Galvanizing Residue and Electrical Arc Furnace (EAF) Dust

  • Chapter
  • First Online:
Recycling Technologies for Secondary Zn-Pb Resources

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Steel and zinc (Zn) make a good coupling during their service life and are easily recyclable. Zn coatings lengthen the useful life of steel products and structures and keep the steel performing at its peak condition. When the Zn coated steel is scrapped and recycled, the steel and Zn have new lives. Therefore, the combination of steel and Zn is especially fortunate because it is possible to separate and recover both the original metals. This means that galvanized steel and electro-Zn coated steel sheets are recyclable materials which can be reused to make further contributions to the life of the society. The metals can be separated because Zn is naturally much more volatile than steel. When scrap Zn coated sheet is melted in the steelmaking process, the scrap steel is turned into new steel for reuse. The Zn enters dust which is recovered from the furnace. They form a secondary resource of Zn which we can use again, alongside other Zn raw materials. The recycled Zn is also used in Zn coated steel, with a new life in new products, such as cars, buildings and construction products. This cycle, in which Zn and steel are infinitely renewable, contributes to the virtuous circle of recycling for sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AZR:

American Zinc Corp.

BAT:

Best Available Technology

BOF:

Basic Oxygen Furnace

CZO:

Crude Zinc Oxide

DRI:

Direct Reduced Iron

EAF:

Electric Arc Furnace

EMPF:

Elkem multi-Purpose Furnace

EoL:

End-of-Life

ESRF:

Electric Smelting Reduction Furnace

EW:

Electrowinning

HBI:

Hot Briquetted Iron

HTMR:

High Temperature Metal Recovery

IBSP:

Iron bath Smelting Process

IF:

Induction Furnace

ILZRO:

International Lead Zinc Research Organization

IRM:

Iron Rich Material

ISP:

Imperial Smelting Process

ISRI:

Institute of Scrap Recycling Industries

IZA:

International Zinc Association

Kt:

Kilo ton

OHF:

Open-Hearth Furnace

PCDD:

Polychlorinated Dibenzo-p-Dioxins

PCDF:

Polychlorinated Dibenzofurans

PIZO:

Pig Iron Zinc Oxide

PVC:

Polyvinylchloride

RHF:

Rotary Hearth Furnace

ROM:

Run-of-mine

SDR:

Steel Dust Recycling

SHG:

Special High Grade

SPP:

Submerged Plasma Lance

SX:

Solvent Extraction

TBBPA:

Tetrabromobisphenol A

TBBPADGE:

Tetrabromobisphenol A diglycidyl ether

TGA:

Thermogravimetric Analysis

TMS:

Minerals, Metals & Materials Society

TSL:

Top Submerged Lance

VOC:

Volatile Organic Compounds

WIP:

Waelz Iron Product

WOX:

Waelz Oxide

WZO:

Waelz Oxide

ZCA:

Zinc Corp. of America

References

  • Al-Harahsheh M, Kingman S, Al-Makhadmah L, Hamilton IE (2014) Microwave treatment of electric arc furnace dust with PVC: dielectric characterization and pyrolysis-leaching. J Hazard Mater 274:87–97

    Article  CAS  Google Scholar 

  • Assis G (1998) Emerging pyrometallurgical processes for zinc and lead recovery from zinc-bearing waste materials. In: Proceedings of Zinc and lead processing symposium, pp 243–264

    Google Scholar 

  • Badger SR, Kneller W (1997) Characterization and formation of electric arc furnace (EAF) dusts. In: 55th electric furnace conference, pp 95–97

    Google Scholar 

  • Best TE, Pickles CA (2001) In-flight plasma reduction of electric arc furnace dust in carbon monoxide. Can Metall Q 40:61e78

    Google Scholar 

  • Binnemans K, Jones PT, Fernandez AM, Torres VM (2020) Hydrometallurgical processes fort he recovery of metals from steel industry by-products: a critical review. J Sust Met 6:505–540

    Article  Google Scholar 

  • Bratina JE, Lenti KM (2008) PIZO furnace demonstration operation for processing EAF dust. Iron Steel Technol 5:118–122

    CAS  Google Scholar 

  • Buzin PJWK, Heck NC, Vilela ACF (2017) EAF dust: an overview on the influences ofphysical, chemical and mineral features in itsrecycling and waste incorporation routes. J Mater Res Technol 6(2):194–202. https://doi.org/10.1016/j.jmrt.2016.10.002

    Article  CAS  Google Scholar 

  • Chairaksa-Fujimoto R, Inoue T, Umeda N, Itoh S, Nagasaka T (2015) New pyrometallurgical process of EAF dust treatment with CaO addition. Int J Min Metall Mater 22:788–796

    Article  CAS  Google Scholar 

  • Chen W, Gammal TE (2000) Laboratory investigation of zinc recovery from EAF dust by bath smelting reduction. J Univ Sci Technol 7:18–23

    CAS  Google Scholar 

  • Council EU (2003) Council Decision 2003/33/EC of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills under Article 16 of and Annex II to Directive 1999/31/EC, 2003. Off J Eur Communities 16:L11

    Google Scholar 

  • Dutra AJB, Paiva PRP, Tavares LM (2006) Alkaline leaching of zinc from electric arc furnace steel dust. Min Eng 19:478–485

    Article  CAS  Google Scholar 

  • European Commission DG ENV.E3 (2002) Heavy metals in waste, final report, project ENV.E3/ETU/2000/0058.COWI A/S, Denmark

    Google Scholar 

  • Fisch T, Kesseler K (2006) Oxycup shaft furnace of Thyssen Krupp steel strategy for economic recycling of fine grained ferrous and carbonaceous residues. In: Proceedings of environmental seminar, pp 90–98

    Google Scholar 

  • Frieden R, Hansmann T, Roth JL, Solvi M, Engel R (2001) PRIMUS®, a new process for the recycling of steelmaking by-products and the prereduction of iron ore. Acta Metall Slovaka 7:33–44

    Google Scholar 

  • Grabda M, Oleszek S, Shibata E, Nakamura T (2014) Study on simultaneous recycling of EAF dust and plastic waste containing TBBPA. J Hazard Mater 278:25–33

    Article  CAS  Google Scholar 

  • Grillo FF, Coleti JL, Espinosa DCR, Oliveira JR, Tenorio JAS (2014) Zn and Fe recovery from electric arc furnace dusts. Mater Trans 55:351e356

    Google Scholar 

  • Guezennec AG, Huber JC, Patisson F, Sessiecq PH, Birat JP, Ablitzer D (2004) Dust formation by bubble-burst phenomenon at the surface of a liquid steel bath. ISIJ Int 44:1328–1333

    Article  CAS  Google Scholar 

  • Guo T, Hu X, Matsuura H, Tsukihashi F, Zhou G (2010) Kinetics of Zn removal from ZnO–Fe2O3–CaCl2 system. ISIJ Int 50:1084–1088

    Article  CAS  Google Scholar 

  • Halli P, Hamuyuni J, Revitzer H, Lundström M (2017) Selection of leaching media for metal dissolution from electric arc furnace dust. J Clean Prod 164:265–276. https://doi.org/10.1016/j.jclepro.2017.06.212

    Article  CAS  Google Scholar 

  • Halli P, Hamuyuni J, Leikola M, Lundstrom M (2018) Develo** a sustainable solution for recycling electric arc furnace dust via organic acid leaching. Min Eng 124:1–9. https://doi.org/10.1016/j.mineng.2018.05.011.DOI:10.1016/j.jclepro.2017.06.212

    Article  CAS  Google Scholar 

  • Hamuyuni J, Halli P, Tesfaye F, Leikola M, Lundström M (2018) A sustainable methodology for recycling electric arc furnace dust. Miner Metals Mater Ser 233–240. https://doi.org/10.1007/978-3-319-72362-4_20

  • Hara Y, Ishiwata N, Itaya H, Matsumoto T (2000) Smelting reduction process with a coke packed bed for steelmaking dust recycling. ISIJ Internat 40(3):231–237. https://doi.org/10.2355/isi**ternational.40.231

    Article  CAS  Google Scholar 

  • Havlik T, Turzakova M, Stopić S, Friedrich B (2005) Atmospheric leaching of EAF dust with diluted sulphuric acid. Hydrometallurgy 77:41–50. https://doi.org/10.1016/j.hydromet.2004.10.008

    Article  CAS  Google Scholar 

  • Holappa LEK (2017) Energy efficiency and sustainability in steel production. In: Wang S, Free M, Alam S, Zhang M., Taylor P (eds) Applications of process engineering principles in materials processing, energy and environmental technologies. The minerals, metals & materials series. Springer, Cham. https://doi.org/10.1007/978-3-319-51091-0_39

  • Holtzer M, Kmita A, Roczniak A (2015) The recycling of materials containing iron and zinc in the OxyCup process. Arch Foundry 15:126–130

    CAS  Google Scholar 

  • Hryniewicz M, Janewicz A (2008) Research into the possibility of basic oxygen furnace consolidation in a roll press. Pol J Environ Stud 17:235–239

    Google Scholar 

  • Huaiwei Z, **n H (2011) An overview for the utilization of wastes from stainless steel industries. Resour Conser Recycl 55:745–754

    Article  Google Scholar 

  • Hughes S, Reuter MA, Baxter R (2008) Ausmelt technology for lead and zinc processing. Proc Lead Zinc 147–162

    Google Scholar 

  • Hunt J, Ferrari A, Lita A, Crosswhite M, Ashley B, Stiegman AE (2013) Microwave-specific enhancement of the carbon–carbon dioxide (Boudouard) reaction. J Phys Chem C 117:26871–26880

    Article  CAS  Google Scholar 

  • Itaya H, Katayama H, Hamada T, Sato M, Ushijima T, Momokawa H (1990) Ferroalloy production by smelting reduction process with coke-packed bed. Kawasaki Steel Tech Rep 22:3–11

    Google Scholar 

  • Itoh S, Tsubone A, Matsubae-Yokoyama K, Nakajima K, Nagasaka T (2008) New EAF dust treatment process with the aid of strong magnetic field. ISIJ Int 48:1339–1344

    Article  CAS  Google Scholar 

  • Jha MK, Kumar V, Singh RJ (2001) Review of the hydrometallurgical recovery of zinc from industrial wastes. Resour Conserv Recycl 33(1):1–22

    Article  Google Scholar 

  • Kaya M, Hussaini S, Kursunoglu S (2020a) Critical review on secondary zinc resources and their recycling technologies. Hydrometallurgy 195:105362

    Google Scholar 

  • Kaya M, Kursunoglu S, Hussaini S, Gul E (2020b) Leaching of Turkish Oxidized Pb–Zn flotation tailings by inorganic and organic acids, TMS-2020. In: 9th International symposium on lead and Zinc processing, PbZn, San Diego, USA, Proceedings, pp 447–468

    Google Scholar 

  • Kirschen M, Pfeifer H, Wahlers FJ, Meers H (2001) Off-gas measurements for mass and energy balances of stainless steel EAF. In: 59th electric furnace conference, Phoenix

    Google Scholar 

  • Kurunov IF (2012) Environmental aspects of industrial technologies for recycling sludge and dust that contain iron and zinc. Metallurgist 55:634–639

    Article  CAS  Google Scholar 

  • Lanzerstorfer C (2018) Electric arc furnace (EAF) dust: Application of air classification for improved zinc enrichment in in-plant recycling. J Clean Prod 174:1–6

    Article  CAS  Google Scholar 

  • Leclerc N, Meux E, Lecuire JM (2003) Hydrometallurgical extraction of zinc from zincferrites. Hydrometallurgy 70:175–183. https://doi.org/10.1016/S0304-386X(03)00079-3

    Article  CAS  Google Scholar 

  • Lee GS, Song YJ (2007) Recycling EAF dust by heat treatment with PVC. Min Eng 20:739–746

    Article  CAS  Google Scholar 

  • Li H, Wang Y, Cang D (2010) Zinc leaching from electric arc furnace dust in alkaline medium. J Cent South Univ Technol 17:967–971

    Article  CAS  Google Scholar 

  • Lin X, Peng Z, Yan J, Li Z, Hwang JY, Zhang Y, Li G, Tao J (2017) Pyrometallurgical recycling of electric arc furnace dust. J Cleaner Prod 149:1079–1100. https://doi.org/10.1016/j.jclepro.2017.02.128

    Article  CAS  Google Scholar 

  • Lis T, Nowacki K, Zelichowska M, Kania H (2015) Innovation in metallurgical waste management. Metalurgija 54:283–285

    Google Scholar 

  • Lovás M, Jakabský Š, Šepelák V, Hredzák S (2012) Characterization of blast furnace sludge and removal of zinc by microwave assisted extraction. Hydrometallurgy 129–130:67–73

    Google Scholar 

  • Magdziarz A, Wilk M, Kosturkiewicz B (2011) Investigation of sewage sludge preparation for combustion process. Chem Process Eng 32:299–309. https://doi.org/10.2478/v10176-011-0024-4

    Article  CAS  Google Scholar 

  • Magdziarz M, Kuźnia M, Bembenek M, Gara P, Hryniewicz M (2015) Briquetting of EAF dust for its utilisation in metallurgical processes. Chem Process Eng 36(2):263–271. https://doi.org/10.1515/cpe-2015-0018

    Article  CAS  Google Scholar 

  • Mager K, Meurer U, Garcia-Egocheaga B, Goicoechea N, Rutten J, Sagge F, Simonetti W (2000) Recovery of zinc oxide from secondary raw materials: new developments of the Waelz process. In: Proceedings of recycling of metals and engineered materials, pp 329–344

    Google Scholar 

  • Mantovani MC, Takano C, Büchler PM (2002) EAF dust-coal composite pellet: effect of pellet size, dust composition, and additives on swelling and zinc removal. Ironmaking Steelmaking 29:257–265

    Article  CAS  Google Scholar 

  • Matusewicz R, Mounsey E (1998) Using ausmelt technology for the recovery of cobalt from smelter slags. JOM 50:53–56

    Article  CAS  Google Scholar 

  • Nakayama M (2011) EAF dust treatment for high metal recovery, https://steelplantech.com/wp-content/uploads/2013/11/2011-06-EAF-DustTreatment-forHighMetalRecovery.pdf

    Google Scholar 

  • Nolasco-Sobrinho PJ, Espinosa DCR (2003) Characterisation of dusts and sludges generated during stainless steel production in Brazilian industries. Ironmak Steelmak 30(1):11–17. https://doi.org/10.1179/030192303225009506

  • Olper M (1996) Zinc extraction from EAF dust with the EZINEX process. In: United Nations Economic Commission for Europe (eds) Working party on steel, seminar on the processing, utilisation and disposal of waste in steel industry. Balatonszéplak, Hungary

    Google Scholar 

  • Olper M (1998) The EZINEX process—five years of development from bench scale to a commercial plant. In: Dutrizac JE, Gonzalez JA, Bolton GL, Hancock P (eds) Zinc and lead processing CIM. Calgary, Alberta, Canada, pp 545–560

    Google Scholar 

  • Olper M, Maccagni M (2000) Electrolytic zinc production from crude zinc oxide with the EZINEX process. In: Stewart Jr DL, Daley JC, Stephens RL (eds) Fourth international symposium on recycling of metals and engineered materials.TMS, Warrendale, PA, pp 379–396

    Google Scholar 

  • Omran M, Fabritius T (2019) Utilization of blast furnace sludge for the removal of zinc from steelmaking dusts using microwave heating. Sep Purif Technol 210:867–884

    Article  CAS  Google Scholar 

  • Omran M, Fabritius T, Yu Y, Eetu-Pekka H, Chen G, Kacar Y (2021) Improving zinc recovery from steelmaking dust by switching from conventional heating to microwave heating. J Sustain Metall 7:15–26. https://doi.org/10.1007/s40831-020-00319-x

    Article  Google Scholar 

  • Oustadakis P, Tsakiridis PE, Katsiapi A, Agatzini-Leonardou S (2010) Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD), Part I: Characterization and leaching by diluted sulphuric acid. J Hazard Mater 179:1–7. https://doi.org/10.1016/j.jhazmat.2010.01.059

    Article  CAS  Google Scholar 

  • Orhan G (2005) Leaching and cementation of heavy metals from electric arc furnace dust in alkaline medium. Hydrometallurgy 78:236–245

    Article  CAS  Google Scholar 

  • Palimaka P, Pietrzyk S, Stepien M, Ciecko K, Nejman I (2018) Zinc recovery from steelmaking dust by hydrometallurgical methods. Metals 8:547.https://doi.org/10.3390/met8070547

  • Pickles CA (2009) Thermodynamic analysis of the selective chlorination of electric arc furnace dust. J Hazard Mater 166:1030–1042

    Article  CAS  Google Scholar 

  • Pickles CA (2010) Thermodynamic modelling of the formation of zinc-manganese ferrite spinel in electric arc furnace dust. J Hazard Mater 179:309–317

    Article  CAS  Google Scholar 

  • Pickles CA, Marzoughi O (2018) Thermodynamic investigation of the sulphation roasting of electric arc furnace dust. Minerals 9(1):18. https://doi.org/10.3390/min9010018

  • Popovici V (2009) By-products from EAF dust recycling and their valorization. http://www.brederoshaw.com/non_html/techpapers/BrederoShaw_TP_GSC_Nov2009.pdf. Accessed 16 Sept 2010

  • Ranitovic M, Kamberovic Z, Korac M, Gavrilovski M, Issa H, AnCic Z (2014) Investigation of possibility for stabilization and valorization of electric arc furnace dust and glass from electronic waste. Sci Sinter 46:83–93

    Article  CAS  Google Scholar 

  • Reichel T (2018) Ph.D. thesis, RWTH Aachen University

    Google Scholar 

  • Ruiz O, Clemente C, Alonso M, Alguacil FJ (2007) Recycling of an electric arc furnace flue dust to obtain high-grade ZnO. J Hazard Mater 141(1):33–36

    Article  CAS  Google Scholar 

  • Roth JL, Frieden R, Hansmann T, Monai J, Solvi M (2001) PRIMUS, a new process for recycling by-products and producing virgin iron. Rev Met Paris 98(11):987–996. https://doi.org/10.1051/metal:2001140.

  • Sautens T, Van Acker K, Blanpain B, Mishra B, Apelian D (2014a) Comparison of electric arc furnace dust treatment technologies using energy efficiency. J Hazard Mater 287:180–187

    Google Scholar 

  • Sautens T, Van Acker K, Blanpain B (2014b) Moving towards better recycling options for electric arc furnace dust. JOM 66(7):1119-1121

    Google Scholar 

  • Schaffner B, Meier A, Wuillemin D, Hoffelner W, Steinfeld A (2003) Recycling of hazardous solid waste material using high-temperature solar process heat. 2. Reactor design and experimentation. Environ Sci Technol 37:165–170

    Article  CAS  Google Scholar 

  • Simonyan LM, Zhuravleva OE, Khiľko AA (2015) The use of plasma-arc for extraction of zinc and lead from the steelmaking dust. J Chem Sci Technol 4:1–7

    Google Scholar 

  • Sofilić T, Rastovčan-Mioč A, Cerjan-Stefanović S, Novosel-Radovi V, Jenko M (2004) Characterization of steel mill electric-arc furnace dust. J Hazard Mater 109:59–70

    Article  Google Scholar 

  • Southwick LM (2010) Still no simple solution to processing EAFdust. Steel Times Int 2010:43–50

    Google Scholar 

  • Schoukens AFS, Shaw F, Chemaly EC (1993) The enviroplas process for the treatment of steel-plant dusts. J S Afr Inst Min Metall 93:1–7

    CAS  Google Scholar 

  • Takacova Z, Hluchanova B, Trpevska J (2010) Leaching of zinc from zinc ash originating from hot-dip galvanizing. Metall 12:517–519

    Google Scholar 

  • The PIZO® Advantage (2016). http://pizotech.com/technology/index.html. Accessed 16 Aug 2021

  • Tzouganatos N, Matter N, Wieckert C, Antrekowitsch J, Gamroth M, Steinfeld A (2013) Thermal recycling of Waelz oxide using concentrated solar energy. JOM 65:1733–1743

    Article  CAS  Google Scholar 

  • Wang C, Jennes R, Mattila O, Paananen T, Lilja J, Larsson M (2015) Investigation of applying OxyCup® process for an integrated steel pant from a Nordic country. In: Proceedings of the second EATAD, pp 1–5

    Google Scholar 

  • World Steel Association (2019) https://www.worldsteel.org/en/dam/jcr:96d7a585-e6b2-4d63-b943-4cd9ab621a91/World%2520Steel%2520in%2520Figures%25202019.pdf

  • Verscheure K, Van Camp M, Blanpain B, Wollants P, Hayes P, Jak E (2007a) Continuous fuming of zinc-bearing residues: Part II. The submerged-plasma zinc-fuming process. Metall Mater Trans B 38:21–33

    Google Scholar 

  • Verscheure K, Van Camp M, Blanpain B, Wollants P, Hayes P, Jak E (2007b) Continuous fuming of zinc bearing residues: Part I. Model development. Metall Mater Trans B 38:13–20

    Google Scholar 

  • Wijenayake JK, Sohn HS (2020) The synthesis of tire grade ZnO from top submerged lance (TSL) furnace flue dust generated in Cu recycling industries. Hydrometallurgy 198:105466

    Article  CAS  Google Scholar 

  • Yin B (1998) Treatment of electric arc furnace dust by Ausmelt technology. Shanghai Metall Info 6:35–39

    Google Scholar 

  • Zhang B, Yan X, Shibata K, Tada M, Hirasawa M (1999) Novel process for recycling metallic elements from mixtures of metal oxide wastes and waste polyvinyl chloride. High Temp Mater Process 118:197–211

    Article  Google Scholar 

  • Zhang B, Yan X, Shibata K, Tada M, Hirasawa M (2000) Thermogravimetricmass spectrometric analysis of the reactions between oxide (ZnO, Fe2O3 and ZnFe2O4) and polyvinyl chloride under inert atmosphere. Mater Trans 41:1342–1350

    Article  CAS  Google Scholar 

  • Zhou T (2002) Use of Ausmelt technology in EAF dust treatment China Nonferr. Metall 31:49–51

    CAS  Google Scholar 

  • Zhou J, Xu W, You Z, Wang Z, Luo Y, Gao L, Yin C, Peng R, Lan L (2016) A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions. Sci Rep 6:25149

    Article  CAS  Google Scholar 

Websites

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muammer Kaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaya, M. (2023). Galvanizing Residue and Electrical Arc Furnace (EAF) Dust. In: Kaya, M. (eds) Recycling Technologies for Secondary Zn-Pb Resources. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-14685-5_4

Download citation

Publish with us

Policies and ethics

Navigation