Quaternary Climate Variability and Periglacial Dynamics

  • Chapter
  • First Online:
Periglacial Landscapes of Europe

Abstract

This chapter briefly describes the long term climate evolution, as well as, the superimposed abrupt climate shifts that have punctuated the last glaciation, the last deglaciation and the present-day interglacial, known as the Holocene. The last glacial period, from Marine Isotopic Stage (MIS) 5e to MIS 1 (115–14.7 cal ka BP), was punctuated by a series of abrupt climate shifts such as the Dansgaard-Oeschger cycles, including the extreme Heinrich Stadials (HS) associated with meltwater pulse episodes and collapse of Northern Hemisphere ice sheets. The last deglaciation, from ~20 cal. ka BP to ~7 cal. ka BP, although associated with a long term increase in boreal summer insolation, was interrupted by several climate shifts including the Heinrich Stadial 1 (HS 1), the Bølling-Allerød (BA) and the Younger Dryas (YD). Finally, the Holocene, since ~11.7 cal. ka BP, is subdivided in 3 long term Sub-series/Sub-epochs (Stage/Age) an Early Holocene (Greenlandian Stage/Age), Middle Holocene (Northgrippian Stage/Age) and Late Holocene (Meghalayan Stage/Age), was also marked by a number of rapid climate shifts. A short description on the impact of these long term and abrupt changes in the North Atlantic, Greenland and over Europe is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 64.19
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 80.24
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 80.24
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 21 April 2023

    ∎∎∎

References

  • Alley RB, Clark PU (1999) The deglaciation of the Northern hemisphere: a global perspective. Annu Rev Earth Planet Sci 27(1):149–182

    Google Scholar 

  • Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteet DM, Pielke RA, Pierrehumbert RT Jr, Rhines PB, Stocker TF, Talley LD, Wallace JM (2003) Abrupt climate change. Science 299:2005–2010

    Google Scholar 

  • Alley RB, Mayewski PA, Sowers T, Stuiver M, Taylor KC, Clark PU (1997) Holocene climatic instability: a prominent widespread event 8200 years ago. Geology 25:483–486

    Google Scholar 

  • Alley RB, Meese DA, Shuman CA, Gow AJ, Taylor KC, Grootes PM, White JWC, Ram M, Waddington ED, Mayewski PA, Zielinski GA (1993) Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362:527–529

    Google Scholar 

  • Alvarez-Solas J, Charbit S, Ritz C, Paillard D, Ramstein G, Dumas C (2010) Links between ocean temperature and iceberg discharge during Heinrich events. Nat Geosci 3(2):122–126

    Google Scholar 

  • Alvarez-Solas, J., Ramstein, G., 2011. On the triggering mechanism of Heinrich events: Proceedings of the National Academy of Sciences108, no. 50, E1359-E1360.

    Google Scholar 

  • Alvarez-Solas J, Robinson A, Montoya M, Ritz C (2013) Iceberg discharges of the last glacial period driven by oceanic circulation changes. Proc Natl Acad Sci 110(41):16350–16354

    Google Scholar 

  • Andrews JT, Voelker AHL (2018) “Heinrich events” (& sediments): A history of terminology and recommendations for future usage. Quatern Sci Rev 187:31–40

    Google Scholar 

  • Bakke J, Lie O, Heegaard E, Dokken T, Haug GH, Birks HH, Dulski P, Nilsen T (2009) Rapid oceanic and atmospheric changes during the Younger Dryas cold period. Nature Geosciences 2:202–205

    Google Scholar 

  • Baldini JUL, McDermott F, Fairchild IJ (2002) Structure of the 8200-year cold event revealed by a speleothem trace element record. Science 296:2203–2206

    Google Scholar 

  • Baldini LM, McDermott F, Baldini JUL, Arias P, Cueto M, Fairchild IJ, Hoffmann DL, Mattey DP, Müller W, Nita DC, Ontañón R, Garciá-Moncó C, Richards DA (2015) Regional temperature, atmospheric circulation, and sea-ice variability within the Younger Dryas Event constrained using a speleothem from northern Iberia. Proc Natl Acad Sci 419:101–110

    Google Scholar 

  • Bard E, Rostek F, Turon J-L, Gendreau S (2000) Hydrological impact of Heinrich events in the subtropical northeast Atlantic. Science 289:1321–1324

    Google Scholar 

  • Barker S, Chen J, Gong X, Jonkers L, Knorr G, Thornalley D (2015) Icebergs not the trigger for North Atlantic cold events. Nature 520(7547):333–336

    Google Scholar 

  • Barker S, Diz P, Vautravers MJ, Pike J, Knorr G, Hall IR, Broecker WS (2009) Interhemispheric Atlantic seesaw response during the last deglaciation. Nature 457(7233):1097–1102

    Google Scholar 

  • Bar-Matthews M, Ayalon A, Kaufman A, Wasserburg GJ (1999) The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave. Israel. Earth and Planetary Science Letters 166(1–2):85–95

    Google Scholar 

  • Bartolomé M, Moreno A, Sancho C, Stoll HM, Cacho I, Spötl C, Belmonte A, Edwards RL, Cheng H, Hellstrom JC (2015) Hydrological change in Southern Europe responding to increasing North Atlantic overturning during Greenland Stadial 1. Proc Natl Acad Sci 112:6568–6572

    Google Scholar 

  • Bassis JN, Petersen SV, Mac Cathles L (2017) Heinrich events triggered by ocean forcing and modulated by isostatic adjustment. Nature 542(7641):332–334

    Google Scholar 

  • Batchelor CL, Margold M, Krapp M, Murton DK, Dalton AS, Gibbard PL, Stokes CR, Murton JB, Manica A (2019) The configuration of Northern Hemisphere ice sheets through the Quaternary. Nat Commun 10(1):3713

    Google Scholar 

  • Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quatern Sci Rev 10:297–317

    Google Scholar 

  • Bianchi GG, McCave IN (1999) Holocene periodicity in North Atlantic climate and deep-ocean flow South of Iceland. Nature 397:515–517

    Google Scholar 

  • Bjorck S, Kromer B, Johnsen S, Bennike O, Hammarlund D, Lemdahl G, Possnert G, Rasmussen TL, Wohlfarth B, Hammer CU, Spurk M (1996) Synchronised terrestrial–atmospheric deglacial records around the North Atlantic. Science 274:1155–1160

    Google Scholar 

  • Blaschek M, Renssen H (2013) The Holocene thermal maximum in the Nordic Seas: the impact of Greenland Ice Sheet melt and other forcings in a coupled atmosphere–sea-ice–ocean model. Climate of the past 9(4):1629–1643

    Google Scholar 

  • Bond GC, Lotti R (1995) Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science 267(5200):1005–1010

    Google Scholar 

  • Bond G, Broecker W, Johnsen S, McManus J, Labeyrie L, Jouzel J, Bonani G (1993) Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365:143–147

    Google Scholar 

  • Bond G, Heinrich H, Broecker W, Labeyrie L, McManus J, Andrews J, Huon S, Jantschik R, Clasen S, Simet C, Tedesco K (1992) Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 360(6401):245–249

    Google Scholar 

  • Bond G, Kromer B, Beer J, Muscheler R, Evans M, Showers W, Hoffmann S, Lotti-Bond R, Hajdas I, Bonani G (2001) Persistent solar influence on North Atlantic climate during the Holocene. Science 294:2130–2136

    Google Scholar 

  • Bond G, Showers W, Cheseby M, Lotti R, Almasi P, deMenocal P, Priore P, Cullen H, Hajdas I, Bonani G (1997) A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278:1257–1266

    Google Scholar 

  • Bond, G.C., Showers, W., Elliot, M., Lotti, R., Hajdas, I., Bonani, G., Johnson, S., 1999. The North Atlantic’s 1–2 kyr climate rhythm: relation to Heinrich events, Dansgaard/Oeshger cycles and the Little Ice Age, Mechanisms of Global Climate Change at Millennial Time Scale, American Geophysical Union, 35–58.

    Google Scholar 

  • Boswell SM, Toucanne S, Pitel-Roudaut M, Creyts TT, Eynaud F, Bayon G (2019) Enhanced surface melting of the Fennoscandian Ice Sheet during periods of North Atlantic cooling. Geology 47(7):664–668

    Google Scholar 

  • Bova S, Rosenthal Y, Liu Z, Godad SP, Yan M (2021) Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature 589(7843):548–553

    Google Scholar 

  • Boyle, E.A., Keigwin, L.D., 1987. North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature: Nature 330, 35–40.

    Google Scholar 

  • Bradley, R.S., Bakke, J., 2019. Is there evidence for a 4.2 ka BP event in the Northern North Atlantic region?. Climate of the Past 15(5), 1665–1676.

    Google Scholar 

  • Brauer A, Endres C, Gunter C, Litt T, Stebich M, Nengendank JFW (1999) High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany. Quaternary Science Reviwes 18:321–329

    Google Scholar 

  • Brauer A, Haug GH, Dulski P, Sigman DM, Negendank JFW (2008) An abrupt wind shift in Western Europe at the onset of the Younger Dryas cold period. Nature Geosciences 1:520–523

    Google Scholar 

  • Broecker W, Bond G, Klas M, Clark E, McManus J (1992) Origin of the Northern Atlantic’s Heinrich events. Clim Dyn 6(3):265–273

    Google Scholar 

  • Broecker WS (1994) Massive iceberg discharges as triggers for global climate change. Nature 372(6505):421–424

    Google Scholar 

  • Broecker WS (2003) Does the trigger for abrupt climate change reside in the oceans or in the atmosphere? Science 300(5625):1519–1522

    Google Scholar 

  • Bromley GR, Putnam AE, Rademaker KM, Lowell TV, Schaefer JM, Hall B et al (2014a) Younger Dryas deglaciation of Scotland driven by warming summers. Proc Natl Acad Sci 111(17):6215–6219

    Google Scholar 

  • Bromley GR, Putnam AE, Rademaker KM, Lowell TV, Schaefer JM, Hall B, Winckler G, Birkel SD, Borns HW (2014b) Younger Dryas deglaciation of Scotland driven by warming summers. Proc Natl Acad Sci 111(17):6215–6219

    Google Scholar 

  • Brook EJ, Sowers T, Orchardo J (1996) Rapid variations in atmospheric methane concentration during the past 110,000 years. Science 273:1087–1091

    Google Scholar 

  • Buizert C, Gkinis V, Severinghaus JP, He F, Lecavalier BS, Kindler P et al (2014a) Greenland temperature response to climate forcing during the last deglaciation. Science 345(6201):1177–1180

    Google Scholar 

  • Buizert C, Gkinis V, Severinghaus JP, He F, Lecavalier BS, Kindler P, Leuenberger M, Carlson AE, Vinther B, Masson-Delmotte V, White JW (2014b) Greenland temperature response to climate forcing during the last deglaciation. Science 345(6201):1177–1180

    Google Scholar 

  • Cabedo-Sanz P, Belt ST, Knies J, Husum K (2013) Identification of contrasting seasonal sea ice conditions during the Younger Dryas. Quaternary Science Review 79:74–86

    Google Scholar 

  • Cacho I, Grimalt JO, Canals M, Sbaffi L, Shackleton NJ, Schönfeld J, Zahn R (2001) Variability of the western Mediterranean Sea surface temperature during the last 25,000 years and its connection with the Northern Hemisphere climatic changes. Paleoceanography 16(1):40–52

    Google Scholar 

  • Carlson AE (2013) The Younger Dryas Climate Event. Encyclopedia of Quaternary Science 3:126–134

    Google Scholar 

  • Carlson, A.E., Clark, P.U., 2012. Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation. Reviews of Geophysics 50(4).

    Google Scholar 

  • Carlson AE, Clark PU, Haley BA, Klinkhammer GP, Simmons K, Brook EJ, Meissner KJ (2007) Geochemical proxies of North American freshwater routing during the Younger Dryas cold event. Proc Natl Acad Sci 104:6556–6561

    Google Scholar 

  • Carlson AE, Oppo DW, Came RE, LeGrande AN, Keigwin LD, Curry WB (2008) Subtropical Atlantic salinity variability and Atlantic meridional circulation during the last deglaciation. Geology 36:991–994

    Google Scholar 

  • Chabaud L, Sánchez Goñi MF, Desprat S, Rossignol L (2014) Land-sea climatic ~ variability in the eastern North Atlantic subtropical region over the last 14,200 years: atmospheric and oceanic processes at different timescales. The Holocene 24:787–797

    Google Scholar 

  • Chapman MR, Shackleton NJ, Duplessy JC (2000) Sea surface temperature variability during the last glacial-interglacial cycle: assessing the magnitude and pattern of climate change in the North Atlantic. Palaeogeogr Palaeoclimatol Palaeoecol 157:1–25

    Google Scholar 

  • Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM (2009) The last glacial maximum. Science 325(5941):710–714

    Google Scholar 

  • Clark PU, Hostetler SW, Pisias NG, Schmittner A, Meissner KJ (2007) Mechanisms for an∼ 7-kyr climate and sea-level oscillation during marine isotope stage 3. Geophysical Monograph-American Geophysical Union 173:209

    Google Scholar 

  • Clark PU, Shakun JD, Baker PA, Bartlein PJ, Brewer S, Brook E, Carlson AE, Cheng H, Kaufman DS, Liu Z, Marchitto TM (2012) Global climate evolution during the last deglaciation. Proc Natl Acad Sci 109(19):E1134–E1142

    Google Scholar 

  • Combourieu Nebout N, Peyron O, Dormoy I, Desprat S, Beaudouin C, Kotthoff U, Marret F (2009) Rapid climatic variability in the west Mediterranean during the last 25 000 years from high resolution pollen data. Climate of the past 5(3):503–521

    Google Scholar 

  • Cortijo E, Labeyrie L, Vidal L, Vautravers M, Chapman M, Duplessy JC, Elliot M, Arnold M, Turon JL, Auffret G (1997) Changes in sea surface hydrology associated with Heinrich event 4 in the North Atlantic Ocean between 40°N and 60°N. Earth Planet Sci Lett 146:29–45

    Google Scholar 

  • Dansgaard W, Clausen HB, Gundestrup N, Hammer CU, Johnsen SF, Kristinsdottir PM, Reeh N (1982) A new Greenland deep ice core. Science 218(4579):1273–1277

    Google Scholar 

  • Dansgaard W, Johnsen S, Clausen HB, Dahl-Jensen D, Gundestrup N, Hammer CU, Oeschger H (1984) North Atlantic climatic oscillations revealed by deep Greenland ice cores. In: Hansen JE, Takahashi T (eds) Climate processes and climate sensitivity: Washington. American Geophysical Union, pp 288–298

    Google Scholar 

  • Davis BAS, Brewer S, Stevenson AC, Guiot J, Contributors D (2003) The temperature of Europe during the Holocene reconstructed from pollen data. Quatern Sci Rev 22:1701–1716

    Google Scholar 

  • de Abreu L, Shackleton NJ, Schonfeld J, Hall M, Chapman M (2003) Millennial-scale oceanic climate variability off the W Iberian margin during the last two glacial periods. Mar Geol 196:1–20

    Google Scholar 

  • Denton GH, Alley RB, Comer GC, Broecker WS (2005) The role of seasonality in abrupt climate change. Quatern Sci Rev 24(10–11):1159–1182

    Google Scholar 

  • Denton GH, Anderson RF, Toggweiler JR, Edwards RL, Schaefer JM, Putnam AE (2010) The last glacial termination. Science 328(5986):1652–1656

    Google Scholar 

  • Denton GH, Hughes TJ (1981) The Last Great Ice Sheets. Wiley Interscience, New York, p 484

    Google Scholar 

  • Desprat S, Combourieu-Nebout N, Essallami L, Sicre MA, Dormoy I, Peyron O, Siani G, Bout Roumazeilles V, Turon JL (2013) Deglacial and Holocene vegetation and climatic changes in the southern Central Mediterranean from a direct land–sea correlation. Climate of the past 9(2):767–787

    Google Scholar 

  • Dormoy I, Peyron O, Combourieu Nebout N, Goring S, Kotthoff U, Magny M, Pross J (2009) Terrestrial climate variability and seasonality changes in the Mediterranean region between 15 000 and 4000 years BP deduced from marine pollen records. Climate of the past 5:615–632

    Google Scholar 

  • Eisenman I, Bitz CM, Tziperman E (2009) Rain driven by receding ice sheets as a cause of past climate change. Paleoceanography 24(4)

    Google Scholar 

  • Elliot M, Labeyrie L, Bond G, Cortijo E, Turon J-L, Tisnerat N, Duplessy J-C (1998) Millennial-scale iceberg discharges in the Irminger Basin during the last glacial period: Relationship with the Heinrich events and environmental settings. Paleoceanography 13:433–446

    Google Scholar 

  • Elliot M, Labeyrie L, Dokken T, Manthé S (2001) Coherent patterns of ice-rafted debris deposits in the Nordic regions during the last glacial (10–60 ka): Earth and Planetary Science Letters 194, 151–163

    Google Scholar 

  • EPICA community members (2004) EPICA community members: 8 glacial cycles from an Antarctic ice core. Nature 429:623–628

    Google Scholar 

  • Eynaud F, de Abreu L, Voelker A, Schönfeld J, Salgueiro E, Turon J.-L, Penaud A, Toucanne S, Naughton F, Sánchez-Goñi MF, Malaizé B, Cacho I (2009) Position of the Polar Front along the western Iberian margin during key cold episodes of the last 45 ka. Geochemistry, Geophysics, Geosystems Q07U05. https://doi.org/10.1029/2009GC002398. ISSN: 1525–2027.

  • Eynaud F, Zaragosi S, Scourse J, Mojtahid M, Bourillet JF, Hall IR, Penaud A, Locascio M, Reijonen A (2007) Deglacial laminated facies on the NW European continental margin: the hydrographic significance of British-Irish Ice Sheet deglaciation and Fleuve Manche paleoriver discharges. Geochem Geophys Geosyst 8. https://doi.org/10.1029/2006GC001496

  • Fersi W, Penaud A, Wary M, Toucanne S, Waelbroeck C, Rossignol L, Eynaud F (2021) Imprint of seasonality changes on fluvio-glacial dynamics across Heinrich Stadial 1 (NE Atlantic Ocean). Global Planet Change 204. https://doi.org/10.1016/j.gloplacha.2021.103552

  • Firestone RB, West A, Kennett JP, Becker L, Bunch TE, Revay ZS, Schultz PH, Belgya T, Kennett DJ, Erlandson JM, Dickenson OJ, Goodyear AC, Harris RS, Howard GA, Kloosterman JB, Lechler P, Mayewski PA, Montgomery J, Poreda R, Darrah T, Que Hee SS, Smith AR, Stich A, Top** W, Wittke JH, Wolbach WS (2007) Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proc Natl Acad Sci 104(41):16016–16021

    Google Scholar 

  • Fletcher WJ, Sánchez Goñi MF, Allen JRM, Cheddadi R, Combourieu-Nebout N, Huntley B, Lawson I, Londeix L, Magri D, Margari V, Müller UC, Naughton F, Novenko E, Roucoux K, Tzedakis PC (2010a) Millennial-scale variability during the last glacial in vegetation records from Europe. Quatern Sci Rev 29(21–22):2839–2864

    Google Scholar 

  • Fletcher WJ, Debret M, Goñi MFS (2013) Mid-Holocene emergence of a low-frequency millennial oscillation in western Mediterranean climate: Implications for past dynamics of the North Atlantic atmospheric westerlies. The Holocene 23(2):153–166

    Google Scholar 

  • Fletcher WJ, Sánchez Goñi MF (2008) Orbital- and sub-orbital-scale climate impacts on vegetation of the western Mediterranean basin over the last 48,000 yr. Quatern Res 70:451–464

    Google Scholar 

  • Fletcher WJ, Sánchez Goñi MF, Peyron O, Dormoy I (2010b) Abrupt climate changes of the last deglaciation detected in a western Mediterranean forest record. Climate of the past 6:245–264

    Google Scholar 

  • Ganopolski A, Rahmstorf S (2001) Rapid Changes of glacial climate simulated in a coupled climate model. Nature 409:153–158

    Google Scholar 

  • Genty D, Blamart D, Ghaleb B, Plagnes V, Causse C, Bakalowicz M, Zouari K, Chkir N, Hellstrom J, Wainer K, Bourges F (2006) Timing and dynamics of the last deglaciation from European and North African d13C stalagmite profiles d comparison with Chinese and South Hemisphere stalagmites. Quatern Sci Rev 25:2118–2142

    Google Scholar 

  • Gibbard PL, Smith AG, Zalasiewicz J, Barry TL, Cantrill D, Coe AL, Cope JWC, Gale AS, Gregory FJ, Powell JH, Rawson PF, Stone P (2005) What status for the Quaternary? Boreas 34:1–6

    Google Scholar 

  • Gil IM, Keigwin LD, Abrantes F (2015) The deglaciation over Laurentian Fan: History of diatoms, IRD, ice and fresh water. Quatern Sci Rev 129:57–67

    Google Scholar 

  • Gomes SD, Fletcher WJ, Rodrigues T, Stone A, Abrantes F, Naughton F (2020) Time-transgressive Holocene maximum of temperate and Mediterranean forest development across the Iberian Peninsula reflects orbital forcing. Palaeogeogr Palaeoclimatol Palaeoecol 550:109739. https://doi.org/10.1016/j.palaeo.2020.109739

    Article  Google Scholar 

  • Grousset FE, Labeyrie L, Sinko JA, Cremer M, Bond G, Duprat J, Cortijo E, Huon S (1993) Patterns of ice-rafted detritus in the glacial North Atlantic (40–55°N). Paleoceanography 8:175–192

    Google Scholar 

  • Guillevic M, Bazin L, Landais A, Stowasser C, Masson-Delmotte V, Blunier T, Eynaud F, Falourd S, Michel E, Minster B, Popp T, Prié F, Vinther BM (2014) Evidence for a three-phase sequence during Heinrich Stadial 4 using a multiproxy approach based on Greenland ice core records: Climate of the Past 10(6):2115–2133

    Google Scholar 

  • Hartz N, Milthers V (1901) Det senglaciale Ler i Alleröd Teglvaerksgrav. Meddelelser Danmarks Geologisk Forening 8:31–59

    Google Scholar 

  • He C, Liu Z, Otto-Bliesner BL, Brady EC, Zhu C, Tomas R, Buizert C., Severinghaus JP (2021) Abrupt Heinrich Stadial 1 cooling missing in Greenland oxygen isotopes. Science Adavances 7(25):eabh1007. https://doi.org/10.1126/sciadv.abh1007

  • He C, Liu Z, Zhu J, Zhang J, Gu S, Otto-Bliesner BL, Brady E, Zhu C, ** Y, Sun J (2020) North Atlantic subsurface temperature response controlled by effective freshwater input in “Heinrich” events. Earth Planet Sci Lett 539:116247

    Google Scholar 

  • Heinrich H (1988) Origin and consequences of cyclic ice rafting in the northeast Atlantic ocean during the past 130,000 years. Quatern Res 29:142–152

    Google Scholar 

  • Hemming SR (2004) Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Reviews of Geophysics, 42.

    Google Scholar 

  • Henry LG, McManus JF, Curry WB, Roberts NL, Piotrowski AM, Keigwin LD (2016) North Atlantic ocean circulation and abrupt climate change during the last glaciation: Science 353(6298):470–474

    Google Scholar 

  • Hodell DA, Nicholl JA, Bontognali TR, Danino S, Dorador J, Dowdeswell JA, Einsle J, Kuhlmann H, Martrat B, Mleneck-Vautravers MJ, Rodríguez-Tovar FJ (2017) Anatomy of Heinrich Layer 1 and its role in the last deglaciation. Paleoceanography 32(3):284–303

    Google Scholar 

  • Hoek ZW (2009) “Bølling-Allerød Interstadial”. Encyclopedia of Paleoclimatology and Ancient Environments. Encyclopedia of Earth Sciences Series. Encyclopedia of Earth Sciences Series, 100–103. https://doi.org/10.1007/978-1-4020-4411-3_26. ISBN 978–1–4020–4551–6

  • Hou M, Wu W, Cohen DJ, Zhou Y, Zeng Z, Huang H, Zheng H, Ge Q ( 2019) Evidence for a widespread climatic anomaly at around 7.5–7.0 cal ka BP. Climate of the Past Discussions 1–50

    Google Scholar 

  • Hughes PD, Gibbard PL, Ehlers J (2013) Timing of glaciation during the last glacial cycle: evaluating the concept of a global ‘Last Glacial Maximum’ (LGM): Earth-Science Reviews125, 171–198

    Google Scholar 

  • Irvalı N, Ninnemann US, Kleiven HKF, Galaasen EV, Morley A, Rosenthal Y (2016) Evidence for regional cooling, frontal advances, and East Greenland Ice Sheet changes during the demise of the last interglacial. Quatern Sci Rev 150:184–199

    Google Scholar 

  • Isarin RFB, Renssen H, Vandenberghe J (1998) The impact of the North Atlantic ocean on the Younger Dryas climate in north-western and central Europe. J Quat Sci 13:447–453

    Google Scholar 

  • Iversen J (1942) En pollenanalytisk Tidsfaestelse af Ferskvandslagene ved Norre Lingby. Meddelelser Danmarks Geologisk Forening 10:130–151

    Google Scholar 

  • Iversen J (1954) The late-glacial flora of Denmark and its relation to climate and soil. – Danm. Geol. Unders. Ser. II 80:87–119

    Google Scholar 

  • Jalut G, Dedoubat JJ, Fontugne M, Otto T (2009) Holocene circumMediterranean vegetation changes: climate forcing and human impact. Quatern Int 200:4–18

    Google Scholar 

  • Johnsen SJ, Clausen HB, Dansgaard W, Fuhrer K, Gundestrup N, Hammer CU, Iversen P, Jouzel J, Stauffer B, Steffensen JP (1992) Irregular glacial interstadials in a new Greenland ice core. Nature 359:311–313

    Google Scholar 

  • Kaufman D, McKay N, Routson C, Erb M, Davis B, Heiri O, Jaccard S, Tierney J, Dätwyler C, Axford Y, Brussel T (2020) A global database of Holocene paleotemperature records. Scientific Data 7(1):1–34

    Google Scholar 

  • Kaufman DS, Ager TA, Anderson NJ, Anderson PM, Andrews JT, Bartlein PJ, Brubaker LB, Coats LL, Cwynar LC, Duvall ML, Dyke AS (2004) Holocene thermal maximum in the western Arctic (0–180 W). Quatern Sci Rev 23(5–6):529–560

    Google Scholar 

  • Keffer T, Martinson DG, Corliss BH (1988) The position of the Gulf Stream during Quaternary glaciations. Science 241(4864):440–442

    Google Scholar 

  • Kennett DJ, Kennett JP, West A, Mercer C, Hee SSQ, Bement L, Bunch TE, Sellers M, Wolbach WS (2009) Nanodiamonds in the Younger Dryas boundary sediment layer. Science 323:94

    Google Scholar 

  • Klitgaard‐Kristensen D, Sejrup HP, Haflidason H, Johnsen S, Spurk M (1998) A regional 8200 cal. yr BP cooling event in northwest Europe, induced by final stages of the Laurentide ice‐sheet deglaciation? Journal of Quaternary Science 13(2):165–169

    Google Scholar 

  • Landais A, Capron E, Masson-Delmotte V, Toucanne S, Rhodes R, Popp T, Vinther B, Minster B, Prié F (2018) Ice core evidence for decoupling between midlatitude atmospheric water cycle and Greenland temperature during the last deglaciation. Climate of the Past 14(10): 1405–1415

    Google Scholar 

  • Landais A, Sánchez Goñi MF, Toucanne S, Rodrigues T, Naughton F (2022) Abrupt climatic variability: Dansgaard-Oeschger events. In Palacios, D., Hugues, P. D., Garcia-Ruiz, J. M., and Andrés, N. (eds) European Glacial Landscapes, Elsevier

    Google Scholar 

  • Lane CS, Brauer A, Blockley SPE, Dulski P (2013) Volcanic ash reveals time-transgressive abrupt climate change during the Younger Dryas. Geology 41:1251–1254

    Google Scholar 

  • Lebreiro SM, Moreno JC, McCave IN, Weaver PPE (1996) Evidence for Heinrich layers off Portugal (Tore Seamount: 39°N, 12°W). Mar Geol 131:47–56

    Google Scholar 

  • Leduc G, Schneider R, Kim JH, Lohmann G (2010) Holocene and Eemian sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry. Quatern Sci Rev 29(7–8):989–1004

    Google Scholar 

  • Lisiecki L, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18 O records. Paleoceanography 20, PA1003.

    Google Scholar 

  • Litt T, Brauer A, Goslar T, Merkt K, Balaga K, Muller H, Ralska-Jasiewiczowa M, Stebich M, Negendank JFW (2001) Correlation and synchronisation of lateglacial continental sequences in Northern central Europe based on annually laminated lacustrine sediments. Quatern Sci Rev 20:1233–1249

    Google Scholar 

  • Litt T, Stebich M (1999) Bio- and chronostratigraphy of the Lateglacial in the Eifel region, Germany. Quatern Int 61:5–16

    Google Scholar 

  • Liu Z, Otto-Bliesner B, He F, Brady E, Thomas R, Clark PU, Carlson AE, LynchStieglitz J, Curry W, Brook E, Erickson D, Jacob R, Kutzbach J, Chen J (2009) Transient climate simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science 325:310–314

    Google Scholar 

  • Ljungqvist FC (2011) The spatio-temporal pattern of the mid-Holocene thermal maximum. Geografie 116:91–110

    Google Scholar 

  • Lozier MS, Li F, Bacon S, Bahr F, Bower AS, Cunningham SA, Jong MFd, Steur Ld, deYoung B, Fischer J, Gary SF, Greenan BJW, Holliday NP, Houk A, Houpert L, Inall ME, Johns WE, Johnson HL, Johnson C, Karstensen J, Koman G, Bras IAL, Lin X, Mackay N, Marshall DP, Mercier H, Oltmanns M, Pickart RS, Ramsey AL, Rayner D, Straneo F, Thierry V, Torres DJ, Williams RG, Wilson C, Yang J, Yashayaev I, Zhao J (2019) A sea change in our view of overturning in the subpolar North Atlantic. Science 363(6426):516–521

    Google Scholar 

  • Lynch-Stieglitz J (2017) The Atlantic Meridional Overturning Circulation and abrupt climate change. Ann Rev Mar Sci 9:83–104

    Google Scholar 

  • Magny M, Bégeot C (2004) Hydrological changes in the European midlatitudes associated with freshwater outbursts from Lake Agassiz during the Younger Dryas event and the early Holocene. Quatern Res 61(2):181–192

    Google Scholar 

  • Manabe S, Stouffer RJ (1997) Coupled ocean-atmosphere model response to freshwater input: Comparison to Younger Dryas event. Paleoceanography 12:321–336

    Google Scholar 

  • Mangerud J (2021) The discovery of the Younger Dryas, and comments on the current meaning and usage of the term. Boreas 50:1–5. https://doi.org/10.1111/bor.12481

    Article  Google Scholar 

  • Mangerud J, Andersen ST, Berglund BE, Donner JJ (1974) Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3:109–126

    Google Scholar 

  • Marcott SA, Bauska TK, Buizert C, Steig EJ, Rosen JL, Cuffey KM, Fudge TJ, Severinghaus JP, Ahn J, Kalk ML, McConnell JR (2014) Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514:616–619

    Google Scholar 

  • Marcott SA, Clark PU, Padman L, Klinkhammer GP, Springer SR, Liu Z, Otto-Bliesner BL, Carlson AE, Ungerer A, Padman J, He F (2011) Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proc Natl Acad Sci 108(33):13415–13419

    Google Scholar 

  • Martin C, Menot G, Thouveny N, Peyron O, Andrieu-Ponel V, Montade V, Davtian N, Reille M, Bard E (2020) Early Holocene Thermal Maximum recorded by branched tetraethers and pollen in Western Europe (Massif Central, France). Quatern Sci Rev 228:106–109

    Google Scholar 

  • Martinez-Lamas R, Toucanne S, Debret M, Riboulot V, Deloffre J, Boissier A, Cheron S, Pitel M, Bayon G, Giosan L, Soulet G (2020) Linking Danube River activity to Alpine Ice-Sheet fluctuations during the last glacial (ca. 33–17 ka BP): Insights into the continental signature of Heinrich Stadials. Quaternary Science Reviews 229, 106136.

    Google Scholar 

  • Martrat B, Grimalt JO, Shackleton NJ, de Abreu L, Hutterli MA, Stocker TF (2007) Four climate cycles of recurring deep and surface water destabilizations on the Iberian Margin. Science 317:502–507

    Google Scholar 

  • Martrat B, Jimenez-Amat P, Zahn R, Grimalt JO (2014) Similarities and dissimilarities between the last two deglaciations and interglaciations in the North Atlantic region. Quatern Sci Rev 99:122–134

    Google Scholar 

  • Mayewski PA, Rohling EE, Stager JC, Karlen W, Maasch, ´ KA, Meeker LD, Meyerson EA, Gasse F, van Kreveld S, Holmgren K, Lee-Thorp J, Rosqvist G, Rack F, Staubwasser M, Schneider RR, Steig EJ (2004) Holocene climate variability. Quatern Res 62:243–255

    Google Scholar 

  • Mayr C, Stojakowits P, Lempe B, Blaauw M, Diersche V, Grohganz M, Correa ML, Ohlendorf C, Reimer P, Zolitschka B (2019) High-resolution geochemical record of environmental changes during MIS 3 from the Northern Alps (Nesseltalgraben, Germany). Quatern Sci Rev 218:122–136

    Google Scholar 

  • McManus JF, Bond GC, Broecker WS, Johnsen S, Labeyrie L, Higgins S (1994) High-resolution climate records from the North Atlantic during the last interglacial. Nature 371:326–329

    Google Scholar 

  • McManus JF, Francois R, Gherardi J-M, Keigwin LD, Brown-Leger S (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428:834–837

    Google Scholar 

  • McManus JF, Oppo DW, Cullen JL (1999) A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science 283(5404), 971–975

    Google Scholar 

  • Ménot G, Bard E, Rostek F, Weijers JW, Hopmans EC, Schouten S, Damsté JSS (2006) Early reactivation of European rivers during the last deglaciation. Science 313(5793):1623–1625

    Google Scholar 

  • Menviel L, Timmermann A, Friedrich T, England MH (2014) Hindcasting the continuum of Dansgaard-Oeschger variability: mechanisms, patterns and timing. Climate of the past 10(1):63–77

    Google Scholar 

  • Mix AC, Ruddiman WF (1985) Structure and timing of the last deglaciation: Oxygen-isotope evidence. Quatern Sci Rev 4(2):59–108

    Google Scholar 

  • Moine O, Antoine P, Hatté C, Landais A, Mathieu J, Prud’homme C, Rousseau D.-D (2017) The impact of Last Glacial climate variability in west-European loess revealed by radiocarbon dating of fossil earthworm granules. Proceedings of the National Academy of Sciences 114(24):6209–6214

    Google Scholar 

  • Moréllon M, Aranbarri J, Moreno A, Gonzalez-Samperiz P, Valero-Garces BL (2018) Early Holocene humidity patterns in the Iberian Peninsula reconstructed from lake, pollen and speleothem records. Quatern Sci Rev 181:1–18

    Google Scholar 

  • Moreno A, Stoll HM, Jimenez-Sánchez M, Cacho I, Valero-Garces B, Ito E, Edwards LR (2010) A speleothem record of rapid climatic shifts during last glacial period from Northern Iberian Peninsula. Global Planet Change 71:218–231. https://doi.org/10.1016/j.gloplacha.2009.10.002

    Article  Google Scholar 

  • Müller J, Stein R (2014) High-resolution record of late glacial and deglacial sea ice changes in Fram Strait corroborates ice-ocean interactions during abrupt climate shifts. Earth Planet Sci Lett 403:446–455

    Google Scholar 

  • MÜLLER, Ulrich C et al. (2011) The role of climate in the spread of modern humans into Europe. Quaternary Science Reviews 30(3–4):273–279

    Google Scholar 

  • Murton JB, Bateman MD, Dallimore SR, Teller JT, Yang Z (2010) Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean. Nature 464:740–743

    Google Scholar 

  • Muscheler R, Beer J, Vonmoos M (2004) Causes and timing of the 8200 yr BP event inferred from the comparison of the GRIP 10Be and the tree ring ∆14C record. Quatern Sci Rev 23:2101–2111

    Google Scholar 

  • Muschitiello F, Pausata FSR, Watson JE, Smittenberg RH, Salih AAM, Brooks SJ, Whitehouse NJ, Karlatou-Charalampopoulou A, Wohlfarth B (2015) Fennoscandian freshwater control on Greenland hydroclimate shifts at the onset of the Younger Dryas. Nat Commun 6:8939

    Google Scholar 

  • Naughton F, Bourillet J-F, Sánchez Goñi MF, Turon J-L, Jouanneau J-M (2007a) Long-term and millennial-scale climate variability in north-western France during the last 8 850 years. The Holocene 17:939–953

    Google Scholar 

  • Naughton F, Sánchez Goñi MF, Desprat S, Turon J-L, Duprat J, Malaizé B, Joly C, Cortijo E, Drago T, Freitas MC (2007b) Present-day and past (last 25 000 years) marine pollen signal off western Iberia. Mar Micropaleontol 62:91–114

    Google Scholar 

  • Naughton F, Sánchez Goñi MF, Kageyama M, Bard E, Cortijo E, Desprat S, Duprat J, Malaizé B, Joli C, Rostek F, Turon J-L (2009) Wet to dry climatic trend in north western Iberia within Heinrich events. Earth Planet Sci Lett 284:329–342

    Google Scholar 

  • Naughton F, Sánchez Goñi MF, Landais A, Rodrigues T, Vazquez-Riveiros N, Toucanne S (in press) The Bølling-Allerød Interstadial. European Glacial Landscapes; Last Deglaciation; volume 2, Part II Climate changes during the Last Deglaciation in the Eastern North Atlantic region; Chapter 6

    Google Scholar 

  • Naughton F, Sánchez Goñi MF, Rodrigues T, Salgueiro E, Costas S, Desprat S, Duprat J, Michel E, Rossignol L, Zaragosi S, Abrantes F (2016) Climate variability across the last deglaciation in NW Iberia and its margin. Quatern Int 414:9–22. https://doi.org/10.1016/j.quaint.2015.08.073

    Article  Google Scholar 

  • Naughton F, Costas S, Gomes SD, Rodrigues T, Desprat S, Bronk-Ramsey C, Salgueiro E, Sanchez Goñi MF, Renssen H, Trigo, R, Oliveira, Zoelker AHL, Abrantes F. 2019. Coupled ocean and atmospheric changes during the Younger Dryas in southwestern Europe. Quaternary science Reviews 212:108–120. https://doi.org/10.1016/j.quascirev 2019.03.033

  • Nesje A, Dahl SO (2001) The Greenland 8200 cal yr BP event detected in loss-on ignition profiles in Norwegian lacustrine sediment sequences. J Quat Sci 16:155–166

    Google Scholar 

  • Ng, H.C., Robinson, L.F., McManus, J.F., Mohamed, K.J, Jacobel, A.W., Ivanovic, R.F., Gregoire, L.J., Chen, T., 2018. Coherent deglacial changes in western Atlantic Ocean circulation. Nature Communications 9(1). https://doi.org/10.1038/s41467-018-05312.

  • O’Brien SR, Mayewski PA, Meeker LD, Meese DA, Twickler MS, Whitlow SI (1995) Complexity of Holocene climate as reconstructed from a Greenland ice core. Science 270:1962–1964

    Google Scholar 

  • Obase T, Abe-Ouchi A (2019) Abrupt Bølling-Allerød warming simulated under gradual forcing of the last deglaciation. Geophysical Research Letters 46(20):11397–405

    Google Scholar 

  • Obreht I, Wörmer L, Brauer A, Wendt J, Alfken S, De Vleeschouwer D, Elvert M, Hinrichs KU (2020) An annually resolved record of Western European vegetation response to Younger Dryas cooling. Quatern Sci Rev 231:106198

    Google Scholar 

  • Oeschger H, Beer J, Siegenthaler U, Stauffer B, Dansgaard W, Langway CC (1984) Late glacial climate history from ice cores. Climate Processes and Climate Sensitivity 29:299–306

    Google Scholar 

  • Oppo DW, McManus JF, Cullen JL (2006) Evolution and demise of the Last Interglacial warmth in the subpolar North Atlantic. Quatern Sci Rev 25:3268–3277

    Google Scholar 

  • PAGES 2k Consortium (2013) Continental-scale temperature variability during the last two millennia. Nat Geosci 6:339–346

    Google Scholar 

  • Pailler D, Bard E (2002) High frequency palaeoceanographic changes during the past 140 000 yr recorded by the organic matter in sediments of the Iberian Margin. Palaeogeogr Palaeoclimatol Palaeoecol 181:431–452

    Google Scholar 

  • Palacios D, Hughes PD, García-Ruiz JM, Andrés N (2022) European Glacial Landscapes. Elsevier, Maximum extent of glaciations

    Google Scholar 

  • Pearce C, Seidenkrantz MS, Kuijpers A, Masse G, Reynisson NF, Kristiansen, SM (2013) Ocean lead at the termination of the Younger Dryas cold spell. Nature Communications 4

    Google Scholar 

  • Peck VL, Hall IR, Zahn R, Elderfield H, Grousset F, Hemming SR, Scourse JD (2006) High resolution evidence for linkages between NW European ice sheet instability and Atlantic Meridional Overturning Circulation. Earth Planet Sci Lett 243(3–4):476–488

    Google Scholar 

  • Penaud A, Eynaud F, Turon JL, Zaragosi S, Malaize B, Toucanne S, Bourillet J-F (2009) What forced the collapse of European ice sheets during the last two glacial periods (150 ka BP and 18 ka cal BP)? Palynological evidence. Palaeogeogr Palaeoclimatol Palaeoecol 281(1–2):66–78

    Google Scholar 

  • Pérez-Mejías C, Moreno A, Bernal-Wormull J, Cacho I, Osácar MC, Lawrence E, Cheng H (2021) Oldest Dryas hydroclimate reorganization in the eastern Iberian Peninsula after the iceberg discharges of Heinrich Event 1. Quatern Res 101:67–83

    Google Scholar 

  • Rach O, Brauer A, Wilkes H, Sachse D (2014) Delayed hydrological response to Greenland cooling at the onset of the Younger Dryas in western Europe. Nature Geosciences 7(1):109–112

    Google Scholar 

  • Rahmstorf S (1994) Rapid climate transitions in a coupled ocean–atmosphere model. Nature 372(6501):82–85

    Google Scholar 

  • Rahmstorf S (2002) Ocean circulation and climate during the past 120,000 years. Nature 419:207–214

    Google Scholar 

  • Railsback LB, Gibbard PL, Head MJ, Voarintsoa NRG, Toucanne S (2015). An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quaternary Science Reviews 111(0):94–106

    Google Scholar 

  • Rasmussen SO, Andersen KK, Svensson AM, Steffensen JP, Vinther BM, Clausen HB, Ruth U (2006). A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research 111(D6), [D06102]. https://doi.org/10.1029/2005JD006079

  • Rasmussen SO, Bigler M, Blockley SP, Blunier T, Buchardt SL, Clausen HB, Cvijanovic I, Dahl-Jensen D, Johnsen SJ, Fischer H, Gkinis V, Guillevic M, Hoek WZ, Lowe JJ, Pedro JB, Popp T, Seierstad IK, Steffensen JP, Svens-son AM, Vallelonga P, Vinther BM, Walker MJC, Wheatley JJ, Winstrup M (2014) A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quatern Sci Rev 106:14–28

    Google Scholar 

  • Rasmussen TL, Thomsen E, van Weering TCE, Labeyrie L (1996) Rapid changes in surface and deep water conditions at the Faeroe Islands Margin during the last 58 ka. Paleoceanography 11:757–771

    Google Scholar 

  • Rea BR, Pellitero R, Spagnolo M, Hughes PD, Ivy-Ochs S, Renssen H, Ribolini A, Bakke J, Lukas S, Braithwaite RJ (2020) Atmospheric circulation over Europe during the Younger Dryas. Science Advances 6(50):eaba4844

    Google Scholar 

  • Reinig F, Wacker L, Jöris O, Oppenheimer C, Guidobaldi G, Nievergel D, Adolphi F, Cherubini P, Engels S, Esper J, Land A, Lane C, Pfanz H, Remmele S, Sigl M, Sookdeo A, Büntgen U (2021) Precise date for the Laacher See eruption synchronizes the Younger Dryas. Nature 595:66–69

    Google Scholar 

  • Renssen H (2022) Climate model experiments on the 4.2 ka event: The impact of tropical sea-surface temperature anomalies and desertification. The Holocene 32(5):378–389

    Google Scholar 

  • Renssen H, Isarin RFB (1997) Surface temperature in NW Europe during the Younger Dryas: AGCM simulation compared with temperature reconstructions. Clim Dyn 14(1):33–44

    Google Scholar 

  • Renssen H, Isarin RFB (2001) The two major warming phases of the last deglaciation at similar to 14.7 and similar to 11.5 ka cal BP in Europe: Climate reconstructions and AGCM experiments. Global Planet Change 30:117–153

    Google Scholar 

  • Renssen H, Mairesse A, Goosse H, Mathiot P, Heiri O, Roche DM, Nisancioglu KH, Valdes PJ (2015) Multiple causes of the Younger Dryas cold period. Nature Geosciences 8:946–949

    Google Scholar 

  • Renssen H, Seppä H, Crosta X, Goosse H, Roche DM (2012) Global characterization of the Holocene thermal maximum. Quatern Sci Rev 48:7–19

    Google Scholar 

  • Renssen H, Seppä H, Heiri O, Roche DM, Goosse H, Fichefet T (2009) The spatial and temporal complexity of the Holocene thermal maximum. Nature Geosciences 2(6):411–414

    Google Scholar 

  • Repschläger, J., Weinelt, M., Kinkel, H., Andersen, N., Garbe-Sch€onberg, D., Schwab, C., 2015. Response of the subtropical North Atlantic surface hydrography on deglacial and Holocene AMOC changes. Paleoceanography. https://doi.org/10.1002/2014PA002637.

  • Ritz SP, Stocker TF, Grimalt JO, Menviel L, Timmermann A (2013) Estimated strength of the Atlantic overturning circulation during the last deglaciation. Nature Geosciences 6(3):208–212. https://doi.org/10.1038/ngeo1723

    Article  Google Scholar 

  • Roche D, Paillard D, Cortijo E (2004) Constraints on the duration and freshwater release of Heinrich event 4 through isotope modelling. Nature 432(7015):379–382

    Google Scholar 

  • Rodrigues T, Grimalt JO, Abrantes F, Naughton F, Jose-Abel Flores J-A (2010) The last glacial-interglacial transition (LGIT) in the eastern mid-latitudes of the North Atlantic: abrupt sea surface temperature change and sea level implications. Quatern Sci Rev 29:1853–1862

    Google Scholar 

  • Rodrigues T, Grimalt JO, Abrantes FG, Flores JA, Lebreiro SM (2009) Holocene interdependences of changes in sea surface temperature, productivity, and fluvial inputs in the Iberian continental shelf (Tagus mud patch). Geochemistry, Geophysics, Geosystems 10(7).

    Google Scholar 

  • Roucoux KH, de Abreu L, Shackleton NJ, Tzedakis PC (2005) The response of NW Iberian vegetation to North Atlantic climate oscillations during the last 65 kyr. Quatern Sci Rev 24(14–15):1637–1653

    Google Scholar 

  • Salgueiro E, Naughton F, Voelker AHL, de Abreu L, Alberto A, Rossignol L, Duprat J, Magalhães VH, Vaqueiro S, Turon J-L, Abrantes F (2014) Past circulation along the western Iberian margin: a time slice vision from the Last Glacial to the Holocene. Quatern Sci Rev 106:316–329

    Google Scholar 

  • Sánchez Goñi MF, Bard E, Landais A, Rossignol L, d’Errico F (2013) Air-sea temperature decoupling in western Europe during the last interglacial-glacial transition. Nat Geosci 6:837–841

    Google Scholar 

  • Sánchez Goñi MF, Desprat S, Daniau A-L, Bassinot FC, Polanco-Martinez JM, Harrison SP, ACER, m., (2017) The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period. Earth System Science Data 9:679–695

    Google Scholar 

  • Sánchez-Goni MF, Fourcade T, Salonen S, Lesven J, Frigola J, Swingedouw D, Sierro FJ (2020) Muted cooling and drying of NW Mediterranean in response to the strongest last glacial North American ice surges. GSA Bull. https://doi.org/10.1130/B35736.1

    Article  Google Scholar 

  • Sánchez-Goni MF, Harrison SP (2010) Millennial-scale climate variability and vegetation changes during the Last Glacial: Concepts and terminology. Quatern Sci Rev 29(21–22):2823–2827

    Google Scholar 

  • Sánchez-Goni MF, Landais A, Fletcher W, Naughton F, Desprat S, Duprat J (2008) Contrasting impacts of Dansgaard-Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quatern Sci Rev 27: 1136–1151

    Google Scholar 

  • Scourse JD, Haapaniemi AI, Colmenero-Hidalgo E, Peck VL, Hall IR, Austin WE, Knutz PC, Zahn R (2009) Growth, dynamics and deglaciation of the last British-Irish ice sheet: the deep-sea ice-rafted detritus record. Quatern Sci Rev 28(27–28):3066–3084

    Google Scholar 

  • Seidov D, Maslin M (1999) North Atlantic deep water circulation collapse during Heinrich events. Geology 27(1):23–26

    Google Scholar 

  • Seppä H, Bjune AE, Telford RJ, Birks HJB, Veski S (2009) Last nine-thousand years of temperature variability in Northern Europe. Climate of the Past 5:523–535

    Google Scholar 

  • Severinghaus JP, Brook EJ (1999) Abrupt climate change at the end of the last glacial period inferred from trapped air in polar Ice. Science 286:930–934. https://doi.org/10.1126/science.286.5441.930

    Article  Google Scholar 

  • Shackleton NJ, Opdyke ND (1973) Oxygen isotope and paleomagnetic stratigraphy of Equatorial Pacific core V28–238: oxygen isotope temperatures and ice volumes. Quatern Res 3:39–55

    Google Scholar 

  • Shackleton NJ, Sánchez Goñi MF, Pailler D, Lancelot Y (2003) Marine Isotope Substage 5e and the Eemian Interglacial. Global Planet Change 757:1–5

    Google Scholar 

  • Shakun J, Clark P, He F, Marcott SA, Mix AC, Liu Z, Otto-Bliesner B, Schmittner A, Bard E (2012) Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484:49–54. https://doi.org/10.1038/nature10915

    Article  Google Scholar 

  • Shakun JD, Carlson AE (2010) A global perspective on Last Glacial Maximum to Holocene climate change. Quatern Sci Rev 29:1801–1816

    Google Scholar 

  • Shakun JD, Clark PU, He F, Lifton NA, Liu Z, Otto-Bliesner BL (2015) Regional and global forcing of glacier retreat during the last deglaciation. Nat Commun 6(1):1–7

    Google Scholar 

  • Siani G, Magny M, Paterne M, Debret M, Fontugne M (2013) Paleohydrology reconstruction and Holocene climate variability in the South Adriatic Sea. Climate of the past 9(1):499–515

    Google Scholar 

  • Sierro FJ, Andersen N, Bassetti MA, Berné S, Canals M, Curtis JH, Dennielou B, Flores JA, Frigola J, Gonzalez-Mora B, Grimalt JO, Hodell DA, Jouet G, Pérez-Folgado M, Schneider R (2009) Phase relationship between sea level and abrupt climate change. Quatern Sci Rev 28(25):2867–2881

    Google Scholar 

  • Steffensen JP, Andersen KK, Bigler M, Clausen HB, Dahl-Jensen D, Fischer H, Goto-Azuma K, Hansson M, Johnsen SJ, Jouzel J, Masson-Delmotte V (2008) High-resolution Greenland ice core data show abrupt climate change happens in few years. Science 321(5889):680–684

    Google Scholar 

  • Sweatman MB (2021) The Younger Dryas impact hypothesis: Review of the impact evidence. Earth-Science Reviews 218, 103677. https://doi.org/10.1016/j.earscirev.2021.103677

  • Tarasov L, Peltier WR (2005) Arctic freshwater forcing of the Younger Dryas cold reversal. Nature 435:662–665

    Google Scholar 

  • Thornalley DJR, Elderfield H, McCave IN (2011) Reconstructing North Atlantic deglacial surface hydrography and its link to the Atlantic overturning circulation. Global Planet Change 79(3–4):163–175

    Google Scholar 

  • Tinner W, Lotter AF (2001) Central European vegetation response to abrupt climate change at 8.2 ka. Geology 29(6), 551–554

    Google Scholar 

  • Tinner W, Lotter AF (2006) Holocene expansions of Fagus silvatica and Abies alba in Central Europe: where are we after eight decades of debate? Quatern Sci Rev 25(5–6):526–549

    Google Scholar 

  • Toucanne S, Naughton F, Rodrigues T, Vázquez-Riveiros N, Goñi MFS (2022) Abrupt (or millennial or suborbital) climatic variability: Heinrich events/stadials. In: European Glacial Landscapes. Elsevier, pp 181–187

    Google Scholar 

  • Toucanne S, Soulet G, Freslon N, Jacinto RS, Dennielou B, Zaragosi S, Eynaud F, Bourillet JF, Bayon G (2015) Millennial-scale fluctuations of the European Ice Sheet at the end of the last glacial, and their potential impact on global climate. Quatern Sci Rev 123:113–133

    Google Scholar 

  • Tzedakis PC, Lawson IT, Frogley MR, Hewitt GM, Preece RC (2002) Buffered tree population changes in a Quaternary refugium: evolutionary implications. Science 297:2044–2047

    Google Scholar 

  • Valsecchi V, Sánchez Goni MF, Londeix L (2012) Vegetation dynamics in the Northeastern Mediterranean region during the past 23 000 yr: insight from a new pollen record from the Sea of Marmara (core MD01–2430). Climate os Past Discussions 8, 4183–4221. www.clim-past-discuss.net/8/4183/2012/, https://doi.org/10.5194/cpd-8-4183-2012.

  • van Kreveld S, Sarnthein M, Erlenkeuser H, Grootes P, Jung S, Nadeau MJ, Pflaumann U, Voelker A (2000) Potential links between surging ice sheets, circulation changes, and the Dansgaard-Oeschger cycles in the Irminger Sea, 60–18 ka. Paleoceanography 15:425–442

    Google Scholar 

  • Veski S, Seppä H, Ojala AEK (2004) The cold event 8200 years ago recorded in annually laminated lake sediments in Eastern Europe. Geology 32:681–684

    Google Scholar 

  • Vinther BM, Buchardt SL, Clausen HB, Dahl-Jensen D, Johnsen SJ, Fisher DA, Koerner RM, Raynaud D, Lipenkov V, Andersen KK, Blunier T (2009) Holocene thinning of the Greenland ice sheet. Nature 461(7262):385–388

    Google Scholar 

  • Voelker AHL, Sarnthein M, Grootes PM, Erlenkeuser H, Laj C, Mazaud A, Nadeau M-J, Schleicher M (1998) Correlation of marine 14C ages from the Nordic seas with the GISP2 isotope record: Implications for 14C calibration beyond 25 ka BP. Radiocarbon 40:517–534

    Google Scholar 

  • Von Grafenstein U, Erlenkeuser H, Brauer A, Jouzel J, Johnsen SJ (1999) A mid-European decadal isotope-climate record from 15,500 to 5000 years B.P. Science 284:1654–1657

    Google Scholar 

  • Waelbroeck C, Labeyrie L, Michel E, Duplessy JC, McManus JF, Lambeck K, Balbon E, Labracherie M (2002) Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quatern Sci Rev 21:295–305

    Google Scholar 

  • Walker M, Head MJ, Lowe J, Berkelhammer M, BjÖrck S, Cheng H, Cwynar LC, Fisher D, Gkinis V, Long A, Newnham R (2019) Subdividing the Holocene Series/Epoch: formalization of stages/ages and subseries/subepochs, and designation of GSSPs and auxiliary stratotypes. J Quat Sci 34(3):173–186

    Google Scholar 

  • Walker M, Johnsen S, Rasmussen SO, Popp T, Steffensen JP, Gibbard P, Hoek W, Lowe J, Andrews J, Björck S, Cwynar LC (2009) Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records. Journal of Quaternary Science: Published for the Quaternary Research Association 24(1):3–17

    Google Scholar 

  • Walker MJ, Berkelhammer M, Björck S, Cwynar LC, Fisher DA, Long AJ, Lowe JJ, Newnham RM, Rasmussen SO, Weiss H (2012) Formal subdivision of the Holocene Series/Epoch: a Discussion Paper by a Working Group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy). J Quat Sci 27(7):649–659

    Google Scholar 

  • Wanner H, Mercolli L, Grosjean M, Ritz SP (2014) Holocene climate variability and change; a data-based review. J Geol Soc 172(2):254–263

    Google Scholar 

  • Wanner H, Solomina O, Grosjean M, Ritz SP, Jetel M (2011) Structure and origin of Holocene cold events. Quatern Sci Rev 30:3109–3123

    Google Scholar 

  • Wary M, Eynaud F, Kissel C, Londeix L, Rossignol L, Lapuyade J, Castéra M-H, Billy I (2018) Spatio-temporal dynamics of hydrographic reorganizations and iceberg discharges at the junction between the Northeast Atlantic and Norwegian Sea basins surrounding Heinrich event 4. Earth Planet Sci Lett 481:236–245

    Google Scholar 

  • Wittmeier HE, Schaefer JM, Bakke J, Rupper S, Paasche Ø, Schwartz R, Finkel RC (2020) Late Glacial mountain glacier culmination in Arctic Norway prior to the Younger Dryas. Quatern Sci Rev 245:106461

    Google Scholar 

  • Woillez MN, Kageyama M, Combourieu-Nebout N, Krinner G (2013) Simulating the vegetation response in western Europe to abrupt climate changes under glacial background conditions. Biogeosciences10(3):1561–1582

    Google Scholar 

  • Wolff EW, Chappellaz J, Blunier T, Rasmussen SO, Svensson AC (2010) Millennial-scale variability during the last glacial: The ice core record. Quatern Sci Rev 29:2828–2838

    Google Scholar 

  • Wünsch C (2006) Abrupt climate change: An alternative view. Quatern Res 65:191–203

    Google Scholar 

  • Zaragosi S, Eynaud F, Pujol C, Auffret GA, Turon JL, Garlan T (2001) Initiation of the European deglaciation as recorded in the northwestern Bay of Biscay slope environments (Meriadzek Terrace and Trevelyan Escarpment): a multi-proxy approach. Earth Planet Sci Lett 188(3–4):493–507

    Google Scholar 

  • Zhang X, Knorr G, Lohmann G, Barker S (2017) Abrupt North Atlantic circulation changes in response to gradual CO 2 forcing in a glacial climate state. Nat Geosci 10(7):518–523

    Google Scholar 

  • Ziemen FA, Kapsch ML, Klockmann M, Mikolajewicz U (2019) Heinrich events show two-stage climate response in transient glacial simulations. Climate of the past 15(1):153–168

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipa Naughton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naughton, F., Sánchez Goñi, M., Toucanne, S. (2022). Quaternary Climate Variability and Periglacial Dynamics. In: Oliva, M., Nývlt, D., Fernández-Fernández, J.M. (eds) Periglacial Landscapes of Europe. Springer, Cham. https://doi.org/10.1007/978-3-031-14895-8_2

Download citation

Publish with us

Policies and ethics

Navigation