Autonomous Driving Technical Characteristics

  • Chapter
  • First Online:
Autonomous Vehicles for Public Transportation

Abstract

In recent years, autonomous driving has become not only a hypothetical driving solution, but a reality. The vehicle models used in the implementation of this concept are similar to the pre-existing, classic solutions, but in addition to the current systems they also include a complex network of sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://www.intechopen.com/books/electric-vehicles-modelling-and-simulations/electrical-vehicle-design-and-modeling. 6 Oct 2020

  2. https://www.ti.com/solution/electric-drive?variantid=26121&subsystemid=28521. 21 Mar 2021

  3. Iclodean, C., Cordos, N., Varga, B.O.: Autonomous shuttle bus for public transportation: a review. Energies 13, 2917 (2020)

    Article  Google Scholar 

  4. https://www.ti.com/solution/battery-management-system-bms?variantid=14008&subsystemid=17303. 21 Mar 2021

  5. Lu, L., Han, X., Li, J., Hua, J., Ouyang, M.: A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272–288. ISSN 0378-7753. https://doi.org/10.1016/j.jpowsour.2012.10.060. 17 May 2022

  6. https://easymile.com/vehicle-solutions/ez10-passenger-shuttle. 24 July 2020

  7. https://navya.tech/shuttle/. 11 Apr 2020

  8. https://techcrunch.com/2019/08/31/come-along-take-a-ride/. 22 April 2022

  9. https://www.ntsb.gov/investigations/AccidentReports/Reports/HAB1906.pdf. 12 Apr 2020

  10. Iclodean, C., et al.: Comparison of different battery types for electric vehicles. IOP Conf. Ser.: Mater. Sci. Eng. 252, 012058 (2017)

    Google Scholar 

  11. Skouras, T.A., Gkonis, P.K., Ilias, C.N., Trakadas, P.T., Tsampasis, E.G., Zahariadis, T.V.: Electrical vehicles: current state of the art, future challenges, and perspectives. Clean Technol. 2, 1–16 (2020)

    Article  Google Scholar 

  12. Sun, X., Li, Z., Wang, X., Li, C.: Technology development of electric vehicles: a review. Energies 13, 90 (2020)

    Article  Google Scholar 

  13. https://www.thierry-lequeu.fr/data/SZZA058C.pdf. 12 Apr 2020

  14. https://www.emobilitysimplified.com/2019/10/ev-charging-levels-modes-types-explained.html. 12 Apr 2020

  15. https://www.iecee.org/dyn/www/f?p=106:49:0::::FSP_STD_ID:6032. 12 Apr 2020

  16. https://www.sae.org/standards/content/j1772_201710/. 12 Apr 2020

  17. https://www.pngkey.com/maxpic/u2e6e6i1a9o0q8a9/. 12 Apr 2020

  18. https://landtransportguru.net/easymile-ez10/. 18 Apr 2020

  19. https://www.theverge.com/2016/6/17/11962776/local-motors-olli-3d-printed-autonomous-bus-photos. 18 Apr 2020

  20. Ainsalu, J., Arffman, V., Bellone, M., Ellner, M., Haapamäki, T., Haavisto, N., Josefson, E., Ismailogullari, A., Lee, B., Madland, O., Madžulis, R., Müür, J., Mäkinen, S., Nousiainen, V., Pilli-Sihvola, E., Rutanen, E., Sahala, S., Schønfeldt, B., Smolnicki, P.M., Soe, R.-M., Sääski, J., Szymańska, M., Vaskinn, I., Åman, M.: State of the art of automated buses. Sustainability 10, 3118 (2018)

    Article  Google Scholar 

  21. Eskandarian, A.: Handbook of Intelligent Vehicles. Springer, Heidelberg, pp. 33–58 (2012)

    Google Scholar 

  22. https://www.ti.com/applications/automotive/adas/overview.html?HQS=sys-auto-adas-automotivevanity-vanity-lp-adas-wwe. 28 Aug 2020

  23. https://www.ti.com/solution/hev-ev-on-board-obc-wireless-charger. 21 Mar 2021

  24. https://eduscol.education.fr/sti/concours_examens/epreuve-de-sciences-de-lingenieur-septembre-2018-nouvelle-caledonie#fichiers-liens. 16 Apr 2020

  25. Chen, Y., Yu, H., Graaf, R., Wang, X., Wan, J.: Robust vehicle longitudinal motion control subject to in-wheel-motor driving torque variations. In: Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, pp. 4316–4321, 24–26 May 2017

    Google Scholar 

  26. Zhang, Z., Pan, H., Salman, W., Rasim, Y., Liu, X., Wang, C., Yang, Y., Li, X.: A novel steering system for a space-saving 4ws4wd electric vehicle: design, modeling, and road tests. IEEE Trans. Intell. Transp. Syst. 18, 114 (2017)

    Article  Google Scholar 

  27. Isa, K.B., Jantan, A.B.: An autonomous vehicle driving control system. Int. J. Eng. Educ. 21, 855–866 (2005)

    Google Scholar 

  28. Zheng, H., Yang, S.: A trajectory tracking control strategy of 4WIS/4WID electric vehicle with adaptation of driving conditions. Appl. Sci. 9, 168 (2019)

    Article  Google Scholar 

  29. https://www.ti.com/solution/electric-power-steering-eps. 22 Mar 2021

  30. IPG Automotive, Reference Manual Version 9.1 CarMaker (2020)

    Google Scholar 

  31. https://e2e.ti.com/blogs_/b/behind_the_wheel/archive/2014/09/25/cars-are-becoming-rolling-sensor-platforms. 12 Apr 2020

  32. https://uk.farnell.com/wcsstore/ExtendedSitesCatalogAssetStore/cms/asset/images/europe/common/applications/automotive/pdf/ti-adas-solution-guide.pdf. 12 Apr 2020

  33. https://www.wevolver.com/article/a.review.of.autonomous.vehicle.safety.and.regulations. 12 Apr 2020

  34. https://github.com/ApolloAuto/. 12 Apr 2020

  35. https://velodynelidar.com/downloads/. 12 Apr 2020

  36. https://www.hesaitech.com/en/download?product=Pandora. 12 Apr 2020

  37. https://www.conti-engineering.com/en-US/Industrial-Sensors/Sensors-Overview. 12 Apr 2020

  38. https://leopardimaging.com/product-category/usb30-cameras/. 12 Apr 2020

  39. https://docs.novatel.com/oem7/Content/PDFs/PwrPak7_Installation_Operation_Manual.pdf. 12 Apr 2020

  40. Rosique, F., Navarro, P.J., Fernández, C., Padilla, A.: A systematic review of perception system and simulators for autonomous vehicles research. Sensors 19, 648 (2019)

    Article  Google Scholar 

  41. Zheng, L., Li, B., Yang, B., Song, H., Lu, Z.: Lane-level road network generation techniques for lane-level maps of autonomous vehicles: a survey. Sustainability 11, 4511 (2019)

    Article  Google Scholar 

  42. https://www.itf-oecd.org/sites/default/files/docs/safer-roads-automated-vehicles.pdf. 12 Apr 2020

  43. http://umich.edu/~umtriswt/PDF/SWT-2017-12.pdf. 12 Apr 2020

  44. https://cleantechnica.com/2016/07/29/tesla-google-disagree-lidar-right/. 12 Apr 2020

  45. https://www.vie-publique.fr/sites/default/files/rapport/pdf/184000287.pdf. 02 Oct 2020

  46. https://www.semagarage.com/assets/pdf/advanced-driver-assistant-system-paper.pdf. 07 Sept 2020

  47. Im, J.-H., Im, S.-H., Jee, G.-I.: Extended line map-based precise vehicle localization using 3D LIDAR. Sensors 18, 3179 (2018)

    Article  Google Scholar 

  48. Royo, S., Ballesta-Garcia, M.: An overview of lidar imaging systems for autonomous vehicles. Appl. Sci. 9, 4093 (2019)

    Article  Google Scholar 

  49. https://www.sick.com/kr/en/detection-and-ranging-solutions/2d-lidar-sensors/c/g91900. 12 Apr 2020

  50. https://www.sick.com/kr/en/detection-and-ranging-solutions/3d-lidar-sensors/c/g282752. 12 Apr 2020

  51. Sualeh, M., Kim, G.-W.: Dynamic multi-LiDAR based multiple object detection and tracking. Sensors 19, 1474 (2019)

    Article  Google Scholar 

  52. Yu, X., Marinov, M.: A study on recent developments and issues with obstacle detection systems for automated vehicles. Sustainability 12, 3281 (2020)

    Article  Google Scholar 

  53. https://www.ti.com/solution/automotive-mechanically-scanning-lidar. 22 Mar 2021

  54. https://www.ti.com/lit/wp/slyy150a/slyy150a.pdf?ts=1606728761407. 12 Apr 2020

  55. Steinhardt, N., Leinen, S.: Data fusion for precise localization. In: Winner, H., Hakuli, S., Lotz, F. (eds.) Handbook of Driver Assistance Systems, pp. 154–196. Springer International Publishing, Switzerland (2016)

    Google Scholar 

  56. Stateczny, A., Kazimierski, W., Gronska-Sledz, D., Motyl, W.: The empirical application of automotive 3D radar sensor for target detection for an autonomous surface vehicle’s navigation. Remote Sens. 11, 1156 (2019)

    Article  Google Scholar 

  57. Bosch Automotive Electrics and Automotive Electronics Systems and Components, Networking and Hybrid Drive. https://www.springer.com/gp/book/9783658017835

  58. Bishop, R.: Intelligent Vehicle Technology and Trends. Artech House, Norwood, MA, USA, pp. 7–24 (2005)

    Google Scholar 

  59. Robert Bosch GmbH: Bosch Automotive Electrics and Automotive Electronics. Springer, Heidelberg. https://doi.org/10.1007/978-3-658-01784-2_7 (2014)

  60. https://www.bosch-mobility-solutions.com/en/products-and-services/passenger-cars-and-light-commercial-vehicles/driver-assistance-systems/automatic-emergency-braking/mid-range-radar-sensor-(mrr)/. 12 Apr 2020

  61. https://www.ti.com/solution/automotive-long-range-radar?variantid=18307&subsystemid=18539. 22 Mar 2021

  62. Yu, H., Shi, W., Alawieh, H.B., Yan, C., Zeng, X., Li, X., Yu, H.: Efficient statistical validation of autonomous driving systems. In: Yu, H., Li, X., Murray, R.M., Ramesh, S., Tomlin, C. (eds.) Safe, Autonomous and Intelligent Vehicles, pp. 5–32. Springer International Publishing, Cham (2019)

    Google Scholar 

  63. Yu, F.-M., Jwo, K.-W., Chang, R.-S., Tsai, C.-T.: Dispensing technology of 3D printing optical lens with its applications. Energies 12, 3118 (2019)

    Article  Google Scholar 

  64. Ahmed, S., Huda, M.N., Rajbhandari, S., Saha, C., Elshaw, M., Kanarachos, S.: Pedestrian and cyclist detection and intent estimation for autonomous vehicles: a survey. Appl. Sci. 9, 2335 (2019)

    Article  Google Scholar 

  65. https://www.ti.com/solution/automotive-front-camera?variantid=14995&subsystemid=15228. 22 Mar 2021

  66. Wu, X., Cheng, C., Zhao, X.: Kinematic and dynamic vehicle model-assisted global positioning method for autonomous vehicles with low-cost GPS/Camera/In-Vehicle sensors. Sensors 19, 5430 (2019)

    Google Scholar 

  67. Odijk, D.: Positioning model. In: Teunissen, P.J.G., Montenbruck, O. (eds.) Springer Handbook of Global Navigation Satellite Systems, pp. 606–635. Springer International Publishing, Switzerland (2017)

    Google Scholar 

  68. Onyekpe, U., Palade, V., Kanarachos, S.: Learning to localise automated vehicles in challenging environments using Inertial Navigation Systems (INS). Appl. Sci. 11, 1270 (2021)

    Article  Google Scholar 

  69. Özgüner, Ü., Acarman, T., Redmill, K.: Autonomous Ground Vehicles. Artech House, Norwood, MA, USA, pp. 193–216 (2011)

    Google Scholar 

  70. https://www.ti.com/solution/ultrasonic-park-assist-sensor. 22 Mar 2021

  71. Wang, J., Shao, Y., Ge, Y., Yu, R.: A survey of vehicle to everything (V2X) testing. Sensors 19, 334 (2019)

    Article  Google Scholar 

  72. Eichberger, A., Markovic, G., Magosi, Z., Rogic, B., Lex, C., Samiee, S.: A Car2X sensor model for virtual development of automated driving. Int. J. Adv. Robot. Syst. (2017). https://doi.org/10.1177/1729881417725625. 17 May 2022

  73. https://www.ti.com/solution/vehicle-to-everything-v2x. 22 Mar 2021

  74. Shrestha, R., Nam, S.Y., Bajracharya, R., Kim, S.: Evolution of V2X communication, and integration of blockchain for security enhancements. Electronics 9, 1338 (2020)

    Article  Google Scholar 

  75. Herrtwich, R.G., Nöcker G.: Cooperative driving: taking telematics to the next level. In: Fukui, M., Sugiyama, Y., Schreckenberg, M., Wolf, D.E. (eds.) Traffic and Granular Flow’01. Springer, Heidelberg (2003)

    Google Scholar 

  76. https://www.sae.org/standards/content/j2735_202007/. 17 May 2022

  77. https://www.mathworks.com/help/mpc/ref/adaptivecruisecontrolsystem.html (July 31, 2020).

  78. https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/812327-electronicbrakelight.pdf. 31 July 2020

  79. https://savari.net/wp-content/uploads/2017/01/Savari-V2VApps-DataSheet-FINALOct2016.pdf. 31 Aug 2020

  80. Dimitrievski, M., Veelaert, P., Philips, W.: Behavioral pedestrian tracking using a camera and LiDAR sensors on a moving vehicle. Sensors 19, 391 (2019)

    Article  Google Scholar 

  81. Soni, A., Hu, H.: Formation control for a fleet of autonomous ground vehicles: a survey. Robotics 7, 67 (2018)

    Article  Google Scholar 

  82. Anaya, J.J., Merdrignac, P., Shagdar, O., Nashashibi, F., Naranjo, J.E.: Vehicle to pedestrian communications for protection of vulnerable road users. IEEE Intelli. Veh. Symp. Proc. 2014, 1037–1042 (2014). https://doi.org/10.1109/IVS.2014.6856553

    Article  Google Scholar 

  83. Sewalkar, P., Krug, S., Seitz, J.: Towards 802.11p-based vehicle-to-pedestrian communication for crash prevention systems. In 2017 9th International Congress on Ultra-Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 404–409 (2017). https://doi.org/10.1109/ICUMT.2017.8255154

  84. Sewalkar, P., Seitz, J.: Vehicle-to-pedestrian communication for vulnerable road users: survey, design considerations, and challenges. Sensors 19, 358 (2019)

    Article  Google Scholar 

  85. Sugimoto, C., Nakamura, Y., Hashimoto, T.: Prototype of pedestrian-to-vehicle communication system for the prevention of pedestrian accidents using both 3G wireless and WLAN communication. In: 2008 3rd International Symposium on Wireless Pervasive Computing, pp. 764–767 (2008). https://doi.org/10.1109/ISWPC.2008.4556313

  86. Vargas Rivero, J.R., Gerbich, T., Teiluf, V., Buschardt, B., Chen, J.: Weather classification using an automotive LIDAR sensor based on detections on asphalt and atmosphere. Sensors 20, 4306 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Ovidiu Varga .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iclodean, C., Varga, B.O., Cordoș, N. (2022). Autonomous Driving Technical Characteristics. In: Autonomous Vehicles for Public Transportation. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-14678-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14678-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14677-0

  • Online ISBN: 978-3-031-14678-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation