Nanoscale Sampling of Optical Signals: Application to High-Resolution Spectroscopy

  • Chapter
  • First Online:
Ultrafast Laser Nanostructuring

Abstract

Direct laser writing is a powerful technique for the development of photonic devices, namely, by allowing 3D structuring and generation of waveguides and other optical functions in bulk dielectrics by locally changing the material refractive index. One of the main interests of the 3D design is the possibility to avoid in-plane crossings of waveguides that can induce losses and crosstalk in future multi-telescope beam combiners. Another powerful advantage of the direct laser writing technique is the ability to directly photo-write nanoscale dielectric discontinuities, allowing to extract light from a waveguide in a controlled way. This allows to periodically sample an optical signal confined in a waveguide and obtain, by dedicated Fourier transform algorithms, the high-resolution spectrum of the optical source while maintaining a very robust, compact optical device. The versatility of laser writing allows to adapt the technique to different transparency range materials (visible, near-, or mid-infrared) and designs and therefore to address a variety of spectral windows and optical functions with a single technological tool. Finally, direct laser writing allows rapid fabrication of complex optical chips (photonic functions, material ablation, electrode patterning), without needing multiple lithographic steps.

In this chapter, different techniques will be described for waveguide and nano-scattering center fabrication, and it will be shown how this can be used in integrated optics spectroscopy. After describing the principle of the Fourier transform-integrated optics spectrometer, we will explain how laser writing can address the strong requirements needed to achieve high-resolution, high spectral range spectroscopy. In particular, it will be demonstrated that using laser writing to fabricate 3D nano-antennas, the directivity of the sampled signal can be improved. The development of these techniques in electro-optic crystals is also interesting in order to increase the signal-to-noise ratio and the detected spectral window. In a final paragraph, the use of 3D laser writing of waveguides to achieve pupil remap** will be shown, together with some direct applications: image reconstruction, spectro-imaging, and wavelength filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Baldwin, C. Haniff, C. Mackay, et al., Closure phase in high-resolution optical imaging. Nature 320, 595–597 (1986)

    Article  Google Scholar 

  2. M.K. Bhuyan, F. Courvoisier, P.A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, J.M. Dudley, High aspect ratio nanochannel machining using single shot femtosecond Bessel beams. Appl. Phys. Lett. 97, 081102 (2010)

    Article  Google Scholar 

  3. M. Bhuyan, P.K. Velpula, J.P. Colombier, T. Olivier, N. Faure, R. Stoian, Single shot high aspect ratio bulk nanostructuring of fused silica using chirp controlled ultrafast laser Bessel beams. Appl. Phys. Lett. 104, 021107 (2014)

    Article  Google Scholar 

  4. T.A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S.G. Leon-Saval, R.R. Thomson, The photonic lantern. Adv. Opt. Photon. 7, 107 (2015)

    Article  Google Scholar 

  5. M. Bonduelle, G. Martin, I.H. Perez, A. Morand, C. d’Amico, R. Stoian, G. Zhang, G. Cheng, Laser written 3D 3T spectro-interferometer: study and optimisation of the laser-written nano-antenna, in Proc. SPIE 11446, Optical and Infrared Interferometry and Imaging VII, (13 December 2020), p. 114462T

    Google Scholar 

  6. M. Bonduelle, I. Heras, A. Morand, G. Ulliac, R. Salut, N. Courjal, G. Martin, Near IR stationary wave Fourier transform lambda meter in lithium niobate: Multiplexing and improving optical sampling using spatially shifted nanogroove antenna. Appl. Opt. 60, D83–D92 (2021)

    Article  Google Scholar 

  7. G. Brown, R.R. Thomson, A.K. Kar, N.D. Psaila, H.T. Bookey, Ultrafast laser inscription of Bragg-grating waveguides using the multiscan technique. Opt. Lett. 37, 491 (2012)

    Article  Google Scholar 

  8. F. Ceccarelli, S. Atzeni, A. Prencipe, R. Farinaro, R. Osellame, Thermal phase shifters for femtosecond laser written photonic integrated circuits. J. Light. Technol. 37(17), 4275–4281 (2019)

    Article  Google Scholar 

  9. G. Cheng, C. D’Amico, X. Liu, R. Stoian, Large mode area waveguides with polarization functions by volume ultrafast laser photoinscription of fused silica. Opt. Lett. 38, 1924 (2013)

    Article  Google Scholar 

  10. N. Cvetojevic, et al., FIRST, the pupil-remap** fiber interferometer at Subaru telescope: towards photonic beam-combination with phase control and on-sky commissioning results. Proc. SPIE 10701, Optical and Infrared Interferometry and Imaging VI, 107010A (10 July 2018)

    Google Scholar 

  11. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Writing waveguides in glass with a femtosecond laser. Opt. Lett. 1024(21), 1729–1731 (1996)

    Article  Google Scholar 

  12. Y.N. Denisyuk, On the reproduction of the optical properties of an object by the wave field of its scattered radiation. Opt. Spectrosc. (USSR) 15, 279–284 (1963)

    Google Scholar 

  13. T. Diard, F. de la Barrière, Y. Ferrec, N. Guérineau, S. Rommeluère, E. Le Coarer, G. Martin, Compact high-resolution micro-spectrometer on chip: spectral calibration and first spectrum, in Proc. SPIE 9836, Micro- and Nanotechnology Sensors, Systems, and Applications VIII, (25 May 2016), p. 98362W

    Google Scholar 

  14. G. Douglass, F. Dreisow, S. Gross, S. Nolte, M.J. Withford, Towards femtosecond laser written arrayed waveguide gratings. Opt. Express 23(16), 21392–21402 (2015)

    Article  Google Scholar 

  15. G. Douglass, F. Dreisow, S. Gross, M.J. Withford, Femtosecond laser written arrayed waveguide gratings with integrated photonic lanterns. Opt. Express 26(2), 1497–1505 (2018)

    Article  Google Scholar 

  16. G. Douglass, A. Arriola, I. Heras, G. Martin, E. Le Coarer, S. Gross, M.J. Withford, Novel concept for visible and near infrared spectro-interferometry: Laser-written layered arrayed waveguide gratings. Opt. Express 26, 18470–18479 (2018)

    Article  Google Scholar 

  17. C. Dragone, An N × N optical multiplexer using a planar arrangement of two star couplers. IEEE Photon. Technol. Lett. 3(9), 812–815 (1991)

    Article  Google Scholar 

  18. I.V. Dyakonov et al., Reconfigurable photonics on a glass chip. Phys. Rev. Appl. 10(4), 044048 (2018)

    Article  Google Scholar 

  19. F. Flamini et al., Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining. Light Sci. Appl. 4, e354 (2015)

    Article  Google Scholar 

  20. T. Fusco, et al. Optimization of a Shack-Hartmann-based wavefront sensor for XAO systems. Proc. SPIE 5490, Advancements in Adaptive Optics, (25 October 2004)

    Google Scholar 

  21. D. Gabor, A new microscopic principle. Nature 161, 777–778 (1948)

    Article  Google Scholar 

  22. S. Gousset, et al., NANOCARB-21: A miniature Fourier-transform spectro-imaging concept for a daily monitoring of greenhouse gas concentration on the Earth surface, in International Conference on Space Optics—ICSO 2016, vol. 10562, (International Society for Optics and Photonics, 2017). https://hal.archives-ouvertes.fr/hal-01401371

  23. N.C. Harris et al., Efficient, compact and low loss thermo-optic phase shifter in silicon. Opt. Express 22(9), 10487–10493 (2014)

    Article  Google Scholar 

  24. R. He, I. Hernández-Palmero, C. Romero, J.R. Vázquez de Aldana, F. Chen, Three-dimensional dielectric crystalline waveguide beam splitters in mid-infrared band by direct femtosecond laser writing. Opt. Express 22, 31293–31298 (2014)

    Article  Google Scholar 

  25. J. Hu, C.R. Menyuk, Understanding leaky modes: Slab waveguide revisited. Adv. Opt. Photonics 1, 58–106 (2009)

    Article  Google Scholar 

  26. M. Hughes, W. Yang, D. Hewak, Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass. Appl. Phys. Lett. 90, 131113 (2007)

    Article  Google Scholar 

  27. N. Jovanovic et al., Starlight demonstration of the Dragonfly instrument: An integrated photonic pupil-remap** interferometer for high-contrast imaging. Mon. Not. R. Astron. Soc. 427, 806–815 (2012)

    Article  Google Scholar 

  28. S. Kroesen, W. Horn, J. Imbrock, C. Denz, Electro-optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing. Opt. Express 22(19), 23339–23348 (2014)

    Article  Google Scholar 

  29. A. Labeyrie, J.P. Huignard, B. Loiseaux, Optical data storage in microfibers. Opt. Lett. 23(4), 301–303 (1998)

    Article  Google Scholar 

  30. S. Lacour, P. Tuthill, P. Amico, M. Ireland, D. Ehrenreich, N. Huelamo, A.-M. Lagrange, Sparse aperture masking at the VLT – I. Faint companion detection limits for the two debris disk stars HD 92945 and HD 141569. Astron. Astrophys. 532 (2011). https://doi.org/10.1051/0004-6361/201116712

  31. E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J.M. Fedeli, P. Royer, Wavelength-scale stationary-wave integrated Fourier-transform spectrometry. Nat. Photonics 1, 473 (2007)

    Article  Google Scholar 

  32. J.P. Lloyd, F. Martinache, M.J. Ireland, et al., Direct Detection of the Brown Dwarf GJ 802B with Adaptive Optics Masking Interferometry, ApJL 650, L131 (2006)

    Article  Google Scholar 

  33. J. Loridat, S. Heidmann, F. Thomas, G. Ulliac, N. Courjal, A. Morand, G. Martin, All integrated lithium niobate standing wave Fourier transform electro-optic spectrometer. J. Lightwave Technol. 36, 4900–4907 (2018)

    Article  Google Scholar 

  34. G.D. Marshall, M. Ams, M.J. Withford, Direct laser written waveguide Bragg gratings in bulk fused silica. Opt. Lett. 31, 2690 (2006)

    Article  Google Scholar 

  35. G. Martin, J. R. Vázquez de Aldana, A. Rodenas, C. d’Amico, R. Stoian, Recent results on photonic devices made by laser writing: 3D 3T near IR waveguides, mid-IR spectrometers and electro-optic beam combiners, in Proc. SPIE 9907, Optical and Infrared Interferometry and Imaging V, (26 July 2016), p. 990739

    Google Scholar 

  36. G. Martin, M. Bhuyan, J. Troles, C. D’Amico, R. Stoian, E. Le Coarer, Near infrared spectro-interferometer using femtosecond laser written GLS embedded waveguides and nano-scatterers. Opt. Express 25, 8386–8397 (2017)

    Article  Google Scholar 

  37. J.C.F. Matthews et al., Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photonics 3(6), 346–350 (2009)

    Article  Google Scholar 

  38. B.W. McMillen, M. Li, S. Huang, B. Zhang, K.P. Chen, Ultrafast laser fabrication of Bragg waveguides in chalcogenide glass. Opt. Lett. 39(12), 3579–3582 (2014)

    Article  Google Scholar 

  39. B.J. Metcalf et al., Quantum teleportation on a photonic chip. Nat. Photonics 8(10), 770–774 (2014)

    Article  Google Scholar 

  40. S. Minardi, G. Cheng, C. D’Amico, R. Stoian, A low power threshold photonic saturable absorber in nonlinear chalcogenide glass. Opt. Lett. 40, 257 (2015)

    Article  Google Scholar 

  41. A. Morand, I. Heras, G. Ulliac, E. Le Coarer, P. Benech, N. Courjal, G. Martin, Improving the vertical radiation pattern issued from multiple nano-groove scattering centers acting as an antenna for future integrated optics Fourier transform spectrometers in the near IR. Opt. Lett. 44, 542–545 (2019)

    Article  Google Scholar 

  42. H.-D. Nguyen, A. Ródenas, J.R. Vázquez de Aldana, G. Martín, J. Martínez, M. Aguiló, M.C. Pujol, F. Díaz, Low-loss 3D-laser-written mid-infrared LiNbO3 depressed-index cladding waveguides for both TE and TM polarizations. Opt. Express 25, 3722–3736 (2017)

    Article  Google Scholar 

  43. M. Nowak et al., Reaching sub-milimag photometric precision on Beta Pictoris with a nanosat: The PicSat mission, in Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, vol. 9904, (International Society for Optics and Photonics, Bellingham, 2016)

    Google Scholar 

  44. G. Perrin, F. Malbet, J. Monnier, Astrophysics with closure phases. Eur. Astron. Soc. Publ. Ser. 6, 213–213 (2003)

    Google Scholar 

  45. A. Rodenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, et al., Three-dimensional mid-infrared photonic circuits in chalcogenide glass. Opt. Lett. 37(3), 392–394 (2012)

    Article  Google Scholar 

  46. G. Sagnac, Sur la preuve de la réalité de l’éther lumineux par l’expérience de l’interférographe tournant. CRAS (Paris) 157, 708–710, 1410–1413 (1913)

    Google Scholar 

  47. B. E. A. Saleh, M. C. Teich (eds.), Fundamentals of Photonics, Chap. 18 (Wiley & Sons, New York, 1991)

    Google Scholar 

  48. M.K. Smit, C. Van Dam, PHASAR-based WDM-devices: Principles, design and applications. IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996)

    Article  Google Scholar 

  49. I. Spaleniak, S. Gross, N. Jovanovic, et al., Multiband processing of multimode light: Combining 3D photonic lanterns with waveguide Bragg gratings. Laser Photonics Rev. 8, L1–L5 (2014)

    Article  Google Scholar 

  50. F. Thomas, S. Heidmann, M. de Mengin, N. Courjal, G. Ulliac, A. Morand, P. Benech, E. Le Coarer, G. Martin, First results in near and mid IR lithium niobate-based integrated optics interferometer based on SWIFTS-Lippmann concept. J. Lightwave Technol. 32, 3736–3742 (2014)

    Article  Google Scholar 

  51. F. Thomas, S. Heidmann, J. Loridat, M. de Mengin, A. Morand, P. Benech, C. Bonneville, T. Gonthiez, E. Le Coarer, G. Martin, Expanding sampling in a SWIFTS-Lippmann spectrometer using an electro-optic Mach-Zehnder modulator, in Proc. SPIE 9516, Integrated Optics: Physics and Simulations II, (1 May 2015), p. 95160B

    Google Scholar 

  52. R.R. Thomson, T.A. Birks, S.G. Leon-Saval, A.K. Kar, J. Bland-HawtHorn, Ultrafast laser inscription of an integrated photonic lantern. Opt. Express 19, 5698–5705 (2011)

    Article  Google Scholar 

  53. P.G. Tuthill, J.D. Monnier, W.C. Danchi, Aperture masking interferometry on the Keck I Telescope: New results from the diffraction limit, in Proc. SPIE 4006, Interferometry in Optical Astronomy, (5 July 2000)

    Google Scholar 

  54. P.K. Velpula, M. Bhuyan, F. Courvoisier, H. Zhang, J.P. Colombier, R. Stoian, Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring. Laser Photonics Rev. 2, 230 (2016)

    Article  Google Scholar 

  55. M.M. Vogel, M. Abdou-Ahmed, A. Voss, T. Graf, Very-large-mode-area, single-mode multicore fiber. Opt. Lett. 34, 2876 (2009)

    Article  Google Scholar 

  56. J. Wang et al., Experimental quantum Hamiltonian learning. Nat. Phys. 13(6), 551–555 (2017)

    Article  Google Scholar 

  57. H. Zhang, S.M. Eaton, P.R. Herman, Opt. Lett. 32, 2559–2561 (2007)

    Article  Google Scholar 

  58. A. Zoubir, C. Lopez, M. Richardson, K. Richardson, Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate). Opt. Lett. 29, 1840–1842 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martin, G. et al. (2023). Nanoscale Sampling of Optical Signals: Application to High-Resolution Spectroscopy. In: Stoian, R., Bonse, J. (eds) Ultrafast Laser Nanostructuring. Springer Series in Optical Sciences, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-031-14752-4_28

Download citation

Publish with us

Policies and ethics

Navigation