Modification of Wood-Polymer Composites with Silica Sols of Different Nature

  • Conference paper
  • First Online:
Proceedings of STCCE 2022 (STCCE 2022)

Abstract

At the present time the actual task in the development of compositions for profile molding products made of wood-polymer composites is the search for effective binding agents for the system wood filler - polymer. In this work, we investigated the influence of different types of silica as binding agents on the properties of wood-polymer composites based on polyvinyl chloride. Silica sols had different stabilizing media, pH values and silica content. Tests were carried out on film samples obtained by rolling. Both technological and operational properties of the studied composites were considered. It was found that the introduction of silica, regardless of their type, increases the tensile strength. At the same time composites modified with silica with higher SiO2 content (about 30%), have increased values of strength characteristics. It was also found that silica sols stabilized with sodium ions (Na+) do not lead to an increase in melt viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Klyosov, A.A.: Wood-Plastic Composites (2007).https://doi.org/10.1002/9780470165935

  2. Wilkes, C.E., Summers, J.W., Daniels, C.A.: PVC handbook (2007)

    Google Scholar 

  3. Matseevich, T., Askadskiy, A.: Mechanical properties of decking on the base of polyethylene, polypropylene and polyvinylchloride. Stroit. stvo Nauk. i Obraz 3, 49–59 (2017). https://doi.org/10.22227/2305-5502.2017.3.4

  4. Fayzullin, I.Z., Volfson, S.I., Musin, I.N., Fayzullin, A.Z., Nikiforov, A.A.: Influence of the type of wood flour and nanoadditives on the structure and mechanical properties of polypropylene-based wood-polymer composites. In: AIP Conference Proceedings, pp. 309–306 (2016). https://doi.org/10.1063/1.4967155

  5. Saieh, S.E., Eslam, H.K., Ghasemi, E., Bazyar, B., Rajabi, M.: Physical and morphological effects of cellulose nano-fibers and nano-clay on biodegradable WPC made of recycled starch and industrial sawdust. BioResources 14, 5278–5287 (2019). https://doi.org/10.15376/biores.14.3.5278-5287

  6. Rangavar, H., Taghiyari, H.R., Oromiehie, A., Gholipour, T., Safarpour, A.: Effects of nanoclay on physical and mechanical properties of wood-plastic composites. Wood Mater. Sci. Eng. 12, 211–219 (2017). https://doi.org/10.1080/17480272.2016.1156743

    Article  Google Scholar 

  7. Yadav, S.M., Yusoh, K.: Bin: preparation and characterization of wood plastic composite reinforced by organoclay. J. Indian Acad. Wood Sci. 13, 118–131 (2016). https://doi.org/10.1007/s13196-016-0175-5

    Article  Google Scholar 

  8. Yadav, S.M., Yusoh, K.: Bin: modification of pristine nanoclay and its application in wood-plastic composite. E-Polymers 16, 447–461 (2016). https://doi.org/10.1515/epoly-2016-0217

    Article  Google Scholar 

  9. Galeev, R., Abdrakhmanova, L., Nizamov, R.: Nanomodified organic-inorganic polymeric binders for polymer building materials. In: Solid State Phenom, vol. 276 SSP, pp. 223–228 (2018). https://doi.org/10.4028/www.scientific.net/SSP.276.223

  10. Nizamov, R.K., Galeev, R.R., Abdrakhmanova, L.A., Khozin, V.G., Naumkina, N.I., Lygina, T.Z.: Grounding of efficiency of filling the polyvinyl-chloride compounds with finely dispersed wastes of metallurgical production. Stroit. Mater. (2005)

    Google Scholar 

  11. Stroganov, V.F., Amel’chenko, M.O., Mukhametrakhimov, R.K., Vdovin, E.A., Tabaeva, R.K.: Increasing the adhesion of styrene–acrylic coatings modified by schungite filler in protection of building materials. Polym. Sci. Ser. D. 15, 162–165 (2022). https://doi.org/10.1134/S1995421222020277

  12. Ivanova, S.R., Minsker, K.S., Nagumanova, E.I., Nizamov, R.K., Kazar’yans, S.A.: The stabilizing properties of synthetic zeolites in plasticized polyvinyl chloride compounds. Plast. Massy Sint. Svojstva Pererab. Primen. 39–43 (2005)

    Google Scholar 

  13. Shieh, Y.T., Hsieh, K.C., Cheng, C.C.: Carbon nanotubes stabilize poly(vinyl chloride) against thermal degradation. Polym. Degrad. Stab. 144, 221–230 (2017). https://doi.org/10.1016/j.polymdegradstab.2017.08.017

    Article  Google Scholar 

  14. Silvano, L.T., Vittorazzo, J., Atilio, L., Araujo, G.R.: Effect of preparation method on the electrical and mechanical properties of PVC/carbon nanotubes nanocomposites. Mater. Res. 21 (2018). https://doi.org/10.1590/1980-5373-mr-2017-1148

  15. Saatchi, M.M., Shojaei, A.: Effect of carbon-based nanoparticles on the cure characteristics and network structure of styrene-butadiene rubber vulcanizate. Polym. Int. 61, 664–672 (2012). https://doi.org/10.1002/pi.4132

    Article  Google Scholar 

  16. Hatthapanit, K., Sae-Oui, P., Sombatsompop, N., Sirisinha, C.: Enhancement of rubber-carbon black interaction by amine-based modifiers and their effect on viscoelastic and mechanical properties. J. Appl. Polym. Sci. 126, 315–321 (2012). https://doi.org/10.1002/app.36969

    Article  Google Scholar 

  17. Baccaro, S., Cataldo, F., Cecilia, A., Cemmi, A., Padella, F., Santini, A.: Interaction between reinforce carbon black and polymeric matrix for industrial applications. Nuclear Instruments Methods Phys. Res. 191–194 (2003). https://doi.org/10.1016/S0168-583X(03)00638-4

  18. Nizamov, R.K., Nagumanova, E.I., Abdrakhmanova, L.A., Khozin, V.G.: Polyvinyl chloride materials filled with finely dispersed wastes of wood processing. Str.pdf. Stroit. Mater. 14–17 (2004)

    Google Scholar 

  19. Ghorbani, M., Biparva, P., Hosseinzadeh, S.: Effect of colloidal silica nanoparticles extracted from agricultural waste on physical, mechanical and antifungal properties of wood polymer composite. Eur. J. Wood Wood Prod. 76, 749–757 (2018). https://doi.org/10.1007/s00107-017-1157-z

    Article  Google Scholar 

  20. Jiang, J., Mei, C., Pan, M., Cao, J.: Improved mechanical properties and hydrophobicity on wood flour reinforced composites: incorporation of silica/montmorillonite nanoparticles in polymers. Polym. Compos. 41, 1090–1099 (2020). https://doi.org/10.1002/pc.25440

    Article  Google Scholar 

  21. Sun, L., et al.: Effects of sio2 filler in the shell and wood fiber in the core on the thermal expansion of core–shell wood/polyethylene composites. Polymers (Basel) 12, 1–11 (2020). https://doi.org/10.3390/polym12112570

    Article  Google Scholar 

  22. Islamov, A., Fakhrutdmova, V.: Surface modification of PVC by silica sol. In: IOP Conference Series: Materials Science and Engineering (2020). https://doi.org/10.1088/1757-899X/890/1/012083

  23. Saied, M.A., Ward, A.A.: Physical, dielectric and biodegradation studies of PVC/silica nanocomposites based on traditional and environmentally friendly plasticizers. Adv. Nat. Sci. Nanosci. Nanotechnol. 11 (2020). https://doi.org/10.1088/2043-6254/ab9d17

  24. Abdrakhmanova, L.A., Nizamov, R.K., Burnashev, A.I., Khozin, V.G.: Nanomodification of wood flour by sols of silicic acid. NANOTECHNOLOGIES Constr. 56–67 (2012)

    Google Scholar 

  25. Zhou, H., Hao, X., Wang, H., Wang, X., Liu, T., **e, Y., Wang, Q.: The reinforcement efficacy of nano- and microscale silica for extruded wood flour/HDPE composites: the effects of dispersion patterns and interfacial modification. J. Mater. Sci. 53, 1899–1910 (2018). https://doi.org/10.1007/s10853-017-1650-0

    Article  Google Scholar 

  26. Abdelghany, A.M., El-Damrawi, G., ElShahawy, A.G., Altomy, N.M.: Structural investigation of PVC/PS polymer blend doped with nanosilica from a renewable source. SILICON 10, 1013–1019 (2018). https://doi.org/10.1007/s12633-017-9564-7

    Article  Google Scholar 

  27. Purcar, V., et al.: Preparation and characterization of some sol-gel modified silica coatings deposited on polyvinyl chloride (PVC) substrates. Coatings 11, 1–13 (2021). https://doi.org/10.3390/coatings11010011

    Article  Google Scholar 

  28. Nizamov, R.K., Nagumanova, E.I., Trofimova, F.A., Lygina, T.Z.: Efficiency of application of fillers on basis of glauconite-containing rocks for polyvinyl chloride compounds. Stroit. Mater. 14–17 (2005)

    Google Scholar 

  29. Klapiszewski, Ł, Pawlak, F., Tomaszewska, J., Jesionowski, T.: Preparation and characterization of novel PVC/Silica-lignin composites. Polymers (Basel) 7, 1767–1788 (2015). https://doi.org/10.3390/polym7091482

    Article  Google Scholar 

  30. Shkuro, A.E., Matonin, A.N.: Wood-plastic composites with silica powder. Vestn. Kazan. Tehnol. Univ. 23, 73–77 (2020)

    Google Scholar 

  31. Abdullah, N.A., Tahiruddin, N.S.M., Othaman, R.: Effects of silica content on the formation and morphology of ENR/PVC/Silica composites beads. In: AIP Conference Proceedings (2017). https://doi.org/10.1063/1.4983901

  32. Galeev, R., Nizamov, R., Abdrakhmanova, L., Khozin, V.: Resource-saving polymer compositions for construction purposes. In: IOP Conference Series: Materials Science and Engineering (2020). https://doi.org/10.1088/1757-899X/890/1/012111

  33. Galeev, R., Nizamov, R., Abdrakhmanova, L.: Influence of dispersed fillers on properties and processability of polyvinyl chloride compositions. In: E3S Web of Conferences (2020). https://doi.org/10.1051/e3sconf/202016414018

  34. Nizamov, R., Abdrakhmanova, L.: Influence of fillers on polyvinyl chloride materials thermal resistance (2016). https://doi.org/10.4028/www.scientific.net/MSF.871.84

  35. Minsker, К.S., Zaikov, G.E.: Achievements and challenges of research in the field of aging and stabilization of PVC. Plast. Massy. 27–35 (2001)

    Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to LLC “STC” KOMPAS” for the silica sol samples provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayaz Khantimirov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khantimirov, A., Abdrakhmanova, L., Khozin, V., Nizamov, R. (2023). Modification of Wood-Polymer Composites with Silica Sols of Different Nature. In: Vatin, N. (eds) Proceedings of STCCE 2022. STCCE 2022. Lecture Notes in Civil Engineering, vol 291. Springer, Cham. https://doi.org/10.1007/978-3-031-14623-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14623-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14622-0

  • Online ISBN: 978-3-031-14623-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation