Probabilistic Forecasting of Seasonal Time Series

Combining Clustering and Classification for Forecasting

  • Conference paper
  • First Online:
Theory and Applications of Time Series Analysis and Forecasting (ITISE 2021)

Abstract

In this article, we propose a framework for seasonal time series probabilistic forecasting. It aims at forecasting (in a probabilistic way) the whole next season of a time series, rather than only the next value. Probabilistic forecasting consists in forecasting a probability distribution function for each future position. The proposed framework is implemented combining several machine learning techniques (1) to identify typical seasons and (2) to forecast a probability distribution of the next season. This framework is evaluated using a wide range of real seasonal time series. On the one side, we intensively study the alternative combinations of the algorithms composing our framework (clustering, classification), and on the other side, we evaluate the framework forecasting accuracy. As demonstrated by our experiences, the proposed framework outperforms competing approaches by achieving lower forecasting errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The Cartesian product of the three partitions is used as a constant piecewise estimator—i.e. a 3D histogram.

References

  1. Liu, C., Vehí, J., Avari, P., Reddy, M., Oliver, N., Georgiou, P., Herrero, P.: Long-term glucose forecasting using a physiological model and deconvolution of the continuous glucose monitoring signal. Sensors 19(19), 4338 (2019)

    Article  Google Scholar 

  2. Li, J., Chen, W.: Forecasting macroeconomic time series: Lasso-based approaches and their forecast combinations with dynamic factor models. Int. J. Forecast. 30(4), 996–1015 (2014)

    Article  Google Scholar 

  3. Tay, F., Cao, L.: Application of support vector machines in financial time series forecasting. Omega 29(4), 309–317 (2001)

    Article  Google Scholar 

  4. Laurinec, P., Lóderer, M., Lucká, M., Rozinajová, V.: Density-based unsupervised ensemble learning methods for time series forecasting of aggregated or clustered electricity consumption. J. Intell. Inf. Syst. 53(2), 219–239 (2019)

    Article  Google Scholar 

  5. Bodìk, P.: Automating Datacenter Operations Using Machine Learning. PhD thesis, UC Berkeley (2010)

    Google Scholar 

  6. Leverger, C., Malinowski, S., Guyet, T., Lemaire, V., Bondu, A., Termier, A.: Toward a framework for seasonal time series forecasting using clustering. In: Proceedings of the International Conference on Intelligent Data Engineering and Automated Learning, pp. 328–340 (2019)

    Google Scholar 

  7. De Gooijer, J., Hyndman, R.: 25 years of time series forecasting. Int. J. Forecast. 22(3), 443–473 (2006)

    Article  Google Scholar 

  8. Wallis, K.F.: Asymmetric density forecasts of inflation and the bank of england’s fan chart. Natl. Inst. Econ. Rev. 167(1), 106–112 (1999)

    Article  Google Scholar 

  9. Hyndman, R.: Highest-density forecast regions for nonlinear and non-normal time series models. J. Forecast. 14(5), 431–441 (1995)

    Article  Google Scholar 

  10. Boullé, M.: Data grid models for preparation and modeling in supervised learning. Hands On Pattern Recognit. Chall. Mach. Learn. 1, 99–130 (2011)

    Google Scholar 

  11. Kareem, Y., Majeed, A.R.: Monthly peak-load demand forecasting for sulaimany governorate using SARIMA. In: Proceedings of the International Conference on Transmission & Distribution Conference and Exposition, pp. 1–5 (2006)

    Google Scholar 

  12. Wichert, S., Fokianos, K., Strimmer, K.: Identifying periodically expressed transcripts in microarray time series data. Bioinformatics 20(1), 5–20 (2004)

    Article  Google Scholar 

  13. Boullé, M.: Functional data clustering via piecewise constant nonparametric density estimation. Pattern Recognition 45(12), 4389–4401 (2012)

    Article  MATH  Google Scholar 

  14. Paparrizos, J., Gravano, L.: Fast and accurate time-series clustering. ACM Trans. Database Syst. (TODS) 42(2), 1–49 (2017)

    Google Scholar 

  15. Bondu, A., Boullé, M., Cornuéjols, A.: Symbolic representation of time series: A hierarchical coclustering formalization. In: International Workshop on Advanced Analysis and Learning on Temporal Data, pp. 3–16. Springer (2015)

    Google Scholar 

  16. Deng, H., Runger, G., Tuv, E., Vladimir, M.: A time series forest for classification and feature extraction. Information Sciences 239, 142–153 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dempster, A., Petitjean, F., Webb, G.I.: Rocket: Exceptionally fast and accurate time series classification using random convolutional kernels (2019). ar**v:1910.13051

    Google Scholar 

  18. Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: Deepar: Probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 36(3), 1181–1191 (2020)

    Article  Google Scholar 

  19. Boullé, M.: Khiops: Outil d’apprentissage supervisé automatique pour la fouille de grandes bases de données multi-tables. In: Actes de la conférence Extraction et Gestion des Connaissances, pp. 505–510 (2016)

    Google Scholar 

  20. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: Continual prediction with LSTM. In: Proceedings of the 9th International Conference on Artificial Neural Networks (ICANN), pp. 850–855 (1999)

    Google Scholar 

  22. Taylor, S., Letham, B.: Forecasting at scale. Am. Stat. 72(1), 37–45 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hersbach, H.: Decomposition of the continuous ranked probability score for ensemble prediction systems. Weather Forecast. 15(5), 559–570 (2000)

    Article  Google Scholar 

  24. Hyndman, R.: Time Series Data Library (TSDL) (2011)

    Google Scholar 

  25. Andrews, D.F., Herzberg, A.M.: Data: A Collection of Problems from Many Fields for the Student and Research Worker. Springer Science & Business Media (2012)

    Google Scholar 

  26. Melbourne, C.O.: Pedestrian Counting System (2016)

    Google Scholar 

  27. Asuncion, A., Newman, D.: Uci Machine Learning Repository (2007)

    Google Scholar 

  28. Cerqueira, V., Torgo, L., Pinto, F., Soares, C.: Arbitrated ensemble for time series forecasting. In: Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 478–494 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Guyet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leverger, C. et al. (2023). Probabilistic Forecasting of Seasonal Time Series. In: Valenzuela, O., Rojas, F., Herrera, L.J., Pomares, H., Rojas, I. (eds) Theory and Applications of Time Series Analysis and Forecasting. ITISE 2021. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-031-14197-3_4

Download citation

Publish with us

Policies and ethics

Navigation