Ultrafast Laser Volume Nanostructuring of Transparent Materials: From Nanophotonics to Nanomechanics

  • Chapter
  • First Online:
Ultrafast Laser Nanostructuring

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 239))

Abstract

The capability of ultrashort laser pulses to generate nonlinear absorption in the transparency window of dielectric materials is at the base of volume structuring. The result is a local change of the refractive index, the building block for generating complex embedded optical functions in three-dimensional geometries within a monolith chip. The nonlinearity determines spatial scales on the order of the wavelength. Depending on the rate and the amount of energy deposition, the local refractive index change can be accurately tuned from positive to negative values on variable scales, generating thus new capabilities for processing light within an optical chip in terms of embedded waveguides and micro-optics. New irradiation strategies and engineered glasses permit to go even further in reaching processing super-resolution, i.e., on spatial scales smaller than the optical resolution. The smallest scales achievable nowadays go well below the diffraction limit approaching and even surpassing the 100 nm value, a tenth of the wavelength. We will discuss in this chapter the possibility of obtaining structural features much smaller than the electromagnetic wavelength and the associated methods. Direct focusing and self-organization phenomena will be analyzed, as well as the optical functions originating from these processes, namely in transporting and manipulating light. Achieving extreme scales in the range of 100 nm generates an additional capability to sample the electrical field within the optical chip and thus to process and read out optical signals. We will discuss emerging applications ranging from photonics, such as sensors, spectro-imagers, actuators, or supports for data storage, down to nanomechanical systems, and pinpoint the enabling character of extreme nanostructuring scales using ultrafast lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21(21), 1729 (1996). https://doi.org/10.1364/OL.21.001729

    Article  ADS  Google Scholar 

  2. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, K. Hirao, Appl. Phys. Lett. 71(23), 3329 (1997). https://doi.org/10.1063/1.120327

    Article  ADS  Google Scholar 

  3. E.N. Glezer, E. Mazur, Appl. Phys. Lett. 71(7), 882 (1997). https://doi.org/10.1063/1.119677

    Article  ADS  Google Scholar 

  4. H. Misawa, S. Juodkazis, 3D Laser Microfabrication: Principles and Applications (Wiley, New York, 2006). https://doi.org/10.1002/352760846X

    Book  Google Scholar 

  5. K. Sugioka, Y. Cheng, Light Sci. Appl. 3(4), e149 (2014). https://doi.org/10.1038/lsa.2014.30

    Article  ADS  Google Scholar 

  6. R. Stoian, Appl. Phys. A 126, 438 (2020). https://doi.org/10.1007/s00339-020-03516-3

    Article  ADS  Google Scholar 

  7. M. Wollenhaupt, A. Assion, T. Baumert, Femtosecond Laser Pulses: Linear Properties, Manipulation, Generation and Measurement (Springer, Berlin, 2007), p. 937. https://doi.org/10.1007/978-0-387-30420-5-12

    Google Scholar 

  8. E. Abbe, Arch. mikr. Anat. 9(1), 469 (1873). https://doi.org/10.1007/BF02956177

  9. L.R. F.R.S., Lond. Edinb. Phil. Mag. 8(49), 261 (1879). https://doi.org/10.1080/14786447908639684

  10. J. Marburger, Prog. Quantum. Electron. 4, 35 (1975). https://doi.org/10.1016/0079-6727(75)90003-8

    Article  ADS  Google Scholar 

  11. A.L. Gaeta, Phys. Rev. Lett. 84, 3582 (2000). https://doi.org/10.1103/PhysRevLett.84.3582

    Article  ADS  Google Scholar 

  12. A. Couairon, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, Phys. Rev. B 71, 125435 (2005). https://doi.org/10.1103/PhysRevB.71.125435

    Article  ADS  Google Scholar 

  13. D. Tan, K.N. Sharafudeen, Y. Yue, J. Qiu, Prog. Mat. Sci. 76, 154 (2016). https://doi.org/10.1016/j.pmatsci.2015.09.002

    Article  Google Scholar 

  14. V.V. Kononenko, V.V. Konov, E.M. Dianov, Opt. Lett. 37(16), 3369 (2012). https://doi.org/10.1364/OL.37.003369

    Article  ADS  Google Scholar 

  15. R. Stoian, J.P. Colombier, Nanophotonics 9(16), 4665 (2020). https://doi.org/10.1515/nanoph-2020-0310.10.1515/nanoph-2020-0310

    Article  Google Scholar 

  16. J. Diels, W. Rudolph, P. Liao, P. Kelley, Ultrashort Laser Pulse Phenomena. Optics and photonics (Elsevier Science, Amsterdam, 2006). https://doi.org/10.1016/B978-0-12-215493-5.X5000-9

  17. J.W. Chan, T.R. Huser, S.H. Risbud, D.M. Krol, Appl. Phys. A 76(3), 367 (2003). https://doi.org/10.1007/s00339-002-1822-9

    Article  ADS  Google Scholar 

  18. K. Mishchik, C. D’Amico, P.K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, R. Stoian, J. Appl. Phys. 114(13), 133502 (2013). https://doi.org/10.1063/1.4822313

    Article  ADS  Google Scholar 

  19. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, Phys. Rev. Lett. 89, 186601 (2002). https://doi.org/10.1103/PhysRevLett.89.186601

    Article  ADS  Google Scholar 

  20. I.M. Burakov, N.M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, I.V. Hertel, J. Appl. Phys. 101(4), 043506 (2007). https://doi.org/10.1063/1.2436925

    Article  ADS  Google Scholar 

  21. P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, M. Perdrix, Phys. Rev. B 55, 5799 (1997). https://doi.org/10.1103/PhysRevB.55.5799

    Article  ADS  Google Scholar 

  22. G.N. Steinberg, Phys. Rev. A 4, 1182 (1971). https://doi.org/10.1103/PhysRevA.4.1182

    Article  ADS  Google Scholar 

  23. V.P. Kandidov, V.Y. Fedorov, O.V. Tverskoi, O.G. Kosareva, S.L. Chin, Quantum Electron. 41(4), 382 (2011). https://doi.org/10.1070/qe2011v041n04abeh014486

    Article  ADS  Google Scholar 

  24. R. Brückner, J. Non-Cryst, Solids 5(2), 123 (1970). https://doi.org/10.1016/0022-3093(70)90190-0

    Google Scholar 

  25. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, S. Juodkazis, Opt. Mater. Express 1(4), 605 (2011). https://doi.org/10.1364/OME.1.000605

    Article  ADS  Google Scholar 

  26. M. Sakakura, T. Kurita, M. Shimizu, K. Yoshimura, Y. Shimotsuma, N. Fukuda, K. Hirao, K. Miura, Opt. Lett. 38(23), 4939 (2013). https://doi.org/10.1364/OL.38.004939

    Article  ADS  Google Scholar 

  27. K. Miura, J. Qiu, T. Mitsuyu, K. Hirao, Opt. Lett. 25(6), 408 (2000). https://doi.org/10.1364/OL.25.000408

    Article  ADS  Google Scholar 

  28. T. Fernandez, M. Sakakura, S. Eaton, B. Sotillo, J. Siegel, J. Solis, Y. Shimotsuma, K. Miura, Prog. Mat. Sci. 94, 68 (2018). https://doi.org/10.1016/j.pmatsci.2017.12.002

    Article  Google Scholar 

  29. S. Nolte, M. Will, J. Burghoff, A. Tuennermann, Appl. Phys. A 77, 109 (2003). https://doi.org/10.1007/s00339-003-2088-6

    Article  ADS  Google Scholar 

  30. D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, A. Tünnermann, Opt. Express 14(6), 2151 (2006). https://doi.org/10.1364/OE.14.002151

    Article  ADS  Google Scholar 

  31. S.M. Eaton, M.L. Ng, J. Bonse, A. Mermillod-Blondin, H. Zhang, A. Rosenfeld, P.R. Herman, Appl. Opt. 47, 2098 (2008). https://doi.org/10.1364/AO.47.002098

    Article  ADS  Google Scholar 

  32. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, Phys. Rev. Lett. 105, 200503 (2010). https://doi.org/10.1103/PhysRevLett.105.200503

    Article  ADS  Google Scholar 

  33. R.R. Thomson, T.A. Birks, S.G. Leon-Saval, A.K. Kar, J. Bland-Hawthorn, Opt. Express 19(6), 5698 (2011). https://doi.org/10.1364/OE.19.005698

    Article  ADS  Google Scholar 

  34. S. Gross, M.J. Withford, Nanophotonics 4(3), 332 (2015). https://doi.org/10.1515/nanoph-2015-0020

    Article  Google Scholar 

  35. S. Minardi, G. Cheng, C. D’Amico, R. Stoian, Opt. Lett. 40(2), 257 (2015). https://doi.org/10.1364/OL.40.000257

    Article  ADS  Google Scholar 

  36. A. Kaiser, B. Rethfeld, M. Vicanek, G. Simon, Phys. Rev. B 61, 11437 (2000). https://doi.org/10.1103/PhysRevB.61.11437

    Article  ADS  Google Scholar 

  37. K. Mishchik, G. Cheng, G. Huo, I.M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, R. Stoian, Opt. Express 18(24), 24809 (2010). https://doi.org/10.1364/OE.18.024809

    Article  ADS  Google Scholar 

  38. M. Lancry, B. Poumellec, J. Canning, K. Cook, J.C. Poulin, F. Brisset, Laser Photonics Rev. 7(6), 953 (2013). https://doi.org/10.1002/lpor.201300043

    Article  ADS  Google Scholar 

  39. C.B. Schaffer, A.O. Jamison, E. Mazur, Appl. Phys. Lett. 84(9), 1441 (2004). https://doi.org/10.1063/1.1650876

    Article  ADS  Google Scholar 

  40. Y. Shimotsuma, P.G. Kazansky, J. Qiu, K. Hirao, Phys. Rev. Lett. 91, 247405 (2003). https://doi.org/10.1103/PhysRevLett.91.247405

    Article  ADS  Google Scholar 

  41. B. Zhang, X. Liu, J. Qiu, J. Materiomics 5(1), 1 (2019). https://doi.org/10.1016/j.jmat.2019.01.002

    Article  ADS  Google Scholar 

  42. P.G. Kazansky, Y. Shimotsuma, J. Ceram, Soc. Japan 116(1358), 1052 (2008). https://doi.org/10.2109/jcersj2.116.1052

    Google Scholar 

  43. R. Taylor, C. Hnatovsky, E. Simova, Laser Photonics Rev. 2(1–2), 26 (2008). https://doi.org/10.1002/lpor.200710031

    Article  ADS  Google Scholar 

  44. V.R. Bhardwaj, E. Simova, P.P. Rajeev, C. Hnatovsky, R.S. Taylor, D.M. Rayner, P.B. Corkum, Phys. Rev. Lett. 96, 057404 (2006). https://doi.org/10.1103/PhysRevLett.96.057404

    Article  ADS  Google Scholar 

  45. F. Liang, J. Bouchard, S. Leang Chin, R. Vallée, Appl. Phys. Lett. 107(6), 061903 (2015). https://doi.org/10.1063/1.4928551

    Article  ADS  Google Scholar 

  46. R. Buschlinger, S. Nolte, U. Peschel, Phys. Rev. B 89, 184306 (2014). https://doi.org/10.1103/PhysRevB.89.184306

    Article  ADS  Google Scholar 

  47. A. Rudenko, J.P. Colombier, T.E. Itina, Phys. Rev. B 93, 075427 (2016). https://doi.org/10.1103/PhysRevB.93.075427

    Article  ADS  Google Scholar 

  48. A. Rudenko, J.P. Colombier, T.E. Itina, R. Stoian, Adv. Opt. Mat. 9(20), 2100973 (2021). https://doi.org/10.1002/adom.202100973

    Article  Google Scholar 

  49. G. Cheng, A. Rudenko, C. D’Amico, T.E. Itina, J.P. Colombier, R. Stoian, Appl. Phys. Lett. 110(26), 261901 (2017). https://doi.org/10.1063/1.4987139

    Article  ADS  Google Scholar 

  50. S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. Kley, A. Tünnermann, S. Nolte, Laser Photonics Rev. 6(6), 787 (2012). https://doi.org/10.1002/lpor.201200048

    Article  ADS  Google Scholar 

  51. M. Sakakura, Y. Lei, L. Wang, Y.H. Yu, P.G. Kazansky, Light Sci. Appl. 9(1), 15 (2020). https://doi.org/10.1038/s41377-020-0250-y

    Article  ADS  Google Scholar 

  52. S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, U. Peschel, J. Laser Appl. 24(4), 042008 (2012). https://doi.org/10.2351/1.4718561

    Article  ADS  Google Scholar 

  53. A. Rudenko, J.P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, T.E. Itina, Sci. Rep. 7, 12306 (2017). https://doi.org/10.1038/s41598-017-12502-4

    Article  ADS  Google Scholar 

  54. R. Stoian, K. Mishchik, G. Cheng, C. Mauclair, C. D’Amico, J.P. Colombier, M. Zamfirescu, Opt. Mater. Express 3(10), 1755 (2013). https://doi.org/10.1364/OME.3.001755

    Article  ADS  Google Scholar 

  55. Y. Liao, J. Ni, L. Qiao, M. Huang, Y. Bellouard, K. Sugioka, Y. Cheng, Optica 2(4), 329 (2015). https://doi.org/10.1364/OPTICA.2.000329

    Article  ADS  Google Scholar 

  56. Z. Yan, J. Gao, M. Beresna, J. Zhang, Adv. Opt. Mat. 10(4), 2101676 (2021). https://doi.org/10.1002/adom.202101676

    Article  Google Scholar 

  57. Y. Lei, M. Sakakura, L. Wang, Y. Yu, H. Wang, G. Shayeganrad, P.G. Kazansky, Optica 8(11), 1365 (2021). https://doi.org/10.1364/OPTICA.433765

    Article  ADS  Google Scholar 

  58. C. Hnatovsky, V. Shvedov, W. Krolikowski, A. Rode, Phys. Rev. Lett. 106, 123901 (2011). https://doi.org/10.1103/PhysRevLett.106.123901

    Article  ADS  Google Scholar 

  59. C. Mauclair, M. Zamfirescu, J.P. Colombier, G. Cheng, K. Mishchik, E. Audouard, R. Stoian, Opt. Express 20(12), 12997 (2012). https://doi.org/10.1364/OE.20.012997

    Article  ADS  Google Scholar 

  60. Y. Shimotsuma, M. Sakakura, P.G. Kazansky, M. Beresna, J. Qiu, K. Miura, K. Hirao, Adv. Mat. 22(36), 4039 (2010). https://doi.org/10.1002/adma.201000921

    Article  Google Scholar 

  61. V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E.G. Gamaly, R. Osellame, S. Juodkazis, Sci. Rep. 7, 39989 (2017). https://doi.org/10.1038/srep39989

    Article  ADS  Google Scholar 

  62. R.S. Taylor, E. Simova, C. Hnatovsky, Opt. Lett. 33(12), 1312 (2008). https://doi.org/10.1364/OL.33.001312

    Article  ADS  Google Scholar 

  63. S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, J. Bonse, Appl. Surf. Sci. 374, 331 (2016). https://doi.org/10.1016/j.apsusc.2015.12.129

    Article  ADS  Google Scholar 

  64. B. Poumellec, M. Lancry, R. Desmarchelier, E. Hervé, B. Bourguignon, Light Sci. Appl. 5(11), e16178 (2016). https://doi.org/10.1038/lsa.2016.178

    Article  ADS  Google Scholar 

  65. R. Stoian, M. Wollenhaupt, T. Baumert, I.V. Hertel, in Laser Precision Microfabrication, ed. by K. Sugioka, M. Meunier, A. Piqué (Springer, Berlin, 2010), pp. 121–144. https://doi.org/10.1007/978-3-642-10523-4-5

    Chapter  Google Scholar 

  66. H. Zhang, S. Hasegawa, H. Toyoda, Y. Hayasaki, Opt. Lasers Eng. 151, 106884 (2022). https://doi.org/10.1016/j.optlaseng.2021.106884

    Article  Google Scholar 

  67. S. Syubaev, A. Zhizhchenko, A. Kuchmizhak, A. Porfirev, E. Pustovalov, O. Vitrik, Yu. Kulchin, S. Khonina, S. Kudryashov, Opt. Express 25(9), 10214 (2017). https://doi.org/10.1364/OE.25.010214

    Article  ADS  Google Scholar 

  68. T. Omatsu, K. Miyamoto, K. Toyoda, R. Morita, Y. Arita, K. Dholakia, Adv. Opt. Mater 7(14), 1801672 (2019). https://doi.org/10.1002/adom.201801672

    Article  Google Scholar 

  69. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E.G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, V.T. Tikhonchuk, Phys. Rev. Lett. 96, 166101 (2006). https://doi.org/10.1103/PhysRevLett.96.166101

    Article  ADS  Google Scholar 

  70. L. Hallo, A. Bourgeade, V.T. Tikhonchuk, C. Mezel, J. Breil, Phys. Rev. B 76, 024101 (2007). https://doi.org/10.1103/PhysRevB.76.024101

    Article  ADS  Google Scholar 

  71. A. Vailionis, E.G. Gamaly, V. Mizeikis, W. Yang, A.V. Rode, S. Juodkazis, Nat. Commun. 2, 445 (2011). https://doi.org/10.1038/ncomms1449

    Article  ADS  Google Scholar 

  72. P.K. Velpula, M.K. Bhuyan, F. Courvoisier, H. Zhang, J.P. Colombier, R. Stoian, Laser Photonics Rev. 10(2), 230 (2016). https://doi.org/10.1002/lpor.201500112

    Article  ADS  Google Scholar 

  73. T. Chen, G. Zhang, Y. Wang, X. Li, R. Stoian, G. Cheng, Micromachines 11(7), 671 (2020). https://doi.org/10.3390/mi11070671

    Article  Google Scholar 

  74. G. Zhang, R. Stoian, R. Lou, T. Chen, G. Li, X. Wang, Y. Pan, P. Wu, J. Wang, G. Cheng, Appl. Surf. Sci. 570, 151170 (2021). https://doi.org/10.1016/j.apsusc.2021.151170

    Article  Google Scholar 

  75. R. Beuton, B. Chimier, J. Breil, D. Hébert, P.H. Maire, G. Duchateau, J. Appl. Phys. 122(20), 203104 (2017). https://doi.org/10.1063/1.4993707

    Article  ADS  Google Scholar 

  76. M.K. Bhuyan, F. Courvoisier, P.A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, J.M. Dudley, Appl. Phys. Lett. 97(8), 081102 (2010). https://doi.org/10.1063/1.3479419

    Article  ADS  Google Scholar 

  77. M.K. Bhuyan, P.K. Velpula, J.P. Colombier, T. Olivier, N. Faure, R. Stoian, Appl. Phys. Lett. 104(2), 021107 (2014). https://doi.org/10.1063/1.4861899

    Article  ADS  Google Scholar 

  78. M.K. Bhuyan, M. Somayaji, A. Mermillod-Blondin, F. Bourquard, J.P. Colombier, R. Stoian, Optica 4(8), 951 (2017). https://doi.org/10.1364/OPTICA.4.000951

    Article  ADS  Google Scholar 

  79. D. Grady, J. Mech. Phys. Solids 36(3), 353 (1988). https://doi.org/10.1016/0022-5096(88)90015-4

    Article  ADS  Google Scholar 

  80. R. Stoian, M.K. Bhuyan, A. Rudenko, J.P. Colombier, G. Cheng, Adv. Phys-X 4(1), 1659180 (2019). https://doi.org/10.1080/23746149.2019.1659180

    Google Scholar 

  81. S. Kanehira, J. Si, J. Qiu, K. Fujita, K. Hirao, Nano Lett. 5(8), 1591 (2005). https://doi.org/10.1021/nl0510154

    Article  ADS  Google Scholar 

  82. K. Mishchik, Y. Petit, E. Brasselet, A. Royon, T. Cardinal, L. Canioni, Opt. Lett. 40(2), 201 (2015). https://doi.org/10.1364/OL.40.000201

    Article  ADS  Google Scholar 

  83. Y. Zhang, X. Wang, G. Zhang, R. Stoian, G. Cheng, Nanomaterials 11(6), 1432 (2021). https://doi.org/10.3390/nano11061432

    Article  Google Scholar 

  84. C. Fan, B. Poumellec, M. Lancry, X. He, H. Zeng, A. Erraji-Chahid, Q. Liu, G. Chen, Opt. Lett. 37(14), 2955 (2012). https://doi.org/10.1364/OL.37.002955

    Article  ADS  Google Scholar 

  85. X. Huang, Q. Guo, D. Yang, X. **ao, X. Liu, Z. **a, F. Fan, J. Qiu, G. Dong, Nat. Photonics 14(2), 82 (2019). https://doi.org/10.1038/s41566-019-0538-8

    Article  ADS  Google Scholar 

  86. F. Flamini, L. Magrini, A.S. Rab, N. Spagnolo, V. D’Ambrosio, P. Mataloni, F. Sciarrino, T. Zandrini, A. Crespi, R. Ramponi, R. Osellame, Light Sci. Appl. 4(11), e354 (2015). https://doi.org/10.1038/lsa.2015.127

    Article  ADS  Google Scholar 

  87. R. Osellame, H. Hoekstra, G. Cerullo, M. Pollnau, Laser Photonics Rev. 5(3), 442 (2011). https://doi.org/10.1002/lpor.201000031

    Article  ADS  Google Scholar 

  88. T. Gissibl, S. Thiele, A. Herkommer, H. Giessen, Nat. Photonics 10(8), 554 (2016). https://doi.org/10.1038/nphoton.2016.121

    Article  ADS  Google Scholar 

  89. M. Thiel, J. Fischer, G. von Freymann, M. Wegener, Appl. Phys. Lett. 97(22), 221102 (2010). https://doi.org/10.1063/1.3521464

    Article  ADS  Google Scholar 

  90. M. Beresna, M. Gecevičius, P.G. Kazansky, Opt. Mater. Express 1(4), 783 (2011). https://doi.org/10.1364/OME.1.000783

    Article  ADS  Google Scholar 

  91. J. Tian, H. Yao, M. Cavillon, E. Garcia-Caurel, R. Ossikovski, M. Stchakovsky, C. Eypert, B. Poumellec, M. Lancry, Micromachines 11(2), 131 (2020). https://doi.org/10.3390/mi11020131

    Article  Google Scholar 

  92. S. Xu, H. Fan, Z.Z. Li, J.G. Hua, Y.H. Yu, L. Wang, Q.D. Chen, H.B. Sun, Opt. Lett. 46(3), 536 (2021). https://doi.org/10.1364/OL.413177

    Article  ADS  Google Scholar 

  93. M. Beresna, P.G. Kazansky, Opt. Lett. 35(10), 1662 (2010). https://doi.org/10.1364/OL.35.001662

    Article  ADS  Google Scholar 

  94. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, R. Stoian, Opt. Express 17(12), 9515 (2009). https://doi.org/10.1364/OE.17.009515

    Article  ADS  Google Scholar 

  95. L.A. Fernandes, J.R. Grenier, P.R. Herman, J.S. Aitchison, P.V.S. Marques, Opt. Express 19(19), 18294 (2011). https://doi.org/10.1364/OE.19.018294

    Article  ADS  Google Scholar 

  96. C. Hnatovsky, D. Grobnic, D. Coulas, M. Barnes, S.J. Mihailov, Opt. Lett. 42(3), 399 (2017). https://doi.org/10.1364/OL.42.000399

    Article  ADS  Google Scholar 

  97. J. Lu, Y. Dai, Q. Li, Y. Zhang, C. Wang, F. Pang, T. Wang, X. Zeng, Nanoscale 11, 908 (2019). https://doi.org/10.1039/C8NR06078A

    Article  Google Scholar 

  98. A. Ròdenas, M. Gu, G. Corrielli, P. Paiè, S. John, A.K. Kar, R. Osellame, Nat. Photonics 13(2), 105 (2019). https://doi.org/10.1038/s41566-018-0327-9

    Article  ADS  Google Scholar 

  99. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987). https://doi.org/10.1103/PhysRevLett.58.2059

    Article  ADS  Google Scholar 

  100. S. John, Phys. Rev. Lett. 58, 2486 (1987). https://doi.org/10.1103/PhysRevLett.58.2486

    Article  ADS  Google Scholar 

  101. G. Cheng, C. D’Amico, X. Liu, R. Stoian, Opt. Lett. 38(11), 1924 (2013). https://doi.org/10.1364/OL.38.001924

    Article  ADS  Google Scholar 

  102. F. Sima, K. Sugioka, Nanophotonics 10(9), 2389 (2021). https://doi.org/10.1515/nanoph-2021-0159

    Article  Google Scholar 

  103. M. Bellec, L. Canioni, A. Royon, B. Bousquet, J. Degert, E. Freysz, T. Cardinal, J.F. Letard, in Data Storage, ed. by F. Balasa (InTech, New York, 2002), pp. 33–51. https://doi.org/10.5772/8874

    Google Scholar 

  104. J. Zhang, M. Gecevičius, M. Beresna, P.G. Kazansky, Phys. Rev. Lett. 112, 033901 (2014). https://doi.org/10.1103/PhysRevLett.112.033901

    Article  ADS  Google Scholar 

  105. Y. Liu, G. Chen, M. Song, X. Ci, B. Wu, E. Wu, H. Zeng, Opt. Express 21(10), 12843 (2013). https://doi.org/10.1364/OE.21.012843

    Article  ADS  Google Scholar 

  106. V.V. Kononenko, I.I. Vlasov, V.M. Gololobov, T.V. Kononenko, T.A. Semenov, A.A. Khomich, V.A. Shershulin, V.S. Krivobok, V.I. Konov, Appl. Phys. Lett. 111(8), 081101 (2017). https://doi.org/10.1063/1.4993751

    Article  ADS  Google Scholar 

  107. Y.C. Chen, P.S. Salter, S. Knauer, L. Weng, A.C. Frangeskou, C.J. Stephen, S.N. Ishmael, P.R. Dolan, S. Johnson, B.L. Green, G.W. Morley, M.E. Newton, J.G. Rarity, M.J. Booth, J.M. Smith, Nat. Photonics 11(2), 77 (2017). https://doi.org/10.1038/nphoton.2016.234

    Article  ADS  Google Scholar 

  108. J.P. Hadden, V. Bharadwaj, B. Sotillo, S. Rampini, R. Osellame, J.D. Witmer, H. Jayakumar, T.T. Fernandez, A. Chiappini, C. Armellini, M. Ferrari, R. Ramponi, P.E. Barclay, S.M. Eaton, Opt. Lett. 43(15), 3586 (2018). https://doi.org/10.1364/OL.43.003586

    Article  ADS  Google Scholar 

  109. A.G.J. MacFarlane, J.P. Dowling, G.J. Milburn, Philos. Trans. R. Soc. London, Ser. A Math. Phys. Eng. Sci. 361(1809), 1655 (2003). https://doi.org/10.1098/rsta.2003.1227

  110. N. Gisin, R. Thew, Nat. Photonics 1(3), 165 (2007). https://doi.org/10.1038/nphoton.2007.22

    Article  ADS  Google Scholar 

  111. T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M.J. Steel, M.J. Withford, A. Szameit, Laser Photonics Rev. 9(4), 363 (2015). https://doi.org/10.1002/lpor.201500061

    Article  ADS  Google Scholar 

  112. A.W. Schell, J. Kaschke, J. Fischer, R. Henze, J. Wolters, M. Wegener, O. Benson, Sci. Rep. 3, 1577 (2013). https://doi.org/10.1038/srep01577

    Article  ADS  Google Scholar 

  113. G. Corrielli, A. Crespi, R. Osellame, Nanophotonics 10(15), 3789 (2021). https://doi.org/10.1515/nanoph-2021-0419

    Article  Google Scholar 

  114. Microsoft silica project. https://www.microsoft.com/en-us/research/project/project-silica/

  115. K.O. Hill, Y. Fujii, D.C. Johnson, B.S. Kawasaki, Appl. Phys. Lett. 32(10), 647 (1978). https://doi.org/10.1063/1.89881

    Article  ADS  Google Scholar 

  116. A. Cusano, A. Cutolo, J. Albert, Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation (Bentham Science Publishers, Sharjah, 2011). https://doi.org/10.2174/97816080508401110101

    Book  Google Scholar 

  117. S.J. Mihailov, C.W. Smelser, P. Lu, R.B. Walker, D. Grobnic, H. Ding, G. Henderson, J. Unruh, Opt. Lett. 28(12), 995 (2003). https://doi.org/10.1364/OL.28.000995

    Article  ADS  Google Scholar 

  118. J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, A. Tünnermann, Appl. Phys. A 86(2), 153 (2007). https://doi.org/10.1007/s00339-006-3754-2

    Article  ADS  Google Scholar 

  119. A. Martinez, M. Dubov, I. Khrushchev, I. Bennion, Electron. Lett. 40, 1170 (2004)

    Article  ADS  Google Scholar 

  120. M. Ams, P. Dekker, S. Gross, M.J. Withford, Nanophotonics 6(5), 743 (2017). https://doi.org/10.1515/nanoph-2016-0119

    Article  Google Scholar 

  121. G.D. Marshall, M. Ams, M.J. Withford, Opt. Lett. 31(18), 2690 (2006). https://doi.org/10.1364/OL.31.002690

    Article  ADS  Google Scholar 

  122. M. Thiel, G. Flachenecker, W. Schade, Opt. Lett. 40(7), 1266 (2015). https://doi.org/10.1364/OL.40.001266

    Article  ADS  Google Scholar 

  123. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, Opt. Lett. 28(1), 55 (2003). https://doi.org/10.1364/OL.28.000055

    Article  ADS  Google Scholar 

  124. G.D. Marshall, A. Jesacher, A. Thayil, M.J. Withford, M. Booth, Opt. Lett. 36(5), 695 (2011). https://doi.org/10.1364/OL.36.000695

    Article  ADS  Google Scholar 

  125. R.J. Williams, C. Voigtländer, G.D. Marshall, A. Tünnermann, S. Nolte, M.J. Steel, M.J. Withford, Opt. Lett. 36(15), 2988 (2011). https://doi.org/10.1364/OL.36.002988

    Article  ADS  Google Scholar 

  126. H. Zhang, P.R. Herman, in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, America, 2007), p. BTuD4. https://doi.org/10.1364/BGPP.2007.BTuD4

  127. H. Zhang, P.R. Herman, IEEE Photon. Technol. Lett. 21(5), 277 (2009). https://doi.org/10.1109/LPT.2008.2010717

    Article  ADS  Google Scholar 

  128. M. Ams, P. Dekker, G.D. Marshall, M.J. Withford, Opt. Lett. 37(6), 993 (2012). https://doi.org/10.1364/OL.37.000993

    Article  ADS  Google Scholar 

  129. E. Ertorer, M. Haque, J. Li, P.R. Herman, Opt. Express 26(7), 9323 (2018). https://doi.org/10.1364/OE.26.009323

    Article  ADS  Google Scholar 

  130. G. Zhang, G. Cheng, M.K. Bhuyan, C. D’Amico, Y. Wang, R. Stoian, Photon. Res. 7(7), 806 (2019). https://doi.org/10.1364/PRJ.7.000806

    Article  Google Scholar 

  131. G. Zhang, G. Cheng, M. Bhuyan, C. D’Amico, R. Stoian, Opt. Lett. 43(9), 2161 (2018). https://doi.org/10.1364/OL.43.002161

    Article  ADS  Google Scholar 

  132. R. Kashyap, in Fiber Bragg Gratings (Second Edition), ed. by R. Kashyap (Academic Press, Boston, 2010), pp. xvii–xviii. https://doi.org/10.1016/B978-0-12-372579-0.00019-3

  133. H. Zhang, S. Ho, S.M. Eaton, J. Li, P.R. Herman, Opt. Express 16(18), 14015 (2008). https://doi.org/10.1364/OE.16.014015

    Article  ADS  Google Scholar 

  134. K.K. Lee, A. Mariampillai, M. Haque, B.A. Standish, V.X. Yang, P.R. Herman, Opt. Express 21(20), 24076 (2013). https://doi.org/10.1364/OE.21.024076

    Article  ADS  Google Scholar 

  135. I. Spaleniak, S. Gross, N. Jovanovic, R.J. Williams, J.S. Lawrence, M.J. Ireland, M.J. Withford, Laser Photonics Rev. 8(1), L1 (2014). https://doi.org/10.1002/lpor.201300129

    Article  ADS  Google Scholar 

  136. J. Bland-Hawthorn, M. Englund, G. Edvell, Opt. Express 12(24), 5902 (2004). https://doi.org/10.1364/OPEX.12.005902

    Article  ADS  Google Scholar 

  137. G.D. Marshall, P. Dekker, M. Ams, J.A. Piper, M.J. Withford, Opt. Lett. 33(9), 956 (2008). https://doi.org/10.1364/OL.33.000956

    Article  ADS  Google Scholar 

  138. J.R. Grenier, L.A. Fernandes, P.R. Herman, Opt. Express 21(4), 4493 (2013). https://doi.org/10.1364/OE.21.004493

    Article  ADS  Google Scholar 

  139. V. Maselli, J.R. Grenier, S. Ho, P.R. Herman, Opt. Express 17(14), 11719 (2009). https://doi.org/10.1364/OE.17.011719

    Article  ADS  Google Scholar 

  140. E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J.M. Fedeli, P. Royer, Nat. Photonics 1(8), 473 (2007). https://doi.org/10.1038/nphoton.2007.138

    Article  ADS  Google Scholar 

  141. M. Bonduelle, G. Martin, I.H. Perez, A. Morand, C. D’Amico, R. Stoian, G. Zhang, G. Cheng, in Optical and Infrared Interferometry and Imaging VII, vol. 11446 (SPIE, New York, 2020), pp. 621–633. https://doi.org/10.1117/12.2562179

    Google Scholar 

  142. C. D’Amico, G. Martin, J. Troles, G. Cheng, R. Stoian, Photonics 8(6), 211 (2021). https://doi.org/10.3390/photonics8060211

    Article  Google Scholar 

  143. G. Martin, M. Bhuyan, J. Troles, C. D’Amico, R. Stoian, E.L. Coarer, Opt. Express 25(7), 8386 (2017). https://doi.org/10.1364/OE.25.008386

    Article  ADS  Google Scholar 

  144. T.A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S.G. Leon-Saval, R.R. Thomson, Adv. Opt. Photon. 7(2), 107 (2015). https://doi.org/10.1364/AOP.7.000107

    Article  Google Scholar 

  145. R.R. Thomson, A.K. Kar, J. Allington-Smith, Opt. Express 17(3), 1963 (2009). https://doi.org/10.1364/OE.17.001963

    Article  ADS  Google Scholar 

  146. J.J. Bryant, R.R. Thomson, M.J. Withford, Opt. Express 25(17), 19966 (2017). https://doi.org/10.1364/OE.25.019966

    Article  ADS  Google Scholar 

  147. S. Minardi, R.J. Harris, L. Labadie, Astron. Astrophys. Rev. 29(1), 6 (2021). https://doi.org/10.1007/s00159-021-00134-7

    Article  ADS  Google Scholar 

  148. Y. Kondo, J. Qiu, T. Mitsuyu, K. Hirao, T. Yoko, Jpn. J. Appl. Phys. 38(10A), L1146 (1999). https://doi.org/10.1143/JJAP.38.L1146

    Article  ADS  Google Scholar 

  149. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, J. Nishii, Opt. Lett. 26(5), 277 (2001). https://doi.org/10.1364/OL.26.000277

    Article  ADS  Google Scholar 

  150. Y. Bellouard, A. Said, M. Dugan, P. Bado, Opt. Express 12(10), 2120 (2004). https://doi.org/10.1364/OPEX.12.002120

    Article  ADS  Google Scholar 

  151. P. Vlugter, E. Block, Y. Bellouard, Phys. Rev. Materials 3, 053802 (2019). https://doi.org/10.1103/PhysRevMaterials.3.053802

    Article  ADS  Google Scholar 

  152. Y. Bellouard, Opt. Express 23(22), 29258 (2015). https://doi.org/10.1364/OE.23.029258

    Article  ADS  Google Scholar 

  153. Y. Bellouard, A. Champion, B. McMillen, S. Mukherjee, R.R. Thomson, C. Pépin, P. Gillet, Y. Cheng, Optica 3(12), 1285 (2016). https://doi.org/10.1364/OPTICA.3.001285

    Article  ADS  Google Scholar 

  154. Y. Bellouard, M. Dugan, A.A. Said, P. Bado, Appl. Phys. Lett. 89(16), 161911 (2006). https://doi.org/10.1063/1.2363957

    Article  ADS  Google Scholar 

  155. J. Morikawa, E. Hayakawa, T. Hashimoto, R. Buividas, S. Juodkazis, Opt. Express 19(21), 20542 (2011). https://doi.org/10.1364/OE.19.020542

    Article  ADS  Google Scholar 

  156. Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A.A. Said, P. Bado, Opt. Express 14(18), 8360 (2006). https://doi.org/10.1364/OE.14.008360

    Article  ADS  Google Scholar 

  157. P. Vlugter, Y. Bellouard, Phys. Rev. Materials 4, 023607 (2020). https://doi.org/10.1103/PhysRevMaterials.4.023607

    Article  ADS  Google Scholar 

  158. R. Lacroix, V. Chomienne, G. Kermouche, J. Teisseire, E. Barthel, S. Queste, Int. J. Appl. Glass Sci. 3(1), 36 (2012). https://doi.org/10.1111/j.2041-1294.2011.00075.x

    Article  Google Scholar 

  159. A. Champion, Y. Bellouard, Opt. Mater. Express 2(6), 789 (2012). https://doi.org/10.1364/OME.2.000789

    Article  ADS  Google Scholar 

  160. P. Vlugter, Y. Bellouard, Phys. Rev. Materials 6, 033602 (2022). https://doi.org/10.1103/PhysRevMaterials.6.033602

    Article  ADS  Google Scholar 

  161. T. Zhang, C. Godavarthi, P.C. Chaumet, G. Maire, H. Giovannini, A. Talneau, M. Allain, K. Belkebir, A. Sentenac, Optica 3(6), 609 (2016). https://doi.org/10.1364/OPTICA.3.000609

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razvan Stoian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stoian, R., D’Amico, C., Bellouard, Y., Cheng, G. (2023). Ultrafast Laser Volume Nanostructuring of Transparent Materials: From Nanophotonics to Nanomechanics. In: Stoian, R., Bonse, J. (eds) Ultrafast Laser Nanostructuring. Springer Series in Optical Sciences, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-031-14752-4_29

Download citation

Publish with us

Policies and ethics

Navigation