes in Eisriesenwelt (Salzburg, Austria) based on LIDAR measurements between 2017 and 2020. Die Höhle 71:62–70

    Google Scholar 

  • Büdel J (1937) Eiszeitliche und rezente Verwitterung and Abtragung im ehemals nicht vereisten Teil Mitteleuropas. Petermann Mitt Ergaenz 229:1–71

    Google Scholar 

  • Burger KC, Degenhardt JJ Jr, Giardino JR (1999) Engineering geomorphology of rock glaciers. Geomorphology 31:93–132

    Google Scholar 

  • Cannone N, Guglielmin M, Smiraglia C (1995) Relazioni tra forme periglaciali e caratteri della vegetazione di alta quota nell’area del Livignasco (Alta Valtellina). Rivista Geografica Italiana 102:91–111

    Google Scholar 

  • Cannone N, Piccinelli S (2021) Changes of rock glacier vegetation in 25 years of climate warming in the Italian Alps. CATENA 206(2):105562. https://doi.org/10.1016/j.catena.2021.105562

    Article  Google Scholar 

  • Cannone N, Guglielmin M, Gerdol R (2004) Relationships between vegetation patterns and periglacial landforms in northwestern Svalbard. Polar Bio 27:562–571

    Google Scholar 

  • Capello CF (1947) Le pietraie semoventi (rock glaciers) delle Alpi Occidentali. Natura 38:17–23

    Google Scholar 

  • Capello CF (1959) Prime ricerche sulle “pietraie semoventi” del settore montuoso del Gran Paradiso. Riv Mens Club Alp Italiano 78(294–300):371–376

    Google Scholar 

  • Capello CF (1963) Le morfologie crionivali (periglaciali) nelle Alpi Graie meridionali italiane. Pubblicazioni dell’Istituto di Geografia Alpina, Volume 3/Studi sulle morfologie crionivali 1, 124 p

    Google Scholar 

  • Capello CF (1969) Le morfologie tardo-glaciali e crionivali della Val Maira (Piemonte), Pubbl. Ist. Geogr. Alp. 13, S.P.E., Torino, 79 p

    Google Scholar 

  • Carta Geologica d'Italia (1977) Explanatory Notes of sheet 28 “La Marmolada” at scale 1:50.000. Geological Survey of Italy, Florence.

    Google Scholar 

  • Carturan L, Zuecco G, Seppi R, Zanoner T, Borga M, Carton A, Dalla Fontana G (2016) Catchment-scale permafrost map** using spring water characteristics. Permafr Periglac Process 27:253–270. https://doi.org/10.1002/ppp.1875

    Article  Google Scholar 

  • Castiglioni GB (1961) I depositi morenici del gruppo Adamello-Presanella con particolare riguardo agli stadi glaciali postwurmiani. Mem Ist Geol Min Univ Padova 23:1–131

    Google Scholar 

  • Castiglioni GB (1974) Importanza dei processi periglaciali nel Pleistocene per l’evoluzione del rilievo nelle Prealpi Venete. Natura e Montagna 21:15–17

    Google Scholar 

  • Castiglioni GB, Girardi A, Sauro U, Tessari F (1979) Grèzes litées e falde detritiche stratificate di origine crionivale. Geogr Fis Din Quat 2:64–82

    Google Scholar 

  • Chaix A (1919) Coulées de blocs (rock-glaciers, rock-streams) dans le parc national suisse de la Basse-Engadine. Cr Séances Soc Phys Hist Nat Genève 36:12–15

    Google Scholar 

  • Chaix A (1923) Les coulées de blocs du Parc National Suisse d’Engadine (Note préliminaire). Le Globe 62:1–35

    Google Scholar 

  • Chaix A (1943) Les coulées de blocs du Parc National Suisse: nouvelles mesures et comparaison avec les “rock stream” de la Sierra Nevada de Californie. Le Globe 82:121–128

    Google Scholar 

  • Charton J, Verfaillie D, Jomelli V, Francou B (2021) Early Holocene rock glacier stabilisation at col du Lautaret (French Alps): Palaeoclimatic implications. Geomorphology 394:107962. https://doi.org/10.1016/j.geomorph.2021.107962

    Article  Google Scholar 

  • Cicoira A, Beutel J, Faillettaz J, Vieli A (2019) Water controls the seasonal rhythm of rock glacier flow. Earth Planet Sc Lett 528:115844. https://doi.org/10.1016/j.epsl.2019.115844

    Article  Google Scholar 

  • Cicoira A, Marcer M, Gärtner-Roer I, Bodin X, Arenson LU, Vieli A (2021) A general theory of rock glacier creep based on in situ and remote sensing observations. Permafr Periglac Process 32:139–153. https://doi.org/10.1002/ppp.2090

    Article  Google Scholar 

  • CNRS-Caen and Institut de Géographie Aix-en-Provence (1980) Observations sur quelques formes et processus périglaciaires dans le Massif du Chambeyron (Alpes de Hautes-Provence), Revue de géogr alpine 68(4)349–382.https://doi.org/10.3406/rga.1980.221

  • Colombo N, Fratianni S, Giaccone E, Paro L (2013) Relationships among atmosphere-cryosphere-biosphere in a transitional glacial catchment (Sabbione Lake, northwestern Italian Alps). In: Proceedings of the 20th International Snow Science Workshop, Grenoble-Chamonix Mont-Blanc, pp 1201–1207

    Google Scholar 

  • Colombo N, Giaccone E, Paro L, Buffa G, Fratianni S (2016) The recent transition from glacial to periglacial environment in a high-altitude alpine basin (Sabbione Basin, North-Western Italian Alps). Preliminary outcomes from a multidisciplinary approach. Geogr Fis Din Quat 39:21–36. https://doi.org/10.4461/GFDQ.2016.39.3

    Google Scholar 

  • Colombo N, Salerno F, Martin M, Malandrino M, Giardino M, Serra E, Godone D, Said-Pullicino D, Fratianni S, Paro L, Tartari G, Freppaz M (2019) Influence of permafrost, rock and ice glaciers on chemistry of high-elevation ponds (NW Italian Alps). Sci Total Environ 685:886–901. https://doi.org/10.1016/j.scitotenv.2019.06.233

    Article  Google Scholar 

  • Colombo N, Ferronato C, Vittori Antisari L, Marziali L, Salerno F, Fratianni S, D’Amico ME, Ribolini A, Godone D, Sartini S, Paro L, Morra di Cella U, Freppaz M (2020) A rock-glacier-pond system (NW Italian Alps): Soil and sediment properties, geochemistry, and trace-metal bioavailability. CATENA 194:104700. https://doi.org/10.1016/j.catena.2020.104700

    Article  Google Scholar 

  • Colucci RR, Boccali C, Žebre M, Guglielmin M (2016a) Rock glaciers, protalus ramparts and pronival ramparts in the south-eastern Alps. Geomorphology 269:112–121. https://doi.org/10.1016/j.geomorph.2016.06.039

    Article  Google Scholar 

  • Colucci RR, Fontana D, Forte E, Potleca M, Guglielmin M (2016b) Response of ice caves to weather extremes in the Southeastern Alps, Europe. Geomorphology 261:1–11. https://doi.org/10.1016/j.geomorph.2016.02.017

    Google Scholar 

  • Colucci RR, Forte E, Žebre M, Maset E, Zanettini C, Guglielmin M (2019) Is that a relict rock glacier? Geomorphology 330:177–189. https://doi.org/10.1016/j.geomorph.2019.02.002

    Article  Google Scholar 

  • Colucci RR, Guglielmin M (2019) Climate change and rapid ice melt: Suggestions from abrupt permafrost degradation and ice melting in an alpine ice cave. Prog Phys Geog 43(4):561–573. https://doi.org/10.1177/0309133319846056

    Article  Google Scholar 

  • Costantini EAC, Carnicelli S, Sauer D, Priori S, Andreetta A, Kadereit A, Lorenzetti R (2018) Loess in Italy: Genesis, characteristics and occurrence. CATENA 168:14–33. https://doi.org/10.1016/j.catena.2018.02.002

  • Coutard JP, Francou B (1989) Rock temperature measurements in two alpine environments: implications for frost shattering. Arctic Alpine Res 21:399–416

    Google Scholar 

  • Coutard JP (2019) Retour sur 50 années de contributions du professeur Albert Pissart à la géomorphologie périglaciaire. Environ. Périglaciaires, Bulletin de l’Association Française du Périglaciaire 22(23):8–18

    Google Scholar 

  • Cremaschi M, Zerboni A, Nicosia C, Negrino F, Rodnight H, Spötl C (2015) Age, soil-forming processes, and archaeology of the loess deposits at the Apennine margin of the Po plain (northern Italy): New insights from the Ghiardo area. Quat Int 376:173–188. https://doi.org/10.1016/j.quaint.2014.07.044

  • Cremonese E, Gruber S, Phillips M, Pogliotti P, Boeckli L, Noetzli J, Suter C, Bodin X, Crepaz A, Kellerer-Pirklbauer A, Lang K, Letey S, Mair V, Morra di Cella U, Ravanel L, Scapozza C, Seppi R, Zischg A (2011) Brief Communication: An inventory of permafrost evidence for the European Alps. Cryosphere 5:651–657. https://doi.org/10.5194/tc-5-651-2011

    Article  Google Scholar 

  • Crespi A, Brunetti M, Lentini G, Maugeri M (2017) 1961–1990 high-resolution monthly precipitation climatologies for Italy. Int J Climatol 38:878–895. https://doi.org/10.1002/joc.5217

    Article  Google Scholar 

  • Cusicanqui D, Rabatel A, Vincent C, Bodin X, Thibert E, Francou B (2021) Interpretation of volume and flux changes of the Laurichard Rock Glacier between 1952 and 2019, French Alps J Geophys Res-Earth 126(9):e2021JF006161. https://doi.org/10.1029/2021JF006161

  • Czudek T (1995) Cryoplanation terraces—a brief review and some remarks. Geogr Ann 77A(1–2):95–105

    Google Scholar 

  • D'Amico ME, Casati E, Andreucci S, Martini M, Panzeri L, Sechi D, Abu El Khair D, Previtali F (2021) New dates of a Northern Italian loess deposit (Monte Orfano, Southern pre-Alps, Brescia). Journal Soils Sediments 21:832–841. https://doi.org/10.1007/s11368-020-02860-4

  • D’Amico ME, Gorra R, Freppaz M (2015) Small-scale variability of soil properties and soil–vegetation relationships in patterned ground on different lithologies (NW Italian Alps). CATENA 135:47–58. https://doi.org/10.1016/j.catena.2015.07.005

    Google Scholar 

  • D’Amico ME, Pintaldi E, Catonia M, Freppaz M, Bonifacio E (2019) Pleistocene periglacial imprinting on polygenetic soils and paleosols in the SW Italian Alps. CATENA 174:269–284. https://doi.org/10.1016/j.catena.2018.11.019

    Google Scholar 

  • Davaze L, Rabatel A, Dufour A, Hugonnet R, Arnaud Y (2020) Region-wide annual glacier surface mass balance for the European Alps from 2000 to 2016. Front Earth Sci 8:149. https://doi.org/10.3389/feart.2020.00149

  • De Jong MGG, Kwadijk JK (1998) Fossil rock glaciers in central Vorarlberg, Austria. Arctic Alpine Res 20:86–96

    Google Scholar 

  • Delaloye R, Reynard E, Lambiel C, Marescot L, Monnet R (2003) Thermal anomaly in a cold scree slope (Creux Du Van, Switzerland) In: Proceedings of the 8th International Conference on Permafrost, Zurich, Switzerland, pp 175–180

    Google Scholar 

  • Delaloye R, Perruchoud E, Avian M, Kaufmann V, Bodin X, Hausmann H, Ikeda A, Kääb A, Kellerer-Pirklbauer A, Krainer K, Lambiel C, Mihajlovic D, Staub B, Roer I, Thibert E (2008) Recent interannual variations of rock glacier creep in the European Alps. In: Proceedings of the 9th International Conference on Permafrost, Fairbanks, Alaska, pp 343–348

    Google Scholar 

  • Delaloye R, Lambiel C, Gärtner-Roer I (2010) Overview of rock glacier kinematics research in the Swiss Alps. Seasonal rhythm, interannual variations and trends over several decades. Geogr Helvetica 65(2):135–145

    Google Scholar 

  • Deline P, Jaillet S, Rabatel A, Ravanel L (2008) Ground-based LiDAR data on permafrost-related rock fall activity in the Mont-Blanc massif. In: Proceedings of the 9th International Conference on Permafrost, Fairbanks, Alaska, pp 349–354

    Google Scholar 

  • Deline P, Gruber S, Amann F, Bodin X, Delaloye R, Faillettaz J, Fischer L, Geertsema M, Giardino M, Hasler A, Kirkbride M, Krautblatter M, Magnin F, McColl S, Ravanel L, Schoeneich P, Weber S (2021) Ice loss from glaciers and permafrost and related slope instability in high-mountain regions. In: Snow and ice-related hazards, risks, and disasters, Elsevier, pp 501–540

    Google Scholar 

  • Demangeot J (1941) Contribution à l’étude de quelques formes de nivation. Rev Géographie Alp 29:337–352. https://doi.org/10.3406/rga.1941.4310

    Article  Google Scholar 

  • Demek J (1969) Cryogene processes and the development of cryoplanation terraces. Biul Peryglac 18:115–125

    Google Scholar 

  • Douvillé R (1917) Sols polygonaux ou réticulés. La Géographie XXXI:241–251

    Google Scholar 

  • Draebing D (2021) Identification of rock and fracture kinematics in high alpine rockwalls under the influence of altitude. Earth Surf Dynam 9:1–18. https://doi.org/10.5194/esurf-9-1-2021

    Article  Google Scholar 

  • Draebing D, Krautblatter M (2019) The efficacy of frost weathering processes in alpine rockwalls. Geophys Res Lett 46:6516–6524. https://doi.org/10.1029/2019GL081981

    Article  Google Scholar 

  • Draebing D, Haberkorn A, Krautblatter M, Kenner R, Philipps M (2017) Thermal and mechanical responses resulting from spatial and temporal snow cover variability in permafrost rock slopes, Steintaelli, Swiss Alps. Permafr Periglac Process 28:140–157. https://doi.org/10.1002/ppp.1921

    Article  Google Scholar 

  • Dramis F, Giraudi C, Guglielmin M (2003) Rock glacier distribution and paleoclimate in Italy. In: Proceedings of the 8th International Conference on Permafrost, Zurich, Switzerland, pp 199–204

    Google Scholar 

  • Duvillard PA, Ravanel L, Marcer M, Schoeneich P (2019) Recent evolution of damage to infrastructure on permafrost in the French Alps. Reg Envion Change 19:1281–1293. https://doi.org/10.1007/s10113-019-01465-z

    Article  Google Scholar 

  • Ebers E (1959) Die Buckelwiesen: nicht Eiszeitalter, sondern Gegenwart. Eiszeitalter und Gegenwart 10(1):9 https://doi.org/10.23689/fidgeo-1479

  • Egholm DL, Andersen JL, Knudsen MF, Jansen JD, Nielsen SB (2015) The periglacial engine of mountain erosion—part 2: Modelling large-scale landscape evolution. Earth Surf Dynam 3:463–482. https://doi.org/10.5194/esurf-3-463-2015

    Google Scholar 

  • Eisenhut M (1963) Über einige Beobachtungen an den Buckelalmen der Seetaleralpen. Mitt Naturwiss Ver Steiermark 93:17–21

    Google Scholar 

  • Eugster H (1973) Bericht über die Untersuchungen des Blockstroms in der Val Sassa im Schweizerischen Nationalpark von 1917–1971. Ergebnisse Der Wissenschaftlichen Untersuchungen Im Schweizerischen Nationalpark 11:368–384

    Google Scholar 

  • Ebohon B, Schrott L (2008) Modelling mountain permafrost distribution. A new permafrost map of Austria. In: Proceedings of the 9th International Conference on Permafrost, Fairbanks, Alaska, pp 397–402

    Google Scholar 

  • Ehlers J, Gibbard PL (2004) Quaternary glaciations-extent and chronology: Part I: Europe. Elsevier, Amsterdam

    Google Scholar 

  • Ehlers J, Gibbard PL, Hughes PD (2011) Quaternary glaciations-extent and chronology: a closer look. Elsevier, Amsterdam

    Google Scholar 

  • Eriksen HØ, Rouyet L, Laukness TR, Berthling I, Isaksen K, Hindberg H, Larsen Y, Corner DG (2018) Recent acceleration of a rock glacier complex, Ádjet, Norway, documented by 62 years of remote sensing observations. Geophys Res Lett 45:8314–8323. https://doi.org/10.1029/2018GL077605

    Article  Google Scholar 

  • ESA (2021) EU-DEM v1.1—Copernicus land monitoring service. https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1/view

  • Evin M, de Beaulieu JL (1985) Nouvelles données sur l’âge de la mise en place et les phases d’activité du glacier rocheux de Marinet I (Haute-Ubaye, Alpes du Sud françaises). Méditerranée 56:21–30. https://doi.org/10.3406/medit.1985.2330

    Article  Google Scholar 

  • Evin M (1987) Lithologly and fracturing control of rock glaciers in southwestern Alps of France and Italy. Rock glaciers: a review of the knowledge base. Allen & Unwin, London, pp 83–106

    Google Scholar 

  • Evin M, Fabre D (1990) The distribution of permafrost in rock glaciers of the southern Alps (France). Geomorphology 3:57–71. https://doi.org/10.1016/0169-555X(90)90032-L

    Article  Google Scholar 

  • Fabre D, Ribolini A (2003) The lower discontinuous permafrost boundary in the Argentera Massif (Maritime Alps, Italy): insight from rock glacier geoelectrical soundings. In: Proceedings of the 8th International Conference on Permafrost—Extended Abstracts, Zurich, Switzerland, pp 33–34

    Google Scholar 

  • Fagerlund G (1979) Studies of the destruction mechanism at freezing of porous materials. Found Fr Etud Nord Actes Doc 6:73–79

    Google Scholar 

  • Ferrario A, Tognini A (Eds) (2016) Catasto Speleologico Lombardo (Progetto Tu.Pa.Ca.). Federazione Speleologica Lombarda, 448 p

    Google Scholar 

  • Feuillet T (2014) Ploughing Boulder. In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_272

  • Filippa G, Freppaz M, Zanini E (2011) Pedogenetic processes beneath high altitude sorted circles in the Italian Western Alps. Geophysical Research Abstracts 13:EGU2011–6421

    Google Scholar 

  • Fink MH (1989) Ein Permafrostboden in den Kalkvoralpen bei Puchenstuben (Niederösterreich). Die Höhle 40:95–98

    Google Scholar 

  • Finsterwalder S (1928) Begleitworte zur Karte des Gepatschferners. Z Gletscherkunde 16:20–41

    Google Scholar 

  • Fioraso G, Spagnolo G (2009) I block stream del massiccio peridotitico di Lanzo (Alpi Nord-occidentali). Il Quaternario—Ital J Quat Sci 22(1):3–22

    Google Scholar 

  • Firpo M, Guglielmin M, Queirolo C (2006) Relict blockfields in the Ligurian Alps (Mount Beigua, Italy). Permafr Periglac Process 17:71–78

    Google Scholar 

  • Fitzsimons SJ, Veit H (2001) Geology and geomorphology of the European Alps and the Southern Alps of New Zealand. Mt Res Dev 21(4):340–349. https://doi.org/10.1659/0276-4741(2001)021[0340:GAGOTE]2.0.CO;2

    Article  Google Scholar 

  • Flohr EF (1935) Betrachtungen über die Bahnen der Schneeschmelzwässer. Ein Beitrag zum Problem der Blockrinnen (Steinstreifen). Zeitschr d Gesellschaft f Erdkunde zu Berlin, pp 353–369

    Google Scholar 

  • Ford DC, Williams P (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, p 562.https://doi.org/10.1002/9781118684986

  • Forno MG (1979) Il “loess” della Collina di Torino: revisione della sua distribuzione e della sua interpretazione genetica e cronologica. Geogr Fis Din Quat 2:105–124

    Google Scholar 

  • Francou B (1982) Chutes de pierres et éboulisation dans les parois de l’étage périglaciaire. Rev. Géographie Alp. 70:279–300. https://doi.org/10.3406/rga.1982.2508

    Article  Google Scholar 

  • Francou B, Reynaud L (1992) 10 year surficial velocities on a rock glacier (Laurichard, French Alps). Permafr Periglac Process 3:209–213. https://doi.org/10.1002/ppp.3430030306

    Article  Google Scholar 

  • Frauenfelder R, Kääb A (2000) Towards a palaeoclimatic model of rock-glacier formation in the Swiss Alps. A Glaciol 31:281–286

    Google Scholar 

  • Frauenfelder R, Haeberli W, Hoelzle M, Maisch M (2001) Using relict rockglaciers in GIS-based modelling to reconstruct Younger Dryas permafrost distribution patterns in the Err-Julier area, Swiss Alps. Norsk Geogr Tidsskr 55:195–202

    Google Scholar 

  • Frehner M, Ling AHM, Gärtner-Roer I (2015) Furrow-and-ridge morphology on rockglaciers explained by gravity-driven buckle folding: a case study from the Murtèl rockglacier (Switzerland). Permafr Periglac Process 26(1):57–66. https://doi.org/10.1002/ppp.1831

    Article  Google Scholar 

  • Fritz P (1976) Gesteinsbedingte Standorts- und Formendifferenzierung rezenter Periglazialerscheinungen in den Ostalpen. Mitt Osterr Geogr G 118(2):237–273

    Google Scholar 

  • French H (2007) The periglacial environment, 3rd edn. Wiley, Chichester, UK, p 458

    Google Scholar 

  • Fuchs MC, Böhlert R, Krbetschek M, Preusser F, Egli M (2013) Exploring the potential of luminescence methods for dating Alpine rock glaciers. Quat Geochronol 18:17–33. https://doi.org/10.1016/j.quageo.2013.07.001

    Article  Google Scholar 

  • Furrer G (1954) Solifluktionsformen im Schweizerischen Nationalpark. Untersuchung und Interpretation auf morphologischer Grundlage. Ergebnisse Der Wissenschaftlichen Untersuchungen Im Schweizerischen Nationalpark IV 29:200–275

    Google Scholar 

  • Furrer G (1955) Die Strukturbodenformen Der Alpen. Geogr Helv 10:193–213

    Google Scholar 

  • Furrer G (1965) Die subnivale Höhenstufe und ihre Untergrenze in den Bündner und Walliser Alpen. Geogr Helvetica 20(4):185–192

    Google Scholar 

  • Furrer G, Fitze P (1970) Beitrag zum Permafrostproblem in den Alpen. Vierteljahrsschrift Der Naturforschenden Gesellschaft in Zurich 115(3):353–368

    Google Scholar 

  • Gärtner-Roer I, Brunner N, Delaloye R, Haeberli W, Kääb A, Thee P (2021) Glacier-permafrost relations in a high-mountain environment: 5 decades of kinematic monitoring at the Gruben site, Swiss Alps. The Cryosphere Discuss.https://doi.org/10.5194/tc-2021-208, in review

  • Gamper MW (1984) Controls and rates of movement of solifluction lobes in the eastern Swiss Alps. In: Proceedings of the 4th International Conference on Permafrost, Fairbanks, Alaska, pp 328–333

    Google Scholar 

  • Gams I (1959) Pohorsko Podravje. Razvoj kulturne pokra**e. Dela 5, 231 p

    Google Scholar 

  • Gams I (1965) Speleological characteristics of the Slovene karst. Nase Jame 7:41–50

    Google Scholar 

  • Gerdol R, Smiraglia C (1990) Correlation between vegetation pattern and microtopography in periglacial areas of the Central Alps. Pirineos 135:13–28

    Google Scholar 

  • Gerhold N (1970) Blockgletscher Im Ötztal. Tiroler Heimatblätter 10(11):107–114

    Google Scholar 

  • Gignoux M (1931) Les sols polygonaux dans les Alpes et la genèse des sols polaires. Ann Géographie 40:610–619. https://doi.org/10.3406/geo.1931.11102

    Article  Google Scholar 

  • Gobiet A, Kotlarski S, Beniston M, Heinrich G, Rajczak J, Stoffel M (2014) 21st century climate change in the European Alps—a review. Sci Total Environ 493:1138–1151. https://doi.org/10.1016/j.scitotenv.2013.07.050

    Article  Google Scholar 

  • Goldscheider N, Chen Z, Auler AS, Bakalowicz M, Broda S, Drew D, Hartmann J, Jiang G, Goudie A (eds) (2004) Encyclopedia of geomorphology. Routledge, London, 1200 p https://doi.org/10.4324/9780203381137

  • Goudie AS (2004) Encyclopedia of Geomorphology. Routledge, ISBN: 0–415–27298–X; p 1156

    Google Scholar 

  • Grassler F (1984) Alpenvereinseinteilung der Ostalpen (AVE). Berg 108:215–224

    Google Scholar 

  • Gruber S, Hoelzle M, Haeberli W (2004a) Rock-wall temperatures in the Alps: modelling their topographic distribution and regional differences. Permafr Periglac Process 15:299–307. https://doi.org/10.1002/ppp.501

    Article  Google Scholar 

  • Gruber S, Hoelzle M, Haeberli W (2004b) Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003. Geophys Res Lett 31:L13504. https://doi.org/10.1029/2004GL020051

    Article  Google Scholar 

  • Gruppo Nazionale Geografia Fisica e Geomorfologia-CNR (1986) Ricerche geomorfologiche nell'alta Val di Peio (Gruppo del Cevedale). Geogr Fis Din Quat 9:137–191

    Google Scholar 

  • Guglielmin M (1997) Il permafrost alpino. Concetti, morfologia e metodi di individuazione. Quaderni di Geodinamica alpina e Quaternaria, CNR 5:117

    Google Scholar 

  • Guglielmin M (2003) Observation on permafrost ground thermal regimes from Antarctica and the Italian Alps, and their relevance to global climate change. Global Planet Change 40:159–167

    Google Scholar 

  • Guglielmin M, Lozej A, Tellini C (1994) Permafrost distribution and rock glaciers in the Livigno Area (Northern Italy). Permafr Periglac Process 5:1–12

    Google Scholar 

  • Guglielmin M, Smiraglia C (eds) (1997) The rock glacier inventory of the Italian Alps. Archivio Comitato Glaciologico Italiano 3, 103 p

    Google Scholar 

  • Guglielmin M, Camusso M, Polesello S, Valsecchi S (2004) An old relict glacier body preserved in permafrost environment: the Foscagno rock glacier ice core (Upper Valtellina, Italian Central Alps). Arct Antarct Alp Res 36:108–116

    Google Scholar 

  • Guglielmin M, Donatelli M, Semplice M, Serra Capizzano S (2018) Ground surface temperature reconstruction for the last 500 years obtained from permafrost temperatures observed in the Share Stelvio Borehole, Italian Alps. Clim past 14:709–724

    Google Scholar 

  • Guglielmin M, Ponti S, Forte E, Cannone N (2021) Recent thermokarst evolution in the Italian Central Alps. Permafr Periglac Process 32(2):537–537. https://doi.org/10.1002/ppp.2099Citations

    Article  Google Scholar 

  • Guiter V (1972) Une forme montagnarde: le rock-glacier. Rev Géographie Alp 60:467–487

    Google Scholar 

  • Haberkorn A, Wever N, Hoelzle M, Phillips M, Kenner R, Bavay M, Lehning M (2017) Distributed snow and rock temperature modelling in steep rock walls using Alpine3D. Cryosphere 11:585–607. https://doi.org/10.5194/tc-11-585-2017

    Article  Google Scholar 

  • Haeberli W (2007) Formbildung durch periglaziale Prozesse. Geographie—Physische Geographie und Humangeographie. Spektrum, Heidelberg, pp 289–295

    Google Scholar 

  • Haeberli W, Patzelt G (1982) Permafrostkartierung im Gebiet der Hochebenkar-Blockgletscher, Obergurgl, Ötztaler Alpen. Z Gletscherk Glazialgeol 18:127–150

    Google Scholar 

  • Haeberli W, Gruber S (2008) Recent challenges for permafrost in steep and cold terrain: an Alpine perspective. In: Proceedings of the 9th International Conference on Permafrost, Fairbanks, Alaska, pp 597–605

    Google Scholar 

  • Haeberli W (1979) Holocene push-moraines in Alpine permafrost. Geogr Annaler 61A(1–2):43–48

    Google Scholar 

  • Haeberli W (1985) Creep of mountain permafrost. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zurich, p 77.

    Google Scholar 

  • Haeberli W, Brandovà D, Burga C, Egli M, Frauenfelder R, Kääb A, Maisch M (2003) Methods for absolute and relative age dating of rock-glacier surfaces in alpine permafrost. In: Proceedings of the 8th International Conference on Permafrost, Zurich, Switzerland, pp 343–348

    Google Scholar 

  • Haeberli W, Hoelzle M., Kääb A, Keller F, Vonder Mühll D, Wagner S (1998) Ten years after drilling through the permafrost of the active rock glacier Murtèl, eastern Swiss Alps: answered questions and new perspectives. In: Proceedings of the 7th International Conference on Permafrost, Yellowknife, pp 403–410

    Google Scholar 

  • Haeberli W, Hallet B, Arenson L, Elconin R, Humlum O, Kääb A, Kaufmann V, Ladanyi B, Matsuoka N, Springman S, Vonder Mühll D (2006) Permafrost creep and rock glacier dynamics. Permafr Periglac Process 17:189–214

    Google Scholar 

  • Haeberli W, Kääb A, Vonder Mühll D, Teysseire P (2001) Prevention of debris flows from outbursts of periglacial lakes at Gruben, Valais, Swiss Alps. J Glaciol 47:111–122

    Google Scholar 

  • Hallet B, Walder J, Stubbs CW (1991) Weathering by segregation ice growth in microcracks at sustained sub-zero temperatures: verification from an experimental study using acoustic emissions. Permafr Periglac Process 2:283–300

    Google Scholar 

  • Harris C, Haeberli W, Vonder Mühll D, King L (2001) Permafrost monitoring in the high mountains of Europe: the PACE project in its global context. Permafr Periglac Process 12:3–11

    Google Scholar 

  • Hartl L, Fischer A, Stocker-Waldhuber M, Abermann J (2016) Recent speed-up of an Alpine rock glacier: an updated chronology of the kinematics of Outer Hochebenkar rock glacier based on geodetic measurements. Geogr Annaler 98A(2):129–141. https://doi.org/10.1111/geoa.12127

    Article  Google Scholar 

  • Hartmeyer I, Keuschnig M, Delleske R, Krautblatter M, Lang A, Schrott L, Prasicek G, Otto JC (2020) A 6-year lidar survey reveals enhanced Rockwall retreat and modified rockfall magnitudes/frequencies in deglaciating cirques. Earth Surf Dynam 8:753–768. https://doi.org/10.5194/esurf-8-753-2020

    Article  Google Scholar 

  • Haserodt K (1965) Untersuchungen zur Höhen- und Altersgliederung der Karstformen in den Nördlichen Kalkalpen. Münchner Geogr Hefte 27:1–114

    Google Scholar 

  • Hasler A, Gruber S, Haeberli W (2011) Temperature variability and offset in steep alpine rock and ice faces. Cryosphere 5:977–988. https://doi.org/10.5194/tc-5-977-2011

    Article  Google Scholar 

  • Hasler A, Gruber S, Beutel J (2012) Kinematics of steep bedrock permafrost. J Geophys Res 117:F01016. https://doi.org/10.1029/2011JF001981

    Article  Google Scholar 

  • Herak M (1972) Chapter 3—Karst of Yugoslavia. Karst: Important Karst regions of the Northern Hemisphere. Elsevier, Amsterdam, London, New York, pp 25–83

    Google Scholar 

  • Hartmeyer I, Keuschnig M, Schrott L (2012) A scale-oriented approach for the long-term monitoring of ground thermal conditions in permafrost-affected rock faces, Kitzsteinhorn, Hohe Tauern Range Austria. Austrian J Earth Sci 105(2):128–139

    Google Scholar 

  • Hauck C, Kneisel C (2008) Applied geophysics in periglacial environments. Cambridge University Press, Cambridge, UK.https://doi.org/10.1017/CBO9780511535628

  • Hauck C, Bach M, Hilbich C (2008) A four-phase model to quantify subsurface ice and water content in permafrost regions based on geophysical data sets. In: Proceedings of the 9th International Conference on Permafrost, Fairbanks, Alaska, pp 675–680

    Google Scholar 

  • Hausmann H, Krainer K, Brückl E, Ullrich C (2012) Internal structure, ice content and dynamics of Ölgrube and Kaiserberg rock glaciers (Ötztal Alps, Austria) determined from geophysical surveys. Austrian J Earth Sci 105(2):12–31

    Google Scholar 

  • Hermann F (1925) I rockglaciers della Valsavarenche. Natura 16:139–142

    Google Scholar 

  • Herrmann E, Pucher E, Nicolussi K (2010) Das Schneeloch auf der Hinteralm (Schneealpe, Steiermark): Speläomorphologie, Eisveränderung, Paläozoologie und Dendrochronologie. Die Höhle 61:57–72

    Google Scholar 

  • Hoffmann T, Schrott L (2003) Determining sediment thickness of talus slopes and valley fill deposits using seismic refraction—a comparison of 2D interpretation tools. Z Geomorphol Supp 132:71–87

    Google Scholar 

  • Höfner T (1993) Fluvialer sedimenttransfer in der periglazialen Höhenstufe der Zentralalpen, südliche Hohe Tauern, Ostirol—Bestandsaufnahme und Versuch einer Rekonstruktion der mittel-bis jungholozänen Dynamik. Bamberger Geogr Schriften 13:1–121

    Google Scholar 

  • Höllermann P (1967) Zur Verbreitung rezenter periglazialer Kleinformen in den Pyrenäen und Ostalpen. Göttinger Geogr Abhandlungen 40:1–198

    Google Scholar 

  • Höllermann P (1983) Blockgletscher als Mesoformen der Periglazialstufe: Studien aus europäischen und nordamerikanischen Hochgebirgen. Bonner Geogr Abhandlungen 67:1–73

    Google Scholar 

  • Höllermann P (1985) The periglacial belt of mid-latitude mountains from a geoecological point of view. Erdkunde 39(4):259–270

    Google Scholar 

  • Humlum O (2000) The geomorphic significance of rock glaciers: estimates of rock glacier debris volumes and headwall recession rates in West Greenland. Geomorphology 35:41–67

    Google Scholar 

  • Ikeda A, Matsuoka N (2002) Degradation of talus-derived rock glaciers in the Upper Engadin, Swiss Alps. Permafr Periglac Process 13:145–161

    Google Scholar 

  • Ikeda A, Matsuoka N (2006) Pebbly versus bouldery rock glaciers: morphology, structure and processes. Geomorphology 73(3–4):279–296. https://doi.org/10.1016/j.geomorph.2005.07.015

    Article  Google Scholar 

  • Ikeda A, Matsuoka N, Kääb A (2008) Fast deformation of perennially frozen debris in a warm rock glacier in the Swiss Alps: An effect of liquid water. J Geophys Res-Earth 113:F01021. https://doi.org/10.1029/2007JF000859

    Article  Google Scholar 

  • Ivy-Ochs S, Kerschner H, Maisch M, Christl M, Kubik PW, Schlüchter C (2009) Latest Pleistocene and Holocene glacier variations in the European Alps. Quaternary Sci Rev 28:2137–2149. https://doi.org/10.1016/j.quascirev.2009.03.009

    Article  Google Scholar 

  • Jaesche P (1999) Bodenfrost und Solifluktionsdynamik in einem alpinen Periglazialgebiet (Hohe Tauern, Osttirol). Bayreuther Geow Arbeiten 20:1–152

    Google Scholar 

  • Jaesche P, Huwe B, Stingl H, Veit H (2002) Temporal variability of Alpine solifluction: a modelling approach. Geogr Helvetica 57:157–169

    Google Scholar 

  • Jaesche P, Veit H, Huwe B (2003) Snow cover and soil moisture controls on solifluction in an area of seasonal frost, Eastern Alps. Permafr Periglac Process 14:399–410

    Google Scholar 

  • Jennings JN (1960) On an unusual occurrence of stone polygons in the French Alp. Biul Peryglac 7:169–173

    Google Scholar 

  • Jorgenson MT (2003) Thermokarst terrains. Treatise Geomorphol 8:313–324

    Google Scholar 

  • Julian M (1966) Les montagnes du Haut Var. Esquisse Morphologique. Méditerranée 7:185–206. https://doi.org/10.3406/medit.1966.1197

    Article  Google Scholar 

  • Kääb A (1997) Oberflächenkinematik ausgewählter Blockgletscher des Oberengadins. Beiträge aus der Gebirgs-Geomorphologie. Mitteilung Der VAW-ETH Zürich 158:121–140

    Google Scholar 

  • Kääb A (2005) Remote sensing of mountain glaciers and permafrost creep. Schriftenreihe Physische Geogr 48:1–264

    Google Scholar 

  • Kääb A, Weber M (2004) Development of transverse ridges on rock glaciers: field measurements and laboratory experiments. Permafr Periglac Process 15:379–391

    Google Scholar 

  • Kääb A, Frauenfelder R, Roer I (2007) On the response of Rockglacier creep to surface temperature increase. Glob Planet Change 56:172–187

    Google Scholar 

  • Kääb A, Haeberli W, Gudmundsson GH (1997) Analysing the creep of mountain permafrost using high precision aerial photogrammetry: 25 years of monitoring Gruben rock glacier. Swiss Alps. Permafr Periglac Process 8(4):409–426

    Google Scholar 

  • Kääb A, Strozzi T, Bolch T, Caduff R, Trefall H, Stoffel M, Kokarev A (2021) Inventory and changes of rock glacier creep speeds in Ile Alatau and Kungöy Ala-Too, northern Tien Shan, since the 1950s. Cryosphere 15:927–949. https://doi.org/10.5194/tc-15-927-2021

    Article  Google Scholar 

  • Karte J (1982) Development and present status of German periglacial research in the polar and subpolar regions. Polar Geogr 6:1–24 https://www.jstor.org/stable/41143141

  • Karte J (1983) Periglacial phenomena and their significance as climatic and edaphic indicators. GeoJournal 7/4/Polar Research:329–340 https://www.jstor.org/stable/41143141

  • Kaufmann V (1996) Der Dösener Blockgletscher—Studienkarten und Bewegungsmessungen. Arb Inst Geogr Univ Graz 33:141–162

    Google Scholar 

  • Kaufmann V (2012) The evolution of rock glacier monitoring using terrestrial photogrammetry: the example of Äußeres Hochebenkar rock glacier (Austria). Austrian J Earth Sci 105(2):63–77

    Google Scholar 

  • Kaufmann V, Ladstädter R (2003) Quantitative analysis of rock glacier creep by means of digital photogrammetry using multi-temporal aerial photographs: two case studies in the Austrian Alps. In: Proceedings of the 8th International Conference on Permafrost, Zurich, Switzerland, pp 525–530

    Google Scholar 

  • Kaufmann V, Ladstädter R, Lieb GK (2006) Quantitative assessment of the creep process of Weissenkar Rock Glacier (Central Alps, Austria). In: Proceedings of the 8th International Symposium on High Mountain Remote Sensing Cartography (HMRSC-VIII), Kathmandu, La Paz, Bolivia, pp 77–86

    Google Scholar 

  • Kaufmann V, Kellerer-Pirklbauer A, Seier G (2021) Conventional and UAV-based aerial surveys for long-term monitoring (1954–2020) of a highly active rock glacier in Austria. Front. Remote Sens. 2:732744. https://doi.org/10.3389/frsen.2021.732744

    Article  Google Scholar 

  • Kellerer-Pirklbauer A (2007) Lithology and the distribution of rock glaciers: Niedere Tauern Range, Styria. Austria. Z Geomorphol 51(2):17–38

    Google Scholar 

  • Kellerer-Pirklbauer A (2008) The Schmidt-hammer as a Relative Age Dating Tool for Rock Glacier Surfaces: Examples from Northern and Central Europe. In: Proceedings of the 9th International Conference on Permafrost, Fairbanks, Alaska, pp 913–918

    Google Scholar 

  • Kellerer-Pirklbauer A (2017) Potential weathering by freeze-thaw action in alpine rocks in the European Alps during a nine-year monitoring period. Geomorphology 296:113–131. https://doi.org/10.1016/j.geomorph.2017.08.020

    Article  Google Scholar 

  • Kellerer-Pirklbauer A (2018) Solifluction rates and environmental controls at local and regional scales in central Austria. Norsk Geogr Tidsskr 72:37–56. https://doi.org/10.1080/00291951.2017.1399164

    Article  Google Scholar 

  • Kellerer-Pirklbauer A (2019) Long-term monitoring of sporadic permafrost at the eastern margin of the European Alps (Hochreichart, Seckauer Tauern range, Austria). Permafr Periglac Process 30(4):260–277. https://doi.org/10.1002/ppp.2021

    Article  Google Scholar 

  • Kellerer-Pirklbauer A, Kaufmann V (2012) About the relationship between rock glacier velocity and climate parameters in central Austria. Austrian J Earth Sci 105(2):94–112

    Google Scholar 

  • Kellerer-Pirklbauer A, Kaufmann V (2018) Deglaciation and its impact on permafrost and rock glacier evolution: New insight from two adjacent cirques in Austria. Sci Total Environ 621:1397–1414. https://doi.org/10.1016/j.scitotenv.2017.10.087

    Article  Google Scholar 

  • Kellerer-Pirklbauer A, Rieckh M (2016) Monitoring nourishment processes in the rooting zone of an active rock glacier in an alpine environment. Z Geomorphol Supp 60(3):99–121. https://doi.org/10.1127/zfg_suppl/2016/00245

    Article  Google Scholar 

  • Kellerer-Pirklbauer A, Lieb GK, Avian M, Carrivick J (2012a) Climate change and rock fall events in high mountain areas: numerous and extensive rock falls in 2007 at Mittlerer Burgstall, Central Austria. Geogr Ann A 94:59–78. https://doi.org/10.1111/j.1468-0459.2011.00449.x

    Article  Google Scholar 

  • Kellerer-Pirklbauer A, Lieb GK, Kleinferchner H (2012b) A new rock glacier inventory of the Eastern European Alps. Austrian J Earth Sci 105(2):78–93

    Google Scholar 

  • Kellerer-Pirklbauer A, Lieb GK, Kaufmann V (2017) The Dösen Rock Glacier in Central Austria: a key site for multidisciplinary long-term rock glacier monitoring in the Eastern Alps. Austrian J Earth Sci 110(2). https://doi.org/10.17738/ajes.2017.0013

  • Kellerer-Pirklbauer A, Delaloye R, Lambiel C, Gärtner-Roer I, Kaufmann V, Scapozza C, Krainer K, Staub B, Thibert E, Bodin X, Fischer A, Hartl L, Morra di Cella U, Mair V, Marcer M, Schoeneich P (2018) Interannual variability of rock glacier flow velocities in the European Alps. In: 5th European Conference on Permafrost—Book of Abstracts, Chamonix, France, pp 396–397

    Google Scholar 

  • Kenner R, Phillips M, Beutel J, Hiller M, Limpach P, Pointner E, Volken M (2017) Factors controlling velocity variations at short-term, seasonal and multiyear time scales, Ritigraben Rock Glacier, Western Swiss Alps. Permafr Periglac Process 28(4):675–684. https://doi.org/10.1002/ppp.1953

    Article  Google Scholar 

  • Kenyi LM, Kaufmann V (2003) Measuring rock glacier surface deformation using SAR interferometry. In: Proceedings of the 8th International Conference on Permafrost, Zurich, Switzerland, pp 537–541

    Google Scholar 

  • Kern K, Lieb GK, Seier G, Kellerer-Pirklbauer A (2012) Modelling geomorphological hazards to assess the vulnerability of alpine infrastructure: The example of the Großglockner-Pasterze area. Austria. Austrian J Earth Sci 105(2):113–127

    Google Scholar 

  • Kerschner H (1983) Late glacial paleotemperatures and paleoprecipitation as derived from permafrost; glacier relationships in the Tyrolean Alps, Austria. In: Proceedings of the 4th International Conference on Permafrost, Fairbanks, Alaska, pp 589–594

    Google Scholar 

  • Kerschner H (1985) Quantitative paleoclimatic inferences from lateglacial snowline, timberline and rock glacier data, Tyrolean Alps, Austria. Z Gletscherk Glazialgeol 21:363–369

    Google Scholar 

  • Kerschner H, Krainer K, Spötl C (2014) DEUQUA excursions: From the foreland to the Central Alps. Field trips to selected sites of Quaternary research in the Tyrolean and Bavarian Alps, Excursion guide of the field trips of the DEUQUA Congress in Innsbruck, Austria.https://doi.org/10.3285/g.00011

  • Keuschnig C, Krainer K, Erschbamer B (2007) Bodenstruktur, Temperaturen und Vegetation von Bültenböden am Peischlachtörl (nördliche Schobergruppe, Nationalpark Hohe Tauern, Österreich). Tuexenia 27:343–361

    Google Scholar 

  • Kieslinger A (1927) Geologie und Petrographie der Koralpe III. Die Steinöfen des Koralpengebietes. Sitzungsber Akad Wiss Wien, math.-naturwiss Klasse. Abt I 136:79–94

    Google Scholar 

  • Kinzl H (1928) Beobachtungen uber Strukturböden in den Ostalpen. Petermanns Mitt 74:261–265

    Google Scholar 

  • Klinge M, Lehmkuhl F (1998) Zur Differenzierung des periglazialen Formenschatzes nach ökologischen Standortfaktoren im Piffkar (Hohe Tauern). Wissenschaftliche Mitteilungen Aus Dem Nationalpark Hohe Tauern 4:207–223

    Google Scholar 

  • Konrad SK, Humphrey NF, Steig EJ, Clark DH, Potter N, Pfeffer WT (1999) Rock glacier dynamics and paleoclimatic implications. Geology 27(12):1131–1134

    Google Scholar 

  • Krainer K, Bressan D, Dietre B, Haas JN, Hajdas I, Lang K, Mair V, Nickus U, Reidl D, Thies H, Tonidandel D (2014) A 10,300-year-old permafrost core from the active rock glacier Lazaun, southern Ötztal Alps (South Tyrol, northern Italy). Quaternary Res 83(2):24–335. https://doi.org/10.1016/j.yqres.2014.12.005

    Article  Google Scholar 

  • Krainer K, Ribis M (2012) A rock glacier inventory of the Tyrolean Alps (Austria). Austrian J Earth Sci 105(2):32–47

    Google Scholar 

  • Krainer K, Kellerer-Pirklbauer A, Kaufmann V, Lieb GK, Schrott L, Hausmann H (2012a) Permafrost research in Austria: history and recent advances. Austrian J Earth Sci 105(2):2–11

    Google Scholar 

  • Krainer K, Mussner L, Behm M, Hausmann H (2012b) Multi-disciplinary investigation of an active rock glacier in the Sella Group (Dolomites; Northern Italy). Austrian J Earth Sci 105(2):48–62

    Google Scholar 

  • Krautblatter M, Huggel C, Deline P, Hasler A (2012) Research perspectives on unstable high-alpine bedrock permafrost: measurement, modelling and process understanding. Permafr Periglac Process 23(1):80–88. https://doi.org/10.1002/ppp.740

    Article  Google Scholar 

  • Krautblatter M, Verleysdonk S, Flores-Orozco A, Kemna A (2010) Temperature-calibrated imaging of seasonal changes in permafrost rock walls by quantitative electrical resistivity tomography (Zugspitze, German/Austrian Alps). J Geophys Res-Earth 115:F2. https://doi.org/10.1029/2008JF001209

    Article  Google Scholar 

  • Kunz J, Kneisel C (2020) Glacier-permafrost interaction at a thrust moraine complex in the glacier forefield Muragl. Swiss Alps. Geosciences 10:205. https://doi.org/10.3390/geosciences10060205

    Article  Google Scholar 

  • Lambiel C (2004) Delaloye R (2004) Contribution of real-time kinematic GPS in the study of cree** mountain permafrost: examples from the Western Swiss Alps. Permafr Periglac Process 15(3):229–241. https://doi.org/10.1002/ppp.496

    Article  Google Scholar 

  • Lautridou JP, Ozouf JC (1982) Experimental frost shattering: 15 years of research at the Centre de Géomorphologie du CNRS. Prog Phys Geog Earth Env 6:215–232. https://doi.org/10.1177/030913338200600202

    Article  Google Scholar 

  • Lehmann O (1927) Das Tote Gebirge als Hochkarst. Mitt Geol Ges Wien 70:201–242

    Google Scholar 

  • Lehmkuhl F (1989) Geomorphologische Höhenstufen in den Alpen unter besonderer Berücksichtigung des nivalen Formenschatzes. Göttinger Geogr Abhandlungen 88:1–113

    Google Scholar 

  • Lehmkuhl F (2008) The kind and distribution of mid-latitude periglacial features and alpine permafrost in Eurasia. In: Proceedings of the 9th International Conference on Permafrost, Fairbanks, Alaska, pp 1031–1036

    Google Scholar 

  • Lehmkuhl F (2016) Modern and past periglacial features in Central Asia and their implication for paleoclimate reconstructions. Prog Phys Geog Earth Env 40(3):369–391. https://doi.org/10.1177/0309133315615778

    Article  Google Scholar 

  • Lehmkuhl F, Nett J, Pötter S, Schulte P, Sprafke T, Jary Z, Antoine P, Wacha L, Wolf D, Zerboni A, Hošek J, Marković S, Obreht I, Sümegi P, Veres D, Zeeden C, Boemke B, Schaubert V, Viehweger J, Hambach U (2020) Geodata of continuous and discontinuous permafrost during the last glacial maximum in Europe. CRC806-Database. https://doi.org/10.5880/SFB806.61

  • Lewkowicz AG, Way RG (2019) Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat Commun 10:1329. https://doi.org/10.1038/s41467-019-09314-7

    Article  Google Scholar 

  • Lieb GK (1996) Permafrost und Blockgletscher in den östlichen österreichischen Alpen. Arb Inst Geogr Univ Graz 33:9–125

    Google Scholar 

  • Lieb GK (1998) High-mountain permafrost in the Austrian Alps (Europe). In: Proceedings of the 7th International Conference on Permafrost, Yellowknife, Canada, pp 663–668

    Google Scholar 

  • Lieb GK, Schopper A (1991) Zur Verbreitung von Permafrost am Dachstein (Nördliche Kalkalpen, Steiermark). Mitt Naturwiss Ver Steiermark 121:149–163

    Google Scholar 

  • Lliboutry L (1955) Origine et évolution des glaciers rocheux. Comptes Rendus Académie Sci 240:1913–1915

    Google Scholar 

  • Lliboutry L (1961) Phénomènes cryonivaux dans les Andes de Santiago (Chili). Biul Peryglac 10:209–224

    Google Scholar 

  • Lucerna R (1906) Gletscherspuren in den Steiner Alpen. Geographisches Jahresbericht Aus Österreich 4:9–74

    Google Scholar 

  • Luetscher M, Jeannin PY (2018) Ice caves in Switzerland. In: Ice caves. Elsevier, Amsterdam, pp 221–235

    Google Scholar 

  • Maggi V, Colucci RR, Scoto F, Giudice G, Randazzo L (2018) Ice caves in Italy. In: Ice caves, Elsevier, Amsterdam, pp 399–423

    Google Scholar 

  • Magnin F, Deline P, Ravanel L, Noetzli J, Pogliotti P (2015) Thermal characteristics of permafrost in the steep alpine rock walls of the Aiguille du Midi (Mont Blanc Massif, 3842 m a.s.l). Cryosphere 9:109–121. https://doi.org/10.5194/tc-9-109-2015

    Article  Google Scholar 

  • Magnin F, Josnin JY, Ravanel L, Pergaud J, Pohl B, Deline P (2017) Modelling rock wall permafrost degradation in the Mont Blanc massif from the LIA to the end of the 21st century. Cryosphere 11:1813–1834. https://doi.org/10.5194/tc-11-1813-2017

  • Mair V, Zischg A, Lang K, Tonidandel D, Krainer K, Kellerer-Pirklbauer A, Deline P, Schoeneich P, Cremonese E, Pogliotti P, Gruber S, Böckli L (2011) PermaNET—Permafrost Long-term Monitoring Network. Synthesis report, INTERPRAEVENT Journal series 1/3, Klagenfurt.

    Google Scholar 

  • Mair V, Lang K, Tonidandel D, Thaler B, Alber R, Lösch B, Tait D, Nickus U, Krainer K, Thies H, Himsperger M, Sapelza A, Tolotti M (2015) Progetto Permaqua. Permafrost e il suo effetto sul bilancio idrico e sull’ecologia delle acque di alta montagna. Ufficio Geologia e Prove Materiali, Provincia Autonoma di Bolzano.

    Google Scholar 

  • Mania I, D’Amico ME, Freppaz M, Gorra R (2016) Driving factors of soil microbial ecology in alpine, mid-latitude patterned grounds (NW Italian Alps). Biol Fertil Soils 52(8):1135–1148

    Google Scholar 

  • Marazzi S (2005) Atlante orografico delle Alpi. SOIUSA—Suddivisione orografica internazionale unificata del Sistema Alpino, Quaderni di cultura alpina 82–83, Priuli & Verlucca editori

    Google Scholar 

  • Marcer M, Cicoira A, Cusicanqui D, Bodin X, Echelard T, Obregon R, Schoeneich P (2021) Rock glaciers throughout the French Alps accelerated and destabilised since 1990 as air temperatures increased. Commun Earth Environ 2:81. https://doi.org/10.1038/s43247-021-00150-6

  • Marcer M, Serrano C, Brenning A, Bodin X, Goetz J, Schoeneich P (2019) Evaluating the destabilization susceptibility of active rock glaciers in the French Alps. Cryosphere 13:141–155. https://doi.org/10.5194/tc-13-141-2019

  • Marnezy A (1977) Aspects du modèle périglaciaire dans le Vallon de la Rocheure (Massif de la Vanoise). Revue de Géographie Alpine 65(4):365–384

    Google Scholar 

  • Marvánek O (2010) Periglacial features in the Krumgampen Valley, Ötztal Alps Austria. Moravian Geographical Reports 18(2):1–56

    Google Scholar 

  • Matsuoka N, Abe M, Ijiri M (2003a) Differential frost heave and sorted patterned ground: Field measurements and a laboratory experiment. Geomorphology 52(1–2):73–85. https://doi.org/10.1016/S0169-555X(02)00249-0

    Article  Google Scholar 

  • Matsuoka N, Abe M, Ijiri M (2003b) Differential frost heave and sorted patterned ground: field measurements and a laboratory experiment. Geomorphology 52:73–85

    Google Scholar 

  • Matsuoka N (1990) The rate of bedrock weathering by frost action: field measurements and a predictive model. Earth Surf Proc Land 15:73–90

    Google Scholar 

  • Matsuoka N (2001) Solifluction rates, processes and landforms: A global review. Earth Sci Rev 55:107–134

    Google Scholar 

  • Matsuoka N (2008) Frost weathering and rockwall erosion in the southeastern Swiss Alps: long-term (1994–2006) observations. Geomorphology 99:353–368. https://doi.org/10.1016/j.geomorph.2007.11.013

    Article  Google Scholar 

  • Matsuoka N, Murton J (2008) Frost weathering: recent advances and future directions. Permafr Periglac Process 19:195–210. https://doi.org/10.1002/ppp.620

    Article  Google Scholar 

  • Matsuoka N, Hirakawa K, Watanabe T, Moriwaki K (1997) Monitoring of periglacial slope processes in the Swiss Alps: the first two years of frost shattering, heave and creep. Permafr Periglac Process 8:155–177

    Google Scholar 

  • Matthes FE (1900) Glacial sculpture of the Bighorn Mountains, Wyoming, United States Geological Survey, 21st Annual Report 1899–1900:167–190

    Google Scholar 

  • Matthews JA, Wilson P, Winkler S, Mourne RW, Hill JL, Owen G, Hiemstra JF, Hallang H, Geary AP (2019) Age and development of active cryoplanation terraces in the alpine permafrost zone at Svartkampan, Jotunheimen, southern Norway. Quaternary Res 92(3):641–664. https://doi.org/10.1017/qua.2019.41

    Article  Google Scholar 

  • Maull O (1958) Handbuch der geomorphologie, 2nd edn. Deuticke, Vienna, p 574

    Google Scholar 

  • May B, Spötl C, Wagenbach D, Dublyansky Y, Liebl J (2011) First investigations of an ice core from Eisriesenwelt cave (Austria). Cryosphere 5:81–93. https://doi.org/10.5194/tc-5-81-2011

    Article  Google Scholar 

  • Melik A (1935) Slovenija—Geografski opis [Slovenia—Geographical description], 1st volume, Ljubljana

    Google Scholar 

  • Melik A (1963) Slovenija—Geografski opis [Slovenia. Geographical description], 1st general part, 2nd. revised edition. Ljubljana.

    Google Scholar 

  • Merz K, Maurer H, Rabenstein L, Buchli T, Springman SM, Zweifel M (2016) Multidisciplinary geophysical investigations over an alpine rock glacier. Geophysics 81/1:WA147–WA157 https://doi.org/10.1190/GEO2015-0157.1

  • Messenzehl K, Dikau R (2017) Structural and thermal controls of rockfall frequency and magnitude within rockwall-talus systems (Swiss Alps). Earth Surf Proc Land 42(13):1963–1981. https://doi.org/10.1002/esp.4155

    Article  Google Scholar 

  • Messenzehl K, Meyer H, Otto JC, Hoffmann T, Dikau R (2017) Regional-scale controls on the spatial activity of rockfalls (Turtmann Valley, Swiss Alps)—A multivariate modeling approach. Geomorphology 287:29–45. https://doi.org/10.1016/j.geomorph.2016.01.008

    Article  Google Scholar 

  • Messerli B, Zurbuchen M (1968) Blockgletscher im Weissmies und Aletsch und ihre photogrammetrische Kartierung. Die Alpen 3:1–13

    Google Scholar 

  • Meyer C, Pflitsch A (2018) Ice caves in Germany. In: Ice caves, Elsevier, Amsterdam, pp 371–384

    Google Scholar 

  • Michaud (1950) Emploi des marques dans l'etude des mouvements du sol. Rev Geom Dyn l(4):180–189.

    Google Scholar 

  • Mihevc A (2018) Ice caves in Slovenia. In: Ice caves, Elsevier, Amsterdam, pp 691–703

    Google Scholar 

  • Millar C, Westfall RD (2008) Rock glaciers and related periglacial landforms in the Sierra Nevada, CA, USA; inventory, distribution and climatic relationships. Quaternary Int 188:90–104

    Google Scholar 

  • Monegato G, Ravazzi C, Donegana M, Pini R, Calderoni G, Wick L (2007) Evidence of a two-fold glacial advance during the last glacial maximum in the Tagliamento end moraine system (Eastern Alps). Quaternary Res 68:284–302

    Google Scholar 

  • Moosdorf N, Stevanovic Z, Veni G (2020) Global distribution of carbonate rocks and karst water resources. Hydrogeol J 28:1661–1677. https://doi.org/10.1007/s10040-020-02139-5

    Article  Google Scholar 

  • Morawetz S (1952) Periglaziale Erscheinungen auf der Koralpe. Mitt Osterr Geogr G 94:252–257

    Google Scholar 

  • Morawetz S (1968) Zur Frage der periglazialen Erscheinungen im Gebiet zwischen Graz und Hartberg. Mitt Naturwiss Ver Steiermark 98:61–68

    Google Scholar 

  • Morawetz S (1971a) Fragen der Hangentwicklung. Mitt Naturwiss Ver Steiermark 101:73–95

    Google Scholar 

  • Morawetz S (1971b) Zur Geomorphologie des Steirischen Randgebirges. Mitt Naturwiss Ver Steiermark 100:84–104

    Google Scholar 

  • Murton J. (2021) Periglacial processes and deposits, Encyclopaedia of Geology, 2nd edition, Elsevier, pp. 857–875

    Google Scholar 

  • Nagl H (1976) Die Raum-Zeit-Verteilung der Blockgletscher in den Niederen Tauern und die eiszeitliche Vergletscherung der Seckauer Tauern. Mitt Naturwiss Ver Steiermark 106:95–118

    Google Scholar 

  • Nangeroni G (1929) Grotte e laghi subglaciali, colate e mari di pietre. Natura 20:152–161

    Google Scholar 

  • Nangeroni G (1959) I fenomeni periglaciali in Italia. Atti Acc Roveretana Agiati 6(B):43–62

    Google Scholar 

  • Nangeroni G (1962) Les phénomènes périglaciaires en Italie. Biuletyn Peryglac 11:57–64

    Google Scholar 

  • Natek N (1993) Geomorfološka karta 1:100,000 list Celje in analiza reliefa sekcije [Geomorphological map 1: 100,000 sheet Celje and section relief analysis]. Doctoral dissertation, University of Ljubljana

    Google Scholar 

  • Natek N (2007) Periglacial landforms in the Pohorje Mountains. Dela 27:247–263

    Google Scholar 

  • Noetzli J, Gruber S (2009) Transient thermal effects in alpine permafrost. Cryosphere 3:85–99. https://doi.org/10.5194/tc-3-85-2009

    Article  Google Scholar 

  • Noetzli J, Gruber S, Kohl T, Salzmann N, Haeberli W (2007) Three-dimensional distribution and evolution of permafrost temperatures in idealized high-mountain topography. J Geophys Res Earth Surf 112/F2 F02S13 https://doi.org/10.1029/2006JF000545

  • Nyenhuis M, Hoelzle M, Dikau R (2005) Rock glacier map** and permafrost distribution modelling in the Turtmanntal, Valais Switzerland. Z Geomorphol 49(3):275–292

    Google Scholar 

  • Obu J, Košutnik J, Overduin PP, Boike J, Blatnik M, Zwieback S, Gostinčar P, Mihevc A (2018) Sorted patterned ground in a karst cave, Ledenica pod Hrušico, Slovenia. Permafr Periglac Process 29:121–130. https://doi.org/10.1002/ppp.1970

    Article  Google Scholar 

  • Oliva M, Žebre M, Guglielmin M, Hughes PD, Çiner A, Vieira G, Bodin X, Andrés N, Colucci RR, García-Hernández C, Mora C, Nofre J, Palacios D, Pérez-Alberti A, Ribolini A, Ruiz-Fernández J, Sarikaya MA, Serrano E, Urdea P, Valcárcel M, Woodward JC, Yildirim C (2018) Permafrost conditions in the Mediterranean region since the Last Glaciation. Earth Sci Rev 185:397–436. https://doi.org/10.1016/j.earscirev.2018.06.018

    Article  Google Scholar 

  • Otto JC, Sass O (2006) Comparing geophysical methods for talus slope investigations in the Turtmann valley (Swiss Alps). Geomorphology 76:257–272

    Google Scholar 

  • Pappalardo M (1999) Observations on stratified slope deposits, Gesso Valley, Italian Maritime Alps. Permafr Periglac Process 10:107–111

    Google Scholar 

  • Pappalardo M, Spagnolo M (1999) A peculiar stratified slope deposit in the Val Grande di Palanfré (Southern Maritime Alps). Bollettino Accademia Delle Scienze Di Torino, Atti Classe Scienze Fisiche 1333(1):1–11

    Google Scholar 

  • Paro L (2011) Relationship between cryotic processes and block streams evolution in the Lanzo Ultrabasic Complex (western Alps, Italy). Doctoral dissertation, University of Torino

    Google Scholar 

  • Paul F, Rastner P, Azzoni RS, Diolaiuti G, Fugazza D, Le Bris R, Nemec J, Rabatel A, Ramusovic M, Schwaizer G, Smiraglia C (2020) Glacier shrinkage in the Alps continues unabated as revealed by a new glacier inventory from Sentinel-2. Earth Syst Sci Data 12:1805–1821. https://doi.org/10.5194/essd-12-1805-2020

    Article  Google Scholar 

  • Pech P, A**ca M, Abdulhak S, Hustache E, Simon L, Talon B (2021) The geoecological evaluation of the heritage interest of polygonal soils inherited in alpine mountains. the example of the Col du Noyer (Massif du Dévoluy, Hautes Alpes, France). Journal Alp Res 109(4). https://doi.org/10.4000/rga.8780

  • Pecher C, Tasser E, Tappeiner U (2011) Definition of the potential treeline in the European Alps and its benefit for sustainability monitoring. Ecol Indic 11:438–447

    Google Scholar 

  • PERMOS (2021) Swiss Permafrost Bulletin 2019/2020. https://doi.org/10.13093/permos-bull-2021

  • Perşoiu A, Lauritzen SE (eds) (2018) Ice caves. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-811739-2.09990-3

    Google Scholar 

  • Pfiffner OA (2014) Geology of the Alps. Wiley, 368 p.

    Google Scholar 

  • Pillewizer W (1938) Photogrammetrische Gletscheruntersuchungen im Sommer 1938. Z Gesell f Erdkunde 1938(9/19):367–372

    Google Scholar 

  • Pillewizer W (1957) Untersuchungen an Blockströmen der Ötztaler Alpen. Geomorph Abhandl Geograph Inst FU Berlin (Otto-Maull-Festschrift) 5:37–50

    Google Scholar 

  • Pintaldi E, D’Amico ME, Siniscalco C, Cremonese E, Celi L, Filippa G, Prati M, Freppaz M (2016) Hummocks affect soil properties and soil-vegetation relationships in a subalpine grassland (North-Western Italian Alps). CATENA 145:214–226. https://doi.org/10.1016/j.catena.2016.06.014

    Article  Google Scholar 

  • Pintaldi E, D’Amico ME, Colombo N, Colombero C, Sambuelli L, De Regibus C, Franco D, Perotti L, Paro L, Freppaz M (2021) Hidden soils and their carbon stocks at high-elevation in the European Alps (North-West Italy). CATENA 198:105044. https://doi.org/10.1016/j.catena.2020.105044

    Article  Google Scholar 

  • Pissart A (1977) Apparition et évolution des sols structuraux périglaciaires de haute montagne. Expériences de terrain au Chambeyron (Alpes, France). Abhandl Akad Wissensch Gött Math-Phy Kla 31:142–156

    Google Scholar 

  • Pissart A (1987) Weichselian periglacial structures and their environmental significance: Belgium, the Netherlands and northern France. In: Boardman J (ed) Periglacial processes and landforms in Britain and Ireland. Cambridge University Press, Cambridge, pp 77–85

    Google Scholar 

  • Pissart A (1993) Understanding the controls on solifluction movements in different environments: a methodology and its application in the French Alps. Palaeoclimate Research 11:209–215

    Google Scholar 

  • Plan L (2016) Oberflächenkarstformen. In: Höhlen und Karst in Österreich, Oberösterreichisches Landesmuseum, Linz, pp 23–34.

    Google Scholar 

  • Plan L, Renetzeder C, Pavuza R, Körner W (2012) A new karren feature: hummocky karren. Intern J Speleology 41(1):75–81. https://doi.org/10.5083/1827-806X.41.1.8

    Article  Google Scholar 

  • Ponti S, Cannone N, Guglielmin M (2018) Needle ice formation, induced frost heave, and frost creep: A case study through photogrammetry at Stelvio Pass (Italian Central Alps). CATENA 164:62–70. https://doi.org/10.1016/j.catena.2018.01.009

    Article  Google Scholar 

  • Price MF, Lysenko I, Gloersen E (2004) Delineating Europe’s mountains. Revue Geograph Alpine 92(2):75–86

    Google Scholar 

  • Raab T, Leopold M, Völkel J (2007) Character, age, and ecological significance of Pleistocene periglacial slope deposits in Germany. Phys Geogr 28(6):451–473. https://doi.org/10.2747/0272-3646.28.6.451

  • Ravanel L, Magnin F, Deline P (2017) Impacts of the 2003 and 2015 summer heatwaves on permafrost-affected rock-walls in the Mont Blanc Massif. Sci Total Environ 609:132–143. https://doi.org/10.1016/j.scitotenv.2017.07.055

    Article  Google Scholar 

  • Ravanel L, Troilo F, Pogliotti P, Paro L, Morra di Cella U, Duvillard PA, Motta E (2018) Risques naturels émergents en haute montagne. Actions conduites dans le cadre du projet ALCOTRA PrévRisk Haute Montagne—Apports pour les décideurs et les pratiquants. Rapport de synthèse du WP3 du projet ALCOTRA PrévRisk Haute Montagne, 28 p

    Google Scholar 

  • Recami E (1967) Fenomeni crionivali in Val di Sole. Natura Alpina 18(2):60–67

    Google Scholar 

  • Reger RD, Péwé TL (1976) Cryoplanation terraces; indicators of a permafrost environment. Quaternary Res 6:99–109

    Google Scholar 

  • Reitner JM, Ivy-Ochs S, Drescher-Schneider R, Hajdas I, Linner M (2016) Reconsidering the current stratigraphy of the Alpine Lateglacial: Implications of the sedimentary and morphological record of the Lienz area (Tyrol/Austria). E&G Quaternary Sci Journal 65(2):113–144. https://doi.org/10.3285/eg.65.2.02

    Article  Google Scholar 

  • Resnati C, Smiraglia C (1990) Determinazione della struttura interna del rock glacier di Val Pisella (Alta Valtellina) attraverso sondaggi elettrici verticali. Risultati e problemi. Geogr Fis Din Quat 13:171–177

    Google Scholar 

  • Reynard E, Häuselmann P, Jeannin PY, Scapozza C (2021): Geomorphological landscapes in Switzerland. In: Landscapes and Landforms of Switzerland. World Geomorphological Landscapes, Springer, pp 71–80

    Google Scholar 

  • RGIK (2020) Towards standard guidelines for inventorying rock glaciers: baseline concepts (v. 4.0). IPA Action Group rock glacier inventories and kinematics

    Google Scholar 

  • Ribolini A (2001) Active and fossil rock glaciers in the Argentera Massif (Maritime Alps): surface ground temperatures and paleoclimatic significance. Z Gletscherk Glazialgeol 37:125–140

    Google Scholar 

  • Ribolini A (2003) An active rock glacier in the southernmost permafrost environment of the Alps (Argentera Massif, Italy): four years of surface ground temperature monitoring. In: Proceedings of the 8th International Conference on Permafrost—Extended Abstracts, Zurich, Switzerland, pp 133–134

    Google Scholar 

  • Ribolini A, Fabre D (2006) Permafrost existence in the rock glacier of the Argentera Massif, Maritime Alps. Italy. Permafr Periglac Process 17(1):49–63

    Google Scholar 

  • Ribolini A, Guglielmin M, Fabre D, Bodin X, Marchisio M, Sartini S, Spagnolo M, Schoeneich P (2010) The internal structure of rock glaciers and recently deglaciated slopes as revealed by geoelectrical tomography: insights on permafrost and recent glacial evolution in the Central and Western Alps (Italy-France). Quaternary Sci Rev 29:507–521

    Google Scholar 

  • Richter E (1900) Geomorphologische Untersuchungen in den Hochalpen. Petermanns Mitteilungen:132—Ergänzungsband 29:1–103

    Google Scholar 

  • Rist A, Keller F, Schmid C, Gerber C, Vogel D, Bozzini C, Wunderle S, Veit H (2013) Langsam, aber stetig. Die Solifluktionsloben am Munt Chavagl. In: Atlas des Schweizerischen Nationalparks. Die ersten 100 Jahre. Nationalpark-Forschung Schweiz 99/1, Bern, Haupt

    Google Scholar 

  • Rist A, Roth L, Veit H (2020) Elevational ground/air thermal gradients in the Swiss inner Alpine Valais. Arct Antarct Alp Res 52(1):341–360. https://doi.org/10.1080/15230430.2020.1742022

    Article  Google Scholar 

  • Ritter DF, Kochel RC, Miller JR (2002) Process geomorphology, 2nd edn, Waveland Press Inc, 560 p

    Google Scholar 

  • Rixhon G, Demoulin A (2013) Evolution of slopes in a cold climate. Treatise on Geomorphology 8:392–415

    Google Scholar 

  • Robl J, Prasicek G, Hergarten S, Stüwe K (2015) Alpine topography in the light of tectonic uplift and glaciation. Global Planet Change 127:34–49. https://doi.org/10.1016/j.gloplacha.2015.01.008

    Article  Google Scholar 

  • Rode M, Kellerer-Pirklbauer A (2012) Schmidt-hammer exposure-age dating (SHD) of rock glaciers in the Schöderkogel-Eisenhut area, Schladminger Tauern Range Austria. The Holocene 22(7):761–771. https://doi.org/10.1177/0959683611430410

    Article  Google Scholar 

  • Roer I (2007) Rockglacier kinematics in a high mountain geosystem. Bonner Geogr Abhandlungen 117:217 p

    Google Scholar 

  • Roer I, Kääb A, Dikau R (2005a) Rockglacier acceleration in the Turtmann valley (Swiss Alps): Probable controls. Norsk Geogr Tidsskr 59:157–163

    Google Scholar 

  • Roer I, Kääb A, Dikau R (2005b) Rockglacier kinematics derived from small-scale aerial photography and digital airborne pushbroom imagery. Z Geomorphol 49(1):73–87

    Google Scholar 

  • Roer I, Haeberli W, Avian M, Kaufmann V, Delaloye R, Lambiel C, Kääb A (2008) Observations and considerations on destabilizing active rock glaciers in the European Alps. In: Proceedings of the 9th International Conference on Permafrost, Fairbanks, Alaska, pp 1505–1510

    Google Scholar 

  • Rogora M, Somaschini L, Marchetto A, Mosello R, Tartari GA, Paro L (2020) Decadal trends in water chemistry of Alpine lakes in calcareous catchments driven by climate change. Sci Total Environ 708:1–14. https://doi.org/10.1016/j.scitotenv.2019.135180

    Article  Google Scholar 

  • Rolshoven M (1982) Alpines Permafrostmilieu in der Lasörlinggruppe/Nördliche Deferegger Alpen (Osttirol). Polarforschung 52(1–2):55–64

    Google Scholar 

  • Ruszkiczay-Rüdiger Z, Kern Z (2016) Permafrost or seasonal frost? A review of paleoclimate proxies of the last glacial cycle in the East Central European lowlands. Quaternary Int 415:241–252. https://doi.org/10.1016/j.quaint.2015.07.027

    Article  Google Scholar 

  • Šifrer M (1983) Kvartarni Razvoj Škofjeloškega Hribovja. Geografski Zbornik 22:139–196

    Google Scholar 

  • Sass O (2005) Rock moisture measurements: techniques, results, and implications for weathering. Earth Surf Proc Land 30:359–374

    Google Scholar 

  • Sass O (2008) The use of GPR in determining talus thickness and talus structure. In: Applied Geophysics in Periglacial Environments, Cambridge University Press, Cambridge, UK, pp 165–171. https://doi.org/10.1017/CBO9780511535628

  • Savi S, Delunel R, Schlunegger F (2015) Efficiency of frost-cracking processes through space and time: An example from the eastern Italian Alps. Geomorphology 232:248–260. https://doi.org/10.1016/j.geomorph.2015.01.009

    Article  Google Scholar 

  • Scaramellini G, Bonardi L (2001) La géographie italienne et les Alpes de la fin du XIXe siècle à la Seconde Guerre mondiale. Revue De Géographie Alpine 89(4):133–158. https://doi.org/10.3406/rga.2001.3062

    Article  Google Scholar 

  • Schär C, Davies TD, Frei C, Wanner H, Widmann M, Wild M, Davis HC (1998) Current alpine climate. Views from the Alps: regional perspectives on climate change. MIT Press, Boston, pp 21–72

    Google Scholar 

  • Schlüchter C, Akcar N, Ivy-Ochs S (2021) The Quaternary period in Switzerland. In: Landscapes and Landforms of Switzerland. World Geomorphological Landscapes. Springer, pp 47–69

    Google Scholar 

  • Schmöller R, Fruhwirth RK (1996) Komplexgeophysikalische Untersuchung auf dem Dösener Blockgletscher (Hohe Tauern, Österreich). Arb Inst Geogr Univ Graz 33:165–190

    Google Scholar 

  • Schneider B, Schneider H (2001) Zur 60jährigen Messreihe der kurzfristigen Geschwindigkeitsschwankungen am Blockgletscher im Äusseren Hochebenkar. Ötztaler Alpen. Tirol. Z Gletscherk Glazialgeol 37:1–33

    Google Scholar 

  • Scotti R, Brardinoni F, Alberti S, Frattini P, Crosta GB (2013) A regional inventory of rock glaciers and protalus ramparts in the central Italian Alps. Geomorphology 186:136–149

    Google Scholar 

  • Scotti R, Crosta GB, Villa A (2017) Destabilisation of cree** permafrost: the Plator Rock Glacier case study (Central Italian Alps). Permafr Periglac Process 28:224–236. https://doi.org/10.1002/ppp.1917

    Article  Google Scholar 

  • Schneider S, Daengeli S, Hauck C, Hoelzle M (2013) A spatial and temporal analysis of different periglacial materials by using geoelectrical, seismic and borehole temperature data at Murtèl-Corvatsch, Upper Engadin, Swiss Alps. Geogr Helvetica 68:265–280. https://doi.org/10.5194/gh-68-265-2013

    Article  Google Scholar 

  • Schöner W, Boeckli L, Hausmann H, Otto JC, Reisenhofer S (2012) Spatial patterns of permafrost at Hoher Sonnblick (Austrian Alps)—extensive field-measurements and modelling approaches. Austrian J Earth Sci 105(2):154–168

    Google Scholar 

  • Schrott L, Sass O (2008) Application of field geophysics in geomorphology: advances and limitations exemplified by case studies. Geomorphology 93:55–73

    Google Scholar 

  • Schrott L, Otto JC, Keller F (2012) Modelling alpine permafrost distribution in the Hohe Tauern region, Austria. Austrian J Earth Sci 105(2):169–183

    Google Scholar 

  • Schüepp M, Bouët M, Bider M, Urfer C (1978) Regionale Klimabeschreibungen (1. Teil). Beiheft Annalen Schweiz, Met Anstalt, Zürich

    Google Scholar 

  • Schuster R, Stüwe K (2010) Die Geologie der Alpen im Zeitraffer. Mitt Naturwiss Ver Steiermark 140:5–21

    Google Scholar 

  • Schweizer G (1968) Le tardiglaciaire et le niveau des neiges permanentes dans les hautes montagnes des Alpes-Maritimes. L’exemple du bassin supérieur de la Tinée. Méditerranée 9:23–40. https://doi.org/10.3406/medit.1968.1263

    Article  Google Scholar 

  • Seppi R, Carton A, Zumiani M, Dall’Amico M, Zampedri G, Rigon R (2012) Inventory, distribution and topographic features of rock glaciers in the southern region of the Eastern Italian Alps (Trentino). Geogr Fis Din Quat 35:185–197

    Google Scholar 

  • Seppi R, Zanoner T, Carton A, Bondesan A, Francese R, Carturan L, Zumiani M, Giorgi M, Ninfo A (2014) Current transition from glacial to periglacial processes in the Dolomites (South-Eastern Alps). Geomorphology 228:1–86. https://doi.org/10.1016/j.geomorph.2014.08.025

    Article  Google Scholar 

  • Serra E, Valla P, Gribenski N, Guedes Magrani F, Carcaillet J, Delaloye R, Grobéty B, Braillard L (2021) Geomorphic response to the Lateglacial-Holocene transition in high Alpine regions (Sanetsch Pass, Swiss Alps). Boreas 50(1):242–261. https://doi.org/10.1111/bor.12480

    Article  Google Scholar 

  • Simony F (1847) Kalkhöhlenbildung. Berichte über die Mittheilungen von Freunden der Naturwissenschaften in Wien (Ed. Wilhelm Haidinger) 1:55–59

    Google Scholar 

  • Smiraglia C (1990) Misure di velocità superficiale al rock glacier orientale di Val Pisella (Gruppo del Cevedale, Alta Valtellina). Geogr Fis Din Quat 2:41–44

    Google Scholar 

  • Smiraglia C (1992) Observations on the rock glaciers of Monte Emilius (Valle d’Aosta, Italy). Permafr Periglac Process 3:163–168

    Google Scholar 

  • Sölch J (1922) Karbildungen in Der Stubalpe. Z Gletscherkunde 12:20–38

    Google Scholar 

  • Sölch J (1928) Die Landformung der Steiermark (Grundzüge einer Morphologie). Verlag des naturwiss Ver Steiermark, Graz, p 221

    Google Scholar 

  • Spötl C, Pavuza R (2016) Eishöhlen und Höhleneis. In: Höhlen und Karst in Österreich, Oberösterreichisches Landesmuseum, Linz, pp 139–154

    Google Scholar 

  • Spötl C, Wimmer M, Pavuza R, Plan L (2018) Ice caves in Austria. In: Ice caves. Elsevier, Amsterdam, pp 237–262

    Google Scholar 

  • Spreitzer H (1957) Zur Geographie des Kilikischen Ala Dag im Taurus. Festschr z Hundertjahrfeier der Geogr Ges Wien, pp 414–459

    Google Scholar 

  • Spreitzer H (1960) Hangformung und Asymmetrie der Bergrücken in den Alpen und im Taurus. Z GeomorphoL Supp 1:211–236

    Google Scholar 

  • Springman SM, Arenson LU, Yamamoto Y, Maurer H, Kos A, Buchli T, Derungs G (2012) Multidisciplinary investigations on three rock glaciers in the Swiss Alps: legacies and future perspectives. Geogr Annaler 94A(2):215–243

    Google Scholar 

  • Steinemann O, Reitner JM, Ivy-Ochs S, Christl M, Synal HA (2020) Tracking rockglacier evolution in the Eastern Alps from the Lateglacial to the early Holocene. Quatern Sci Rev 241:106424. https://doi.org/10.1016/j.quascirev.2020.106424

    Article  Google Scholar 

  • Stepišnik U (2020) Kraška polja v Sloveniji / Karst poljes in Slovenia. Dela 53:23–43. https://doi.org/10.4321/dela.53.23-43

  • Stiegler C, Rode M, Sass O, Otto JC (2014) An undercooled scree slope detected by geophysical investigations in sporadic permafrost below 1000 m asl Central Austria. Permafr Periglac Process 25(3):194–207. https://doi.org/10.1002/ppp.1813

    Article  Google Scholar 

  • Stingl H (1969) Ein periglazialmorphologisches Nord-Süd-Profil durch die Ostalpen. Göttinger Geogr Abhandlungen 49:1–115

    Google Scholar 

  • Stocker E (1973) Bewegungsmessungen und Studien an Schrägterrassen an einem Hangausschnitt in der Kreuzeckgruppe (Kärnten). Arb Inst Geogr Univ Salzburg 3:193–203

    Google Scholar 

  • Stocker E (1984) Ergebnisse elfjähriger Messungen der Bodenbewegung in der alpinen Stufe der Kreuzeckgruppe (Kärnten). Wiener Geogr Schriften 59(60):27–35

    Google Scholar 

  • Strozzi T, Kääb A, Frauenfelder R (2004) Detecting and quantifying mountain permafrost creep from in situ inventory, space-borne radar interferometry and airborne digital photogrammetry. Int J Remote Sens 25:2919–2931

    Google Scholar 

  • Strozzi T, Caduff R, Jones N, Barboux C, Delaloye R, Bodin X, Kääb A, Mätzler E, Schrott L (2020) Monitoring rock glacier kinematics with satellite synthetic aperature radar. Remote Sensing 12(3):559. https://doi.org/10.3390/rs12030559

    Article  Google Scholar 

  • Swift DA, Cook S, Heckmann T, Moore J, Gärtner-Roer I, Korup O (2015) Ice and snow as land-forming agents. In: Snow and ice-related hazards, risks, and disasters. Elsevier, pp 167–199

    Google Scholar 

  • Tampucci D, Gobbi M, Marano G, Boracchi P, Boffa G, Ballarin F, Pantini P, Seppi R, Compostella C, Caccianiga M (2017) Ecology of active rock glaciers and surrounding landforms: climate, soil, plants and arthropods. Boreas 46:185–198. https://doi.org/10.1111/bor.12219

    Article  Google Scholar 

  • Telbisz T, Tóth G, Ruban DA, Gutak JM (2019) Notable glaciokarsts of the World. In: Glaciokarsts, Springer Geography. Springer, Cham, pp 373–485. https://doi.org/10.1007/978-3-319-97292-3

  • Thibert E, Bodin X (2022) Changes in surface velocities over four decades on the Laurichard rock glacier (French Alps). Permafr Periglac Process 33:323–325. https://doi.org/10.1002/ppp.2159

  • Thorn CE (1988) Nivation: a geomorphic chimera. In: Advances in periglacial geo-morphology. Wiley, Chichester, pp 3–31

    Google Scholar 

  • Thorn CE, Hall K (1980) Nivation: an arctic-alpine comparison and reappraisal. J Glaciol 25(91):109–124

    Google Scholar 

  • Tomaselli M, Gualmini M, Petraglia A, Pontin A, Carbognani M, Gerdol R (2018) Three mires in the south-eastern Alps (northern Italy). J Maps 14(2):303–311. https://doi.org/10.1080/17445647.2018.1461692

    Article  Google Scholar 

  • Tóth G, Veress M (2019) Case studies on glaciokarst. In: Glaciokarsts, Springer Geography. Springer, Cham, pp 3353–272 https://doi.org/10.1007/978-3-319-97292-3

  • Troll C (1944) Strukturböden, Solifluction und Frostklimate der Erde. Geolog Rundschau 34:545–694

    Google Scholar 

  • Untersweg T, Schwendt A (1996) Blockgletscher und Quellen in den Niederen Tauern. Mitt Österr Geolog Gesellsch 87:47–55

    Google Scholar 

  • Vandenberghe J, French HM, Gorbunov A, Marchenko S, Velichko AA, ** H, Cui Z, Zhang T, Wan X (2014) The Last Permafrost Maximum (LPM) map of the Northern Hemisphere: permafrost extent and mean annual air temperatures, 25–17 ka BP. Boreas 43:652–666. https://doi.org/10.1111/bor.1207

    Article  Google Scholar 

  • Van Husen D, Reitner JM (2001) An Outline of the Quaternary Stratigraphy of Austria. E&G Quaternary Sci Journal 60(2–3):366–387. https://doi.org/10.3285/eg.60.2-3.09

    Article  Google Scholar 

  • Van Vliet-Lanoë B (2014) Patterned ground and climate change. In Permafrost: distribution, composition and impacts on infrastructure and ecosystems, Nova Science Publishers, Inc, Results of the IPEV CRYOCLIM 2004 program, chapter 2, pp 67–106

    Google Scholar 

  • Van Vliet-Lanoë B, Magyari Á, Meilliez F (2004) Distinguishing between tectonic and periglacial deformations of Quaternary continental deposits in Europe. Global Planet Change 43:103–127

    Google Scholar 

  • Veit H, Höfner T (1993) Permafrost, gelifluction and fluvial transfer in the alpine/subnival ecotone, Central Alps, Austria: Present, past and future. Z Geomorphol Supp 92:71–84

    Google Scholar 

  • Veit H (2002) Die Alpen—Geoökologie und Landschaftsentwicklung. Verlag Eugen Ulmer, Stuttgart

    Google Scholar 

  • Veit H, Stingl H, Emmerich KH, John B (1995) Zeitliche und räumliche Variabilität solifluidaler Prozesse und ihre Ursachen: Eine Zwischenbilanz nach acht Jahren Solifluktionsmessungen (1985–1993) an der Meßstation Glorer Hütte, Hohe Tauern, Österreich. Z Geomorphol Supp 99:107–122

    Google Scholar 

  • Veress M, Zentai Z (2004) Karros lejtőfejlődés a Triglav északi előterében (Karren slope development in the northern foreground of Triglav). Karsztfejlődés 9:177–196

    Google Scholar 

  • Veress M, Telbisz T, Tóth G, Lóczy D, Ruban DA, Gutak JM (2019) Glaciokarsts, Springer Geography. Springer, Cham, 616 p. https://doi.org/10.1007/978-3-319-97292-3

  • Veyret P. (1956) Studi sui fenomeni crionivali (periglaciali partim) nette Alpi Italiane (fondazione per i pioblemi montani dell'Arco alpino). Revue de géographie alpine 44(3):148

    Google Scholar 

  • Vietoris L (1958) Der Blockgletscher des äußeren Hochebenkares. Gurgler Berichte 1:41–45

    Google Scholar 

  • Vietoris L (1972) Über die Blockgletscher des Äußeren Hochebenkars. Z Gletscherk Glazialgeol 8:169–188

    Google Scholar 

  • Vigna B, Paro L (2019) Ghiacciai ipogei e grotte con depositi di ghiaccio e neve. In: Ultimi ghiacci, clima e ghiacciai nelle Alpi Marittime. Ed Soc Meteo Subalp, Moncalieri, Memorie dell’Atmosfera 11:307–313

    Google Scholar 

  • Von der Mühll D, Haeberli W (1990) Thermal characteristics of the permafrost within an active rock glacier (Murtèl/Corvatsch, Grisons, Swiss Alps). J Glaciol 36:151–158

    Google Scholar 

  • Wagner T, Pauritsch M, Mayaud C, Kellerer-Pirklbauer A, Thalheim F, Winkler G (2019) Controlling factors of microclimate in blocky surface layers of two nearby relict rock glaciers (Niedere Tauern Range, Austria). Geogr Ann A 10(4):310–333. https://doi.org/10.1080/04353676.2019.167095

    Article  Google Scholar 

  • Wagner T, Pleschberger R, Kainz S, Ribis M, Kellerer-Pirklbauer A, Krainer K, Philippitsch R, Winkler G (2020) The first consistent inventory of rock glaciers and their hydrological catchments of the Austrian Alps. Austrian Journal of Earth Sciences Vienna 113(1):1–23 https://doi.org/10.17738/ajes.2020.0001

  • Wakonigg H (1996) Unterkühlte Schutthalden. Arb Inst Geogr Univ Graz 33:209–223

    Google Scholar 

  • Wakonigg H (2001) Ergebnisse von Temperatur-Dauerregistrierungen am Toteisboden im Schladminger Untertal. Mitt Naturwiss Ver Steiermark 131:41–56

    Google Scholar 

  • Warburton J (1990) Secondary sorting of sorted patterned ground. Permafr Periglac Process 1:313–318

    Google Scholar 

  • Wahrhaftig C, Cox A (1959) Rock glaciers in the Alaska Range. Geol Soc Am Bull 70:383–436

    Google Scholar 

  • Washburn AL (1979) Geocryology: a survey of periglacial processes and environments. Edward Arnold, London, p 406

    Google Scholar 

  • Wolff H (1986) Goethes Kenntnisse der Alpen im Lichte der modernen Geologie. Sudhoffs Archiv 70(2):143–152. http://www.jstor.org/stable/20777079

  • Žebre M, Stepišnik U (2016) Glaciokarst geomorphology of the northern Dinaric Alps: Snežnik (Slovenia) and Gorski Kotar (Croatia). J Maps 12:873–881. https://doi.org/10.1080/17445647.2015.1095133

    Article  Google Scholar 

  • Zückert G (1996) Versuch einer landschaftsökologischen Gliederung der Hochflächen der südlichen Hochschwabgruppe. Mitt Naturwiss Ver Steiermark 125:55–72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Kellerer-Pirklbauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kellerer-Pirklbauer, A., Gärtner-Roer, I., Bodin, X., Paro, L. (2022). European Alps. In: Oliva, M., Nývlt, D., Fernández-Fernández, J.M. (eds) Periglacial Landscapes of Europe. Springer, Cham. https://doi.org/10.1007/978-3-031-14895-8_9

Download citation

Publish with us

Policies and ethics

Navigation