How Light Drives Material Periodic Patterns Down to the Nanoscale

  • Chapter
  • First Online:
Ultrafast Laser Nanostructuring

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 239))

Abstract

Ultrashort laser pulses enable efficient energy confinement down to the nanoscale, inducing extreme thermodynamic conditions in condensed matter. In contrast to longer pulse excitation, high-energy gradients are established, able to trigger nonlinear phenomena and instabilities that result from multiphysics coupling from the atomic to the macroscale. Self-organization of matter into periodic nanoscale patterns under multipulse laser excitation is one of the most intriguing manifestations of these phenomena with a wide range of potential applications in optics and mechanics, and of a fundamental scientific interest. This chapter provides an overview of the relevant processes with a particular emphasis on material modifications occurring in dielectrics, semiconductors, or metals and a critical assessment and discussion of plausible scenarios of matter reorganization toward periodic nanoscale patterns. Relying on representative experimental observations, proposed explanations are supported by numerical simulations. The dynamic interplay between light and matter evolution is explored to pave the way for structuring self-arranged surfaces on dimensions well below the diffraction limit and reaching the sub-100-nm feature size. Open questions and unexplored directions of possible further research work are outlined along the lines of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Ariga, J.P Hill, M.V. Lee, A. Vinu, R. Charvet, S. Acharya, Challenges and breakthroughs in recent research on self-assembly. Sci. Technol. Adv. Mater. 9, 014109 (2008)

    Google Scholar 

  2. A. Ranella, M. Barberoglou, S. Bakogianni, C. Fotakis, E. Stratakis, Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomater. 6(7), 2711–2720 (2010)

    Article  Google Scholar 

  3. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, S. Juodkazis, Ultrafast laser processing of materials: from science to industry. Light: Science and Applications 5(8), e16133–e16133 (2016)

    Article  ADS  Google Scholar 

  4. J. Bonse, S. Höhm, S.V. Kirner, A. Rosenfeld, J. Krüger, Laser-induced periodic surface structures—A scientific evergreen. IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017)

    Google Scholar 

  5. K. Sugioka, Y. Cheng, Femtosecond laser three-dimensional micro-and nanofabrication. Appl. Phys. Rev. 1(4), 041303 (2014)

    Google Scholar 

  6. K. Sugioka, Y. Cheng, Ultrafast lasers—reliable tools for advanced materials processing. Light: Science and Applications 3(4), e149–e149 (2014)

    Article  ADS  Google Scholar 

  7. R. Stoian, J.-P. Colombier, Advances in ultrafast laser structuring of materials at the nanoscale. Nanophotonics 9(16), 4665–4688 (2020)

    Article  Google Scholar 

  8. B. Dusser, Z. Sagan, H. Soder, N. Faure, J.-P. Colombier, M. Jourlin, E. Audouard, Controlled nanostructures formation by ultra fast laser pulses for color marking. Opt. Express 18(3), 2913–2924 (2010)

    Article  ADS  Google Scholar 

  9. J.-M. Guay, A.C. Lesina, G. Côté, M. Charron, D. Poitras, L. Ramunno, P. Berini, A. Weck, Laser-induced plasmonic colours on metals. Nat. Commun. 8(1), 16095 (2017)

    Google Scholar 

  10. E.P. Ivanova, J. Hasan, H.K. Webb, G. Gervinskas, S. Juodkazis, V.K. Truong, A.H.F. Wu, R.N. Lamb, V.A. Baulin, G.S. Watson, et al. Bactericidal activity of black silicon. Nat. Commun. 4(1), 2838 (2013)

    Google Scholar 

  11. I. Prigogine, P. Van Rysselberghe, Introduction to thermodynamics of irreversible processes. J. Electrochem. Soc. 110(4), 97C (1963)

    Google Scholar 

  12. E.T. Jaynes, The minimum entropy production principle. Annu. Rev. Phys. Chem. 31(1), 579–601 (1980)

    Article  ADS  Google Scholar 

  13. R.G. Endres, Entropy production selects nonequilibrium states in multistable systems. Sci. Rep. 7(1), 14437 (2017)

    Google Scholar 

  14. V.V. Isaeva, Self-organization in biological systems. Biol. Bull. 39(2), 110–118 (2012)

    Article  Google Scholar 

  15. X. Sedao, M.V. Shugaev, C. Wu, T. Douillard, C. Esnouf, C. Maurice, S. Reynaud, F. Pigeon, F. Garrelie, L.V. Zhigilei, J.-P. Colombier, Growth twinning and generation of high-frequency surface nanostructures in ultrafast laser-induced transient melting and resolidification. ACS Nano 10(7), 6995–7007 (2016)

    Article  Google Scholar 

  16. X. Sedao, A. Abou Saleh, A. Rudenko, T. Douillard, C. Esnouf, S. Reynaud, C. Maurice, F. Pigeon, F. Garrelie, J.-P. Colombier, Self-arranged periodic nanovoids by ultrafast laser-induced near-field enhancement. ACS Photonics 5(4), 1418–1426 (2018)

    Article  Google Scholar 

  17. J.-M. Savolainen, M.S. Christensen, P. Balling, Material swelling as the first step in the ablation of metals by ultrashort laser pulses. Phys. Rev. B 84(19), 193410 (2011)

    Google Scholar 

  18. M.V. Shugaev, M. He, Y. Levy, A. Mazzi, A. Miotello, N.M. Bulgakova, L.V. Zhigilei, Laser-Induced Thermal Processes: Heat Transfer, Generation of Stresses, Melting and Solidification, Vaporization, and Phase Explosion (Springer, Cham, 2021), pp. 83–163

    Google Scholar 

  19. X. Sedao, C. Maurice, F. Garrelie, J.-P. Colombier, S. Reynaud, R. Quey, F. Pigeon, Influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures and lattice defects accumulation. Appl. Phys. Lett. 104(17), 171605 (2014)

    Google Scholar 

  20. A. Abou-Saleh, E.T. Karim, C. Maurice, S. Reynaud, F. Pigeon, F. Garrelie, L.V. Zhigilei, J.P. Colombier, Spallation-induced roughness promoting high spatial frequency nanostructure formation on Cr. Appl. Phys. A 124(4), 208 (2018)

    Google Scholar 

  21. J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Laser-induced periodic surface structure. I. theory. Phys. Rev. B 27(2), 1141 (1983)

    Google Scholar 

  22. J.Z.P. Skolski, G.R.B.E. Römer, J. Vincenc Obona, V. Ocelik, J.Th.M. De Hosson, et al. Laser-induced periodic surface structures: Fingerprints of light localization. Phys. Rev. B 85(7), 075320 (2012)

    Google Scholar 

  23. B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, F. Ömer Ilday, Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nat. Photonics 7(11), 897 (2013)

    Google Scholar 

  24. A. Rudenko, C. Mauclair, F. Garrelie, R. Stoian, J.-P. Colombier, Self-organization of surfaces on the nanoscale by topography-mediated selection of quasi-cylindrical and plasmonic waves. Nanophotonics 8(3), 459–465 (2019)

    Article  Google Scholar 

  25. H.M. Van Driel, J.E. Sipe, J.F. Young, Laser-induced periodic surface structure on solids: a universal phenomenon. Phys. Rev. Lett. 49(26), 1955 (1982)

    Google Scholar 

  26. C. Li, G. Cheng, X. Sedao, W. Zhang, H. Zhang, N. Faure, D. Jamon, J.-P. Colombier, R. Stoian, Scattering effects and high-spatial-frequency nanostructures on ultrafast laser irradiated surfaces of zirconium metallic alloys with nano-scaled topographies. Opt. Express 24(11), 11558–11568 (2016)

    Article  ADS  Google Scholar 

  27. J.-P. Colombier, A. Rudenko, E. Silaeva, H. Zhang, X. Sedao, E. Bévillon, S. Reynaud, C. Maurice, F. Pigeon, F. Garrelie, et al. Mixing periodic topographies and structural patterns on silicon surfaces mediated by ultrafast photoexcited charge carriers. Phys. Rev. Res. 2(4), 043080 (2020)

    Google Scholar 

  28. R. Stoian, K. Mishchik, G. Cheng, C. Mauclair, C. D’Amico, J.-P. Colombier, M. Zamfirescu, Investigation and control of ultrafast laser-induced isotropic and anisotropic nanoscale-modulated index patterns in bulk fused silica. Opt. Mater. Express 3(10), 1755–1768 (2013)

    Article  ADS  Google Scholar 

  29. J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, Femtosecond laser-induced periodic surface structures. J. Laser Appl. 24(4), 042006 (2012)

    Google Scholar 

  30. A. Borowiec, H.K. Haugen, Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl. Phys. Lett. 82(25), 4462–4464 (2003)

    Article  ADS  Google Scholar 

  31. A. Abou Saleh, A. Rudenko, L. Douillard, F. Pigeon, F. Garrelie, J.-P. Colombier, Nanoscale imaging of ultrafast light coupling to self-organized nanostructures. ACS Photonics 6(9), 2287–2294 (2019)

    Article  Google Scholar 

  32. A. Nakhoul, C. Maurice, M. Agoyan, A. Rudenko, F. Garrelie, F. Pigeon, J.-P. Colombier, Self-organization regimes induced by ultrafast laser on surfaces in the tens of nanometer scales. Nanomaterials 11(4), 1020 (2021)

    Google Scholar 

  33. A. Rudenko, C. Mauclair, F. Garrelie, R. Stoian, J.P. Colombier, Light absorption by surface nanoholes and nanobumps. Appl. Surf. Sci. 470, 228–233 (2019)

    Article  ADS  Google Scholar 

  34. M. Birnbaum, Semiconductor surface damage produced by ruby lasers. J. Appl. Phys. 36(11), 3688–3689 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  35. Z. Guosheng, P.M. Fauchet, A.E. Siegman, Growth of spontaneous periodic surface structures on solids during laser illumination. Phys. Rev. B 26(10), 5366 (1982)

    Google Scholar 

  36. X. Sedao, C. Maurice, F. Garrelie, J.-P. Colombier, S. Reynaud, R. Quey, G. Blanc, F. Pigeon, Electron backscatter diffraction characterization of laser-induced periodic surface structures on nickel surface. Appl. Surf. Sci. 302, 114–117 (2014)

    Article  ADS  Google Scholar 

  37. J. Bonse, S. Gräf, Maxwell meets Marangoni—A review of theories on laser-induced periodic surface structures. Laser Photonics Rev. 14(10), 2000215 (2020)

    Google Scholar 

  38. U.S. Inan, R.A. Marshall, Numerical Electromagnetics: The FDTD Method (Cambridge University, Cambridge, 2011)

    Book  Google Scholar 

  39. G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik 330(3), 377–445 (1908). https://doi.org/10.1002/andp.19083300302

    Article  MATH  ADS  Google Scholar 

  40. A.V. Zayats, I.I. Smolyaninov, A.A. Maradudin, Nano-optics of surface plasmon polaritons. Phys. Rep. 408(3–4), 131–314 (2005)

    Article  ADS  Google Scholar 

  41. T.J.Y. Derrien, J. Krüger, J. Bonse, Properties of surface plasmon polaritons on lossy materials: lifetimes, periods and excitation conditions. J. Opt. 18(11), 115007 (2016)

    Google Scholar 

  42. A.Y. Nikitin, F.J. García-Vidal, L. Martín-Moreno, Surface electromagnetic field radiated by a subwavelength hole in a metal film. Phys. Rev. Lett. 105(7), 073902 (2010)

    Google Scholar 

  43. J. Chandezon, M.T. Dupuis, G. Cornet, D. Maystre, Multicoated gratings: a differential formalism applicable in the entire optical region. J. Opt. Soc. Am. 72(7), 839–846 (1982)

    Article  ADS  Google Scholar 

  44. V.A. Markel, Introduction to the Maxwell Garnett approximation: tutorial. J. Opt. Soc. Am. A 33(7), 1244–1256 (2016)

    Article  ADS  Google Scholar 

  45. H. Zhang, J.-P. Colombier, C. Li, N. Faure, G. Cheng, R. Stoian, Coherence in ultrafast laser-induced periodic surface structures. Phys. Rev. B 92(17), 174109 (2015)

    Google Scholar 

  46. R. Buschlinger, S. Nolte, U. Peschel, Self-organized pattern formation in laser-induced multiphoton ionization. Phys. Rev. B 89(18), 184306 (2014)

    Google Scholar 

  47. J.-L. Déziel, L.J. Dubé, S.H. Messaddeq, Y. Messaddeq, C. Varin, Femtosecond self-reconfiguration of laser-induced plasma patterns in dielectrics. Phys. Rev. B 97(20), 205116 (2018)

    Google Scholar 

  48. B. Rethfeld, Unified model for the free-electron avalanche in laser-irradiated dielectrics. Phys. Rev. Lett. 92, 187401 (2004)

    Article  ADS  Google Scholar 

  49. A. Rudenko, J.-P. Colombier, T.E. Itina, From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser. Phys. Rev. B 93(7), 075427 (2016)

    Google Scholar 

  50. A. Marini, M. Conforti, G.D. Valle, H.W. Lee, T.X. Tran, W. Chang, M.A. Schmidt, S. Longhi, P.St.J. Russell, F. Biancalana, Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals. New J. Phys. 15(1), 013033 (2013)

    Google Scholar 

  51. P. Bresson, J.-F. Bryche, M. Besbes, J. Moreau, P.-L. Karsenti, P. G. Charette, D. Morris, M. Canva, Improved two-temperature modeling of ultrafast thermal and optical phenomena in continuous and nanostructured metal films. Phys. Rev. B 102, 155127 (2020)

    Article  ADS  Google Scholar 

  52. B. Morel, R. Giust, K. Ardaneh, F. Courvoisier, A solver based on pseudo-spectral analytical time-domain method for the two-fluid plasma model. Sci. Rep. 11(1), 3151 (2021)

    Google Scholar 

  53. B. Rethfeld, A. Kaiser, M. Vicanek, G. Simon, Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation. Phys. Rev. B 65(21), 214303 (2002)

    Google Scholar 

  54. N. Brouwer, B. Rethfeld, Transient electron excitation and nonthermal electron-phonon coupling in dielectrics irradiated by ultrashort laser pulses. Phys. Rev. B 95(24), 245139 (2017)

    Google Scholar 

  55. A. Rudenko, J.V. Moloney, Coupled kinetic Boltzmann electromagnetic approach for intense ultrashort laser excitation of plasmonic nanostructures. Phys. Rev. B 104, 035418 (2021)

    Article  ADS  Google Scholar 

  56. R. Buschlinger, M. Lorke, U. Peschel, Light-matter interaction and lasing in semiconductor nanowires: A combined finite-difference time-domain and semiconductor Bloch equation approach. Phys. Rev. B 91, 045203 (2015)

    Article  ADS  Google Scholar 

  57. J.R. Gulley, D. Huang, Self-consistent quantum-kinetic theory for interplay between pulsed-laser excitation and nonlinear carrier transport in a quantum-wire array. Opt. Express 27(12), 17154–17185 (2019)

    Article  ADS  Google Scholar 

  58. E. Smetanina, P.G. de Alaiza Martínez, I. Thiele, B. Chimier, A. Bourgeade, G. Duchateau, Optical Bloch modeling of femtosecond-laser-induced electron dynamics in dielectrics. Phys. Rev. E 101(6), 063206 (2020)

    Google Scholar 

  59. K. Yabana, T. Sugiyama, Y. Shinohara, T. Otobe, G.F. Bertsch, Time-dependent density functional theory for strong electromagnetic fields in crystalline solids. Phys. Rev. B 85(4), 045134 (2012)

    Google Scholar 

  60. M.V. Shugaev, L.V. Zhigilei, Thermodynamic analysis and atomistic modeling of subsurface cavitation in photomechanical spallation. Comput. Mater. Sci 166, 311–317 (2019)

    Article  Google Scholar 

  61. Y.P. Meshcheryakov, M.V. Shugaev, T. Mattle, T. Lippert, N.M. Bulgakova, Role of thermal stresses on pulsed laser irradiation of thin films under conditions of microbump formation and nonvaporization forward transfer. Appl. Phys. A 113(2), 521–529 (2013)

    Article  ADS  Google Scholar 

  62. S. Najafi, A.S. Arabanian, R. Massudi, Comprehensive modeling of structural modification induced by a femtosecond laser pulse inside fused silica glass. J. Phys. D: Appl. Phys. 49(25), 255101 (2016)

    Google Scholar 

  63. R. Beuton, B. Chimier, J. Breil, D. Hébert, K. Mishchik, J. Lopez, P.H. Maire, G. Duchateau, Thermo-elasto-plastic simulations of femtosecond laser-induced multiple-cavity in fused silica. Appl. Phys. A 124(4), 124 (2018)

    Google Scholar 

  64. G.D. Tsibidis, M. Barberoglou, P.A. Loukakos, E. Stratakis, C. Fotakis, Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions. Phys. Rev. B 86(11), 115316 (2012)

    Google Scholar 

  65. A.N. Volkov, L.V. Zhigilei, Melt dynamics and melt-through time in continuous wave laser heating of metal films: Contributions of the recoil vapor pressure and marangoni effects. Int. J. Heat Mass Transfer 112, 300–317 (2017)

    Article  Google Scholar 

  66. M.E. Povarnitsyn, T.E. Itina, M. Sentis, K.V. Khishchenko, P.R. Levashov, Material decomposition mechanisms in femtosecond laser interactions with metals. Phys. Rev. B 75(23), 235414 (2007)

    Google Scholar 

  67. A. Rudenko, C. Mauclair, F. Garrelie, R. Stoian, J.-P. Colombier, Amplification and regulation of periodic nanostructures in multipulse ultrashort laser-induced surface evolution by electromagnetic-hydrodynamic simulations. Phys. Rev. B 99(23), 235412 (2019)

    Google Scholar 

  68. J.-P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, E. Audouard, Hydrodynamic simulations of metal ablation by femtosecond laser irradiation. Phys. Rev. B 71(16), 165406 (2005)

    Google Scholar 

  69. M.E. Povarnitsyn, N.E. Andreev, E.M. Apfelbaum, T.E. Itina, K.V. Khishchenko, O.F. Kostenko, P.R. Levashov, M.E. Veysman, A wide-range model for simulation of pump-probe experiments with metals. Appl. Surf. Sci. 258(23), 9480–9483 (2012)

    Article  ADS  Google Scholar 

  70. M. Djouder, O. Lamrous, M.D. Mitiche, T.E. Itina, M. Zemirli, Electromagnetic particle-in-cell (PIC) method for modeling the formation of metal surface structures induced by femtosecond laser radiation. Appl. Surf. Sci. 280, 711–714 (2013)

    Article  ADS  Google Scholar 

  71. T.E. Itina, J. Hermann, P. Delaporte, M. Sentis, Laser-generated plasma plume expansion: Combined continuous-microscopic modeling. Phys. Rev. E 66(6), 066406 (2002)

    Google Scholar 

  72. P. Koukouvinis, N. Kyriazis, M. Gavaises, Smoothed particle hydrodynamics simulation of a laser pulse impact onto a liquid metal droplet. PloS One 13(9), e0204125 (2018)

    Google Scholar 

  73. N. Bloembergen, Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics. Appl. Opt. 12(4), 661–664 (1973)

    Article  ADS  Google Scholar 

  74. J. Le Perchec, P. Quemerais, A. Barbara, T. Lopez-Rios, Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light. Phys. Rev. Lett. 100(6), 066408 (2008)

    Google Scholar 

  75. Y. Shimotsuma, P.G. Kazansky, J. Qiu, K. Hirao, Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91(24), 247405 (2003)

    Google Scholar 

  76. V.R. Bhardwaj, E Simova, P.P. Rajeev, C. Hnatovsky, R.S. Taylor, D.M. Rayner, P.B. Corkum, Optically produced arrays of planar nanostructures inside fused silica. Phys. Rev. Lett. 96(5), 057404 (2006)

    Google Scholar 

  77. R. Taylor, C. Hnatovsky, E. Simova, Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass. Laser Photonics Rev. 2(1–2), 26–46 (2008)

    Article  ADS  Google Scholar 

  78. A. Rudenko, J.-P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, T.E. Itina, Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin. Sci. Rep. 7(1), 12306 (2017)

    Google Scholar 

  79. M. Sakakura, Y. Lei, L. Wang, Y.-H. Yu, P.G. Kazansky, Ultralow-loss geometric phase and polarization sha** by ultrafast laser writing in silica glass. Light: Science and Applications 9(1), 15 (2020)

    Google Scholar 

  80. A. Rudenko, J.-P. Colombier, T.E. Itina, R. Stoian, Genesis of nanogratings in silica bulk via multipulse interplay of ultrafast photo-excitation and hydrodynamics. Adv. Opt. Mater. 9(20), 2100973 (2021)

    Google Scholar 

  81. P. Lalanne, J.P. Hugonin, H.T. Liu, B. Wang, A microscopic view of the electromagnetic properties of sub-l metallic surfaces. Surf. Sci. Rep. 64(10), 453–469 (2009)

    Article  ADS  Google Scholar 

  82. A.Y. Nikitin, S.G. Rodrigo, F.J. García-Vidal, L. Martín-Moreno, In the diffraction shadow: Norton waves versus surface plasmon polaritons in the optical region. New J. Phys. 11(12), 123020 (2009)

    Google Scholar 

  83. A. Alekseevich Ionin, S.I. Kudryashov, S.V. Makarov, A.A. Rudenko, S.V. Seleznev, D.V. Sinitsyn, T.P. Kaminskaya, V.V. Popov, Nonlinear evolution of aluminum surface relief under multiple femtosecond laser irradiation. JETP Lett. 101(5), 350–357 (2015)

    Article  ADS  Google Scholar 

  84. Y. Fuentes-Edfuf, J.A. Sánchez-Gil, C. Florian, V. Giannini, J. Solis, J. Siegel, Surface plasmon polaritons on rough metal surfaces: Role in the formation of laser-induced periodic surface structures. ACS Omega 4(4), 6939–6946 (2019)

    Article  Google Scholar 

  85. A. Barborica, I.N. Mihailescu, V.S. Teodorescu, Dynamical evolution of the surface microrelief under multiple-pulse-laser irradiation: An analysis based on surface-scattered waves. Phys. Rev. B 49, 8385–8395 (1994)

    Article  ADS  Google Scholar 

  86. G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N.N. Nedyalkov, M. Obara, Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates. Opt. Express 19(20), 19093–19103 (2011)

    Article  ADS  Google Scholar 

  87. R.D. Murphy, B. Torralva, D.P. Adams, S.M. Yalisove, Laser-induced periodic surface structure formation resulting from single-pulse ultrafast irradiation of Au microstructures on a Si substrate. Appl. Phys. Lett. 102(21), 211101 (2013)

    Google Scholar 

  88. K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, T. Jia, Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film. Phys. Rev. B 98(18), 184106 (2018)

    Google Scholar 

  89. E. Bévillon, J.P. Colombier, V. Recoules, H. Zhang, C. Li, R. Stoian, Ultrafast switching of surface plasmonic conditions in nonplasmonic metals. Phys. Rev. B 93, 165416 (2016)

    Article  ADS  Google Scholar 

  90. J. Bonse, A. Rosenfeld, J. Krüger, On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses. J. Appl. Phys. 106(10), 104910 (2009)

    Google Scholar 

  91. S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, Femtosecond laser-induced periodic surface structures on silica. J. Appl. Phys. 112(1), 014901 (2012)

    Google Scholar 

  92. J.Z.P. Skolski, G.R.B.E. Römer, J. Vincenc Obona, A.J. Huis in’t Veld, Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations. J. Appl. Phys. 115(10), 103102 (2014)

    Google Scholar 

  93. M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser. ACS Nano 3(12), 4062–4070 (2009)

    Article  Google Scholar 

  94. F. Garrelie, J.-P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, O. Parriaux, Evidence of surface plasmon resonance in ultrafast laser-induced ripples. Opt. Express 19(10), 9035–9043 (2011)

    Article  ADS  Google Scholar 

  95. J.A. Jenkins, Y. Zhou, S. Thota, X. Tian, X. Zhao, S. Zou, J. Zhao, Blue-shifted narrow localized surface plasmon resonance from dipole coupling in gold nanoparticle random arrays. The Journal of Physical Chemistry C 118(45), 26276–26283 (2014)

    Article  Google Scholar 

  96. S. Hou, Y. Huo, P. **ong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, Z. Xu, Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses. J. Phys. D: Appl. Phys. 44(50), 505401 (2011)

    Google Scholar 

  97. J.-W. Yao, C.-Y. Zhang, H.-Y. Liu, Q.-F. Dai, L.-J. Wu, S. Lan, A.V. Gopal, V.A. Trofimov, T.M. Lysak, High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses. Opt. Express 20(2), 905–911 (2012)

    Article  ADS  Google Scholar 

  98. M. Huang, Y. Cheng, F. Zhao, Z. Xu, The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale. Annalen der Physik 525(1–2), 74–86 (2013)

    Article  ADS  Google Scholar 

  99. H. Zhang, J.-P. Colombier, S. Witte, Laser-induced periodic surface structures: Arbitrary angles of incidence and polarization states. Phys. Rev. B 101(24), 245430 (2020)

    Google Scholar 

  100. J.-L. Déziel, J. Dumont, D. Gagnon, L.J. Dubé, S.H. Messaddeq, Y. Messaddeq, Constructive feedback for the growth of laser-induced periodic surface structures. Phys. Status Solidi C 13(2–3), 121–124 (2016)

    Article  ADS  Google Scholar 

  101. I. Gnilitskyi, V. Gruzdev, N.M. Bulgakova, T. Mocek, L. Orazi, Mechanisms of high-regularity periodic structuring of silicon surface by sub-mhz repetition rate ultrashort laser pulses. Appl. Phys. Lett. 109(14), 143101 (2016)

    Google Scholar 

  102. R.S. Taylor, C. Hnatovsky, E. Simova, P.P. Rajeev, D.M. Rayner, P.B. Corkum, Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass. Opt. Lett. 32(19), 2888–2890 (2007)

    Article  ADS  Google Scholar 

  103. F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, S. Nolte, On the rewriting of ultrashort pulse-induced nanogratings. Opt. Lett. 40(9), 2049–2052 (2015)

    Article  ADS  Google Scholar 

  104. Y. Lei, N. Zhang, J. Yang, C. Guo, Femtosecond laser eraser for controllable removing periodic microstructures on Fe-based metallic glass surfaces. Opt. Express 26(5), 5102–5110 (2018)

    Article  ADS  Google Scholar 

  105. W. Zhang, Q. Zhai, J. Song, K. Lou, Y. Li, Z. Ou, Q. Zhao, Y. Dai, Manipulation of self-organized nanograting for erasing and rewriting by ultrashort double-pulse sequences irradiation in fused silica. J. Phys. D: Appl. Phys. 53(16), 165106 (2020)

    Google Scholar 

  106. L. Wang, Q.-D. Chen, X.-W. Cao, R. Buividas, X. Wang, S. Juodkazis, H.-B. Sun, Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing. Light: Science and Applications 6(12), e17112 (2017)

    Google Scholar 

  107. H.U. Lim, J. Kang, C. Guo, T.Y. Hwang, Manipulation of multiple periodic surface structures on metals induced by femtosecond lasers. Appl. Surf. Sci. 454, 327–333 (2018)

    Article  ADS  Google Scholar 

  108. A.V. Dostovalov, T.J.-Y. Derrien, S.A. Lizunov, F. Přeučil, K.A. Okotrub, T. Mocek, V.P. Korolkov, S.A. Babin, N.M. Bulgakova, LIPSS on thin metallic films: New insights from multiplicity of laser-excited electromagnetic modes and efficiency of metal oxidation. Appl. Surf. Sci. 491, 650–658 (2019)

    Article  ADS  Google Scholar 

  109. V.B. Gildenburg, I.A. Pavlichenko, Internal surface plasmon excitation as the root cause of laser-induced periodic plasma structure and self-organized nanograting formation in the volume of transparent dielectric. Nanomaterials 10(8), 1461 (2020)

    Google Scholar 

  110. C. Florian, J.-L. Déziel, S.V. Kirner, J. Siegel, J. Bonse, The role of the laser-induced oxide layer in the formation of laser-induced periodic surface structures. Nanomaterials 10(1), 147 (2020)

    Google Scholar 

  111. P. Dominic, F. Bourquard, S. Reynaud, A. Weck, J.-P. Colombier, F. Garrelie, On the insignificant role of the oxidation process on ultrafast high-spatial-frequency LIPSS formation on tungsten. Nanomaterials 11(5), 1069 (2021)

    Google Scholar 

  112. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21(21), 1729–1731 (1996)

    Article  ADS  Google Scholar 

  113. J. Jia, M. Li, C.V. Thompson, Amorphization of silicon by femtosecond laser pulses. Appl. Phys. Lett. 84(16), 3205–3207 (2004)

    Article  ADS  Google Scholar 

  114. M. Gedvilas, J. Mikšys, G. Račiukaitis, Flexible periodical micro-and nano-structuring of a stainless steel surface using dual-wavelength double-pulse picosecond laser irradiation. RSC Adv. 5(92), 75075–75080 (2015)

    Article  ADS  Google Scholar 

  115. F. Fraggelakis, G. Mincuzzi, J. Lopez, I. Manek-Hönninger, R. Kling, Controlling 2D laser nano structuring over large area with double femtosecond pulses. Appl. Surf. Sci. 470, 677–686 (2019)

    Article  ADS  Google Scholar 

  116. M. Mastellone, A. Bellucci, M. Girolami, V. Serpente, R. Polini, S. Orlando, A. Santagata, E. Sani, F. Hitzel, D.M. Trucchi, Deep-subwavelength 2D periodic surface nanostructures on diamond by double-pulse femtosecond laser irradiation. Nano Lett. 21(10), 4477–4483 (2021)

    Article  ADS  Google Scholar 

  117. A. Abou Saleh, A. Rudenko, S. Reynaud, F. Pigeon, F. Garrelie, J.-P. Colombier, Sub-100 nm 2D nanopatterning on a large scale by ultrafast laser energy regulation. Nanoscale 12(12), 6609–6616 (2020)

    Article  Google Scholar 

  118. E.L. Gurevich, Mechanisms of femtosecond LIPSS formation induced by periodic surface temperature modulation. Appl. Surf. Sci. 374, 56–60 (2016)

    Article  ADS  Google Scholar 

  119. A. Rudenko, A. Abou-Saleh, F. Pigeon, C. Mauclair, F. Garrelie, R. Stoian, J.-P. Colombier, High-frequency periodic patterns driven by non-radiative fields coupled with Marangoni convection instabilities on laser-excited metal surfaces. Acta Mater. 194, 93–105 (2020)

    Article  ADS  Google Scholar 

  120. A. Ben-Yakar, A. Harkin, J. Ashmore, R.L. Byer, H.A. Stone, Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses. J. Phys. D: Appl. Phys. 40(5), 1447 (2007)

    Google Scholar 

  121. V.I. Emel’yanov, D.M. Seval’nev, Defect-deformational Kuramoto-Sivashinsky equation and formation of surface nano-and microstructures under the laser and ion-beam irradiation. Laser Phys. 21(3), 566–575 (2011)

    Article  ADS  Google Scholar 

  122. O. Varlamova, J. Reif, S. Varlamov, M. Bestehorn, The laser polarization as control parameter in the formation of laser-induced periodic surface structures: Comparison of numerical and experimental results. Appl. Surf. Sci. 257(12), 5465–5469 (2011)

    Article  ADS  Google Scholar 

  123. O. Varlamova, C. Martens, M. Ratzke, J. Reif, Genesis of femtosecond-induced nanostructures on solid surfaces. Appl. Opt. 53(31), I10–I15 (2014)

    Article  Google Scholar 

  124. M.C. Cross, P.C. Hohenberg, Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)

    Article  MATH  ADS  Google Scholar 

  125. H. Li, J. Qin, Z. Cao, Z. Su, Laser-induced reversible and irreversible surface nanostructuring. Adv. Mater. Interfaces 8(7), 2001945 (2021)

    Google Scholar 

  126. J.R.A. Pearson, On convection cells induced by surface tension. J. Fluid Mech. 4(5), 489–500 (1958)

    Article  MATH  ADS  Google Scholar 

  127. F.H. Busse, The stability of finite amplitude cellular convection and its relation to an extremum principle. J. Fluid Mech. 30(4), 625–649 (1967)

    Article  MATH  ADS  Google Scholar 

  128. Q. Ouyang, H.L. Swinney, Transition from a uniform state to hexagonal and striped Turing patterns. Nature 352(6336), 610–612 (1991)

    Article  ADS  Google Scholar 

  129. L.E. Scriven, C.V. Sternling, On cellular convection driven by surface-tension gradients: effects of mean surface tension and surface viscosity. J. Fluid Mech. 19(3), 321–340 (1964)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  130. I. Ursu, I.A. Dorobantu, I.N. Mihailescu, M. Vlad, F. Spineanu, A.M. Prokhorov, V.I. Konov, V.N. Tokarev, Possible mechanism for laser-induced two-dimensional periodic structures by analogy with the Bénard effect. Opt. Lett. 14(16), 853–855 (1989)

    Article  ADS  Google Scholar 

  131. G.D. Tsibidis, C. Fotakis, E. Stratakis, From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures. Phys. Rev. B 92(4), 041405 (2015)

    Google Scholar 

  132. G.D. Tsibidis, E. Skoulas, A. Papadopoulos, E. Stratakis, Convection roll-driven generation of supra-wavelength periodic surface structures on dielectrics upon irradiation with femtosecond pulsed lasers. Phys. Rev. B 94, 081305(R) (2016)

    Google Scholar 

  133. Y.N. Kulchin, O.B. Vitrik, A.A. Kuchmizhak, V.I. Emel’Yanov, A.A. Ionin, S.I. Kudryashov, S.V. Makarov, Formation of crownlike and related nanostructures on thin supported gold films irradiated by single diffraction-limited nanosecond laser pulses. Phys. Rev. E 90(2), 023017 (2014)

    Google Scholar 

  134. H.-J. Kull, Theory of the Rayleigh-Taylor instability. Phys. Rep. 206(5), 197–325 (1991)

    Article  ADS  Google Scholar 

  135. O. Schilling, Progress on understanding Rayleigh–Taylor flow and mixing using synergy between simulation, modeling, and experiment. J. Fluids Eng. 142(12), 120802 (2020)

    Google Scholar 

  136. X.Y. Chen, J. Lin, J.M. Liu, Z.G. Liu, Formation and evolution of self-organized hexagonal patterns on silicon surface by laser irradiation in water. Appl. Phys. A 94(3), 649–656 (2009)

    Article  ADS  Google Scholar 

  137. S.S. Fedotov, L.N. Butvina, A.G. Okhrimchuk, Plastic deformation as nature of femtosecond laser writing in YAG crystal. Sci. Rep. 10(1), 19385 (2020)

    Google Scholar 

  138. A. Nakhoul, A. Rudenko, X. Sedao, N. Peillon, J.P. Colombier, C. Maurice, G. Blanc, A. Borbély, N. Faure, G. Kermouche, Energy feedthrough and microstructure evolution during direct laser peening of aluminum in femtosecond and picosecond regimes. J. Appl. Phys. 130(1), 015104 (2021)

    Google Scholar 

  139. A. Vailionis, E.G. Gamaly, V. Mizeikis, W. Yang, A.V. Rode, S. Juodkazis, Evidence of superdense aluminium synthesized by ultrafast microexplosion. Nat. Commun. 2(1), 445 (2011)

    Google Scholar 

  140. L.A. Smillie, M. Niihori, L. Rapp, B. Haberl, J.S. Williams, J.E. Bradby, C.J. Pickard, A.V. Rode, Exotic silicon phases synthesized through ultrashort laser-induced microexplosion: Characterization with raman microspectroscopy. Phys. Rev. Mater. 4(9), 093803 (2020)

    Google Scholar 

  141. N. Fleischmann, S. Adami, N.A. Adams, Numerical symmetry-preserving techniques for low-dissipation shock-capturing schemes. Comput. Fluids 189, 94–107 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  142. S.V. Starikov, V.V. Pisarev, Atomistic simulation of laser-pulse surface modification: predictions of models with various length and time scales. J. Appl. Phys. 117(13), 135901 (2015)

    Google Scholar 

  143. A. Rudenko, J.-P. Colombier, T.E. Itina, Nanopore-mediated ultrashort laser-induced formation and erasure of volume nanogratings in glass. Phys. Chem. Chem. Phys. 20(8), 5887–5899 (2018)

    Article  Google Scholar 

  144. A.A. Ionin, S.I. Kudryashov, A.E. Ligachev, S.V. Makarov, L.V. Seleznev, D.V. Sinitsyn, Nanoscale cavitation instability of the surface melt along the grooves of one-dimensional nanorelief gratings on an aluminum surface. JETP Lett. 94(4), 266–269 (2011)

    Article  ADS  Google Scholar 

  145. M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, F. Brisset, Ultrafast nanoporous silica formation driven by femtosecond laser irradiation. Laser Photonics Rev. 7(6), 953–962 (2013)

    Article  ADS  Google Scholar 

  146. P.N. Terekhin, J. Oltmanns, A. Blumenstein, D.S. Ivanov, F. Kleinwort, M.E. Garcia, B. Rethfeld, J. Ihlemann, P. Simon, Key role of surface plasmon polaritons in generation of periodic surface structures following single-pulse laser irradiation of a gold step edge. Nanophotonics 11(2), 359–367 (2022)

    Article  Google Scholar 

  147. L.V. Zhigilei, Z. Lin, D.S. Ivanov, Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion. J. Phys. Chem. C 113(27), 11892–11906 (2009)

    Article  Google Scholar 

  148. R. Stoian, A. Rosenfeld, D. Ashkenasi, I.V. Hertel, N.M. Bulgakova, E.E.B. Campbell, Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation. Phys. Rev. Lett. 88, 097603 (2002)

    Article  ADS  Google Scholar 

  149. S. Sakabe, M. Hashida, S. Tokita, S. Namba, K. Okamuro, Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse. Phys. Rev. B 79(3), 033409 (2009)

    Google Scholar 

  150. M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond. Phys. Rev. B 79(12), 125436 (2009)

    Google Scholar 

  151. M.V. Shugaev, I. Gnilitskyi, N.M. Bulgakova, L.V. Zhigilei, Mechanism of single-pulse ablative generation of laser-induced periodic surface structures. Phys. Rev. B 96, 205429 (2017)

    Article  ADS  Google Scholar 

  152. G.D. Tsibidis, A. Mimidis, E. Skoulas, S.V. Kirner, J. Krüger, J. Bonse, E. Stratakis, Modelling periodic structure formation on 100Cr6 steel after irradiation with femtosecond-pulsed laser beams. Appl. Phys. A 124(1), 27 (2018)

    Google Scholar 

  153. A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, P. Balcou, E. Förster, J.-P. Geindre, P. Audebert, et al., Non-thermal melting in semiconductors measured at femtosecond resolution. Nature 410(6824), 65–68 (2001)

    Article  ADS  Google Scholar 

  154. S.K. Sundaram, E. Mazur, Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat. Mater. 1(4), 217–224 (2002)

    Article  ADS  Google Scholar 

  155. Y. Tanaka, S. Tsuneyuki, Possible electronic entropy-driven mechanism for non-thermal ablation of metals. Appl. Phys. Express 11(4), 046701 (2018)

    Google Scholar 

  156. N. Medvedev, I. Milov, Nonthermal phase transitions in metals. Sci. Rep. 10(1), 12775 (2020)

    Google Scholar 

  157. Y. Giret, S.L. Daraszewicz, D.M. Duffy, A.L. Shluger, K. Tanimura, Nonthermal solid-to-solid phase transitions in tungsten. Phys. Rev. B 90(9), 094103 (2014)

    Google Scholar 

  158. E. Bévillon, J.-P. Colombier, R. Stoian, First-principles assessment of potential ultrafast laser-induced structural transition in Ni. Appl. Surf. Sci. 374, 365–369 (2016)

    Article  ADS  Google Scholar 

  159. S.T. Murphy, Y. Giret, S.L. Daraszewicz, A.C. Lim, A.L. Shluger, K.Tanimura, D.M. Duffy, Contribution of electronic excitation to the structural evolution of ultrafast laser-irradiated tungsten nanofilms. Phys. Rev. B 93(10), 104105 (2016)

    Google Scholar 

  160. C. Zaum, N. Osterloh, R. Darkins, D.M. Duffy, K. Morgenstern, Real-space observation of surface structuring induced by ultra-fast-laser illumination far below the melting threshold. Sci. Rep. 11, 13269 (2021)

    Article  ADS  Google Scholar 

  161. J. Bonse, S.V. Kirner, J. Krüger, Laser-Induced Periodic Surface Structures (LIPSS) (Springer International Publishing, Cham, 2021), pp. 879–936

    Google Scholar 

  162. C. Mauclair, M. Zamfirescu, J.-P. Colombier, G. Cheng, K. Mishchik, E. Audouard, R. Stoian, Control of ultrafast laser-induced bulk nanogratings in fused silica via pulse time envelopes. Opt. Express 20(12), 12997–13005 (2012)

    Article  ADS  Google Scholar 

  163. P. Temple, M. Soileau, Polarization charge model for laser-induced ripple patterns in dielectric materials. IEEE J. Quantum Electron. 17(10), 2067–2072 (1981)

    Article  ADS  Google Scholar 

  164. X. Shi, L. Jiang, X. Li, S. Wang, Y. Yuan, Y. Lu, Femtosecond laser-induced periodic structure adjustments based on electron dynamics control: from subwavelength ripples to double-grating structures. Opt. Lett. 38(19), 3743–3746 (2013)

    Article  ADS  Google Scholar 

  165. Z. Li, Q. Wu, X. Jiang, X. Zhou, Y. Liu, X. Hu, J. Zhang, J. Yao, J. Xu, Formation mechanism of high spatial frequency laser-induced periodic surface structures and experimental support. Appl. Surf. Sci. 580, 152107 (2022)

    Article  Google Scholar 

  166. G. Miyaji, K. Miyazaki, K. Zhang, T. Yoshifuji, J. Fujita, Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water. Opt. Express 20(14), 14848–14856 (2012)

    Article  ADS  Google Scholar 

  167. S.K. Das, H. Messaoudi, A. Debroy, E. McGlynn, R. Grunwald, Multiphoton excitation of surface plasmon-polaritons and scaling of nanoripple formation in large bandgap materials. Opt. Mater. Express 3(10), 1705–1715 (2013)

    Article  ADS  Google Scholar 

  168. R. Buividas, M. Mikutis, S. Juodkazis, Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances. Prog. Quantum Electron. 38(3), 119–156 (2014)

    Article  ADS  Google Scholar 

  169. A. Rudenko, J.-P. Colombier, T.E. Itina, Influence of polarization state on ultrafast laser-induced bulk nanostructuring. J. Laser Micro/Nanoeng. 11(3), 304–311 (2016)

    Article  Google Scholar 

  170. S. He, J.J.J. Nivas, K.K. Anoop, A. Vecchione, M. Hu, R. Bruzzese, S. Amoruso, Surface structures induced by ultrashort laser pulses: Formation mechanisms of ripples and grooves. Appl. Surf. Sci. 353, 1214–1222 (2015)

    Article  ADS  Google Scholar 

  171. T.J.-Y. Derrien, T.E. Itina, R. Torres, T. Sarnet, M. Sentis, Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon. J. Appl. Phys. 114(8), 083104 (2013)

    Google Scholar 

  172. M. Garcia-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, J. Siegel, Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures. ACS Photonics 3(10), 1961–1967 (2016)

    Article  Google Scholar 

  173. J. Bonse, J. Krüger, Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon. J. Appl. Phys. 108(3), 034903 (2010)

    Google Scholar 

  174. K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, S. Sakabe, Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation. Phys. Rev. B 82(16), 165417 (2010)

    Google Scholar 

  175. A.A. Yurkevich, S.I. Ashitkov, M.B. Agranat, Permittivity of gold with a strongly excited electronic subsystem. Phys. Plasmas 24(11), 113106 (2017)

    Google Scholar 

  176. E. Bévillon, R. Stoian, J.-P. Colombier, Nonequilibrium optical properties of transition metals upon ultrafast electron heating. J. Phys. Condens. Matter 30(38), 385401 (2018)

    Google Scholar 

  177. R. Le Harzic, D. Dörr, D. Sauer, F. Stracke, H. Zimmermann, Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation. Appl. Phys. Lett. 98(21), 211905 (2011)

    Google Scholar 

  178. Y. Kawakami, E. Ozawa, Self-assembled coherent array of ultra-fine particles on single-crystal tungsten substrate using SHG Nd: YAG laser. Appl. Phys. A 71(4), 453–456 (2000)

    Article  ADS  Google Scholar 

  179. J.-G. Son, J.W. Choi, O. Seo, D.-K. Ko, et al., Morphology evolution of self-organized porous structures in silicon surface. Results in Physics 12, 46–51 (2019)

    Article  ADS  Google Scholar 

  180. J.-M. Romano, A. Garcia-Giron, P. Penchev, S. Dimov, Triangular laser-induced submicron textures for functionalising stainless steel surfaces. Appl. Surf. Sci. 440, 162–169 (2018)

    Article  ADS  Google Scholar 

  181. H.-T. Chang, A. Guggenmos, S.K. Cushing, Y. Cui, N.U. Din, S.R. Acharya, I.J. Porter, U. Kleineberg, V. Turkowski, T.S. Rahman, et al. Electron thermalization and relaxation in laser-heated nickel by few-femtosecond core-level transient absorption spectroscopy. Phys. Rev. B 103(6), 064305 (2021)

    Google Scholar 

  182. E. Bévillon, J.-P. Colombier, V. Recoules, R. Stoian, Free-electron properties of metals under ultrafast laser-induced electron-phonon nonequilibrium: A first-principles study. Phys. Rev. B 89(11), 115–117 (2014)

    Article  Google Scholar 

  183. E.P. Silaeva, E. Bévillon, R. Stoian, J.-P. Colombier, Ultrafast electron dynamics and orbital-dependent thermalization in photoexcited metals. Phys. Rev. B 98(9), 094306 (2018)

    Google Scholar 

  184. N. Medvedev, I. Milov, Electron-phonon coupling in metals at high electronic temperatures. Phys. Rev. B 102(6), 064302 (2020)

    Google Scholar 

  185. J.-P. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, F. Pigeon, Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals. J. Appl. Phys. 111(2), 024902 (2012)

    Google Scholar 

  186. H.C. Kuhlmann, Thermocapillary flows in finite size systems. Math. Comput. Modell. 20(10-11), 145–173 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  187. V.G. Levich, V.S. Krylov, Surface-tension-driven phenomena. Annu. Rev. Fluid Mech. 1(1), 293–316 (1969)

    Article  ADS  Google Scholar 

  188. A.M. Lindenberg, J. Larsson, K. Sokolowski-Tinten, K.J. Gaffney, C. Blome, O. Synnergren, J. Sheppard, C. Caleman, A.G. MacPhee, D. Weinstein, et al., Atomic-scale visualization of inertial dynamics. Science 308(5720), 392–395 (2005)

    Article  ADS  Google Scholar 

  189. V.R. Morrison, R.P. Chatelain, K.L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, B.J. Siwick, A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction. Science 346(6208), 445–448 (2014)

    Article  ADS  Google Scholar 

  190. J.P. Colombier, E. Audouard, R. Stoian, Laser pulses designed in time by adaptive hydrodynamic modeling for optimizing ultra-fast laser–metal interactions. Appl. Phys. A 110(3), 723–729 (2013)

    Article  ADS  Google Scholar 

  191. J.-P. Colombier, P. Combis, E. Audouard, R. Stoian, Guiding heat in laser ablation of metals on ultrafast timescales: an adaptive modeling approach on aluminum. New J. Phys. 14(1), 013039 (2012)

    Google Scholar 

  192. J. Kim, S. Na, S. Cho, W. Chang, K. Whang, Surface ripple changes during Cr film ablation with a double ultrashort laser pulse. Opt. Lasers Eng. 46(4), 306–310 (2008)

    Article  Google Scholar 

  193. S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, Area dependence of femtosecond laser-induced periodic surface structures for varying band gap materials after double pulse excitation. Appl. Surf. Sci. 278, 7–12 (2013)

    Article  ADS  Google Scholar 

  194. A. Rubano, F. Cardano, B. Piccirillo, L. Marrucci, Q-plate technology: a progress review. J. Opt. Soc. Am. B 36(5), D70–D87 (2019)

    Article  Google Scholar 

  195. J.J.J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, S. Amoruso, Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate. Sci. Rep. 5(1), 17929 (2015)

    Google Scholar 

  196. C. Hnatovsky, V.G. Shvedov, W. Krolikowski, The role of light-induced nanostructures in femtosecond laser micromachining with vector and scalar pulses. Opt. Express 21(10), 12651–12656 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by an Air Force Office of Scientific Research award Grant No. FA9550-19-1-0032, by the IMOTEP project within the program “Investissements d’Avenir” operated by ADEME and by the LABEX MANUTECH-SISE (ANR-10-LABX-0075) of the Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). Numerical calculations have been performed using HPC resources from GENCI-TGCC and CINES, project gen7041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Colombier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rudenko, A., Colombier, JP. (2023). How Light Drives Material Periodic Patterns Down to the Nanoscale. In: Stoian, R., Bonse, J. (eds) Ultrafast Laser Nanostructuring. Springer Series in Optical Sciences, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-031-14752-4_5

Download citation

Publish with us

Policies and ethics

Navigation