Method of Simulation of the Thermal Deformation Behavior of Double-Sided Face Grinding Machines

  • Conference paper
  • First Online:
Proceedings of the 8th International Conference on Industrial Engineering (ICIE 2022)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

Abstract

The paper presents a technique for numerical simulation of the thermal deformation behavior of the load-bearing system of a double-sided face grinder using the Ansys. The machine tool is considered in two modes of its operation: at idle and working strokes. Spindle bearings, heat fluxes from cutting fluid, heat fluxes from main engines are presented as the main heat sources. Basic data for convective and heat fluxes were taken according to the methods used in the calculations of machine tools. To obtain adequate models, the values ​​of heat and convective fluxes were refined from experimental data for temperatures and temperature displacements. Convective heat transfer in the thermal model of the machine tool was set for 450 surfaces. Heat fluxes were specified for 161 surfaces. The simulation of the thermal behavior of the machine tool was carried out for 6 h of its operation in the Ansys. The ten-node Solid227 element was used as a typical finite element. The problem of thermoelasticity was solved in a coupled formulation. The error in calculating thermal characteristics did not exceed 0.5 ℃, the error in calculating temperature displacements did not exceed 5 µm. The results of computer simulation confirmed the experimental relationships characteristic of this group of machine tools in the positions of the left and right grinding wheel. At idle, the mutual position of the grinding wheels can be attributed to the type of deformation as “below is wider”. On the working stroke, this deformation state can be represented as “below is narrowly”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 277.13
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 343.19
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ito, Y.: Thermal Deformation in Machine Tools. McGraw Hill Professional (2010)

    Google Scholar 

  2. Mayr, J., Jedrzejewski, J., Uhlmann, E., et al.: Thermal issues in machine tools. CIRP Ann. Manuf. Technol. 61, 771–791 (2012). https://doi.org/10.1016/j.cirp.2012.05.008

    Article  Google Scholar 

  3. Kuznecov, A.P.: Teplovoe povedenie i tochnost’ metallorezhushchih stankov (Thermal behavior and accuracy of machine tools). MGTU “Stankin”, YAnus-K, Moscow (2011)

    Google Scholar 

  4. Bryan, J.: International status of thermal error research. CIRP Ann. Manuf. Technol. 39, 645–656 (1990). https://doi.org/10.1016/S0007-8506(07)63001-7

    Article  Google Scholar 

  5. Kuznecov, A.P.: Teplovoj rezhim metallorezhushchih stankov (Thermal regime of metal-cutting machines). MGTU “Stankin”, YAnus-K, Moscow (2013)

    Google Scholar 

  6. Kuznecov, A.P.: Teplovye processy v metallorezhushchih stankah (Thermal processes in metal-cutting machines). Tekhnosfera, Moscow (2019)

    Google Scholar 

  7. Bushuev, V.V., Kuznetsov, A.P., Khomyakov, V.S., et al.: Precision and efficiency of metal-cutting machines. Russ. Engin. Res. 36, 762–773 (2016). https://doi.org/10.3103/S1068798X16090070

    Article  Google Scholar 

  8. Bushuev, V.V., Kuznetsov, A.P., Sabirov, F.S., et al.: Trends in research on metal-cutting machines. Russ. Engin. Res. 36, 488–495 (2016). https://doi.org/10.3103/S1068798X16060083

    Article  Google Scholar 

  9. Fu, G., Tao, C., **e, Y., Lu, C., Gao, H.: Temperature-sensitive point selection for thermal error modeling of machine tool spindle by considering heat source regions. Int. J. Adv. Manufact. Technol. 112(9–10), 2447–2460 (2021). https://doi.org/10.1007/s00170-020-06417-0

    Article  Google Scholar 

  10. Fan, J., Wang, P., Tao, H., Pan, R.: A thermal deformation prediction method for grinding machine’ spindle. Int. J. Adv. Manufact. Technol. 118(3–4), 1125–1139 (2021). https://doi.org/10.1007/s00170-021-07931-5

    Article  Google Scholar 

  11. Naumann, A., Ruprecht, D., Wensch, J.: Toward transient finite element simulation of thermal deformation of machine tools in real-time. Comput. Mech. 62(5), 929–942 (2018). https://doi.org/10.1007/s00466-018-1540-6

    Article  MathSciNet  MATH  Google Scholar 

  12. Ge, Z., Ding, X.: Thermal error control method based on thermal deformation balance principle for the precision parts of machine tools. Int. J. Adv. Manufactur. Technol. 97(1–4), 1253–1268 (2018). https://doi.org/10.1007/s00170-018-1992-z

    Article  Google Scholar 

  13. Fang, B., Gu, T., Ye, D., Luo, T.: An improved thermo-mechanical model for vertical machining center. Int. J. Adv. Manufactur. Technol. 87(9–12), 2581–2592 (2016). https://doi.org/10.1007/s00170-016-8651-z

    Article  Google Scholar 

  14. Polyakov, A.N., Goncharov, A.N.: Snizhenie temperaturnoj pogreshnosti stankov s CHPU na osnove upravleniya dvizheniem ih rabochih organov (Reducing the temperature error of CNC machine tools based on the control of the movement of their working bodies). Vuzovskoe obrazovanie, Saratov (2019)

    Google Scholar 

  15. Li, Y., Zhao, W., Lan, S., et al.: A review on spindle thermal error compensation in machine tools. Int. J. Mach. Tools Manuf 95, 20–38 (2015). https://doi.org/10.1016/j.ijmachtools.2015.04.008

    Article  Google Scholar 

  16. Liu, S., Lin, M.: Thermal–mechanical coupling analysis and experimental study on CNC machine tool feed mechanism. Int. J. Precis. Eng. Manuf. 20(6), 993–1006 (2019). https://doi.org/10.1007/s12541-019-00069-1

    Article  Google Scholar 

  17. Zhang, T., Ye, W., Liang, R., et al.: Temperature variable optimization for precision machine tool thermal error compensation on optimal threshold. Chin. J. Mech. Eng. 26, 158–165 (2013). https://doi.org/10.3901/CJME.2013.01.158

    Article  Google Scholar 

  18. Cao, H., Zhu, L., Li, X., Chen, P., Chen, Y.: Thermal error compensation of dry hobbing machine tool considering workpiece thermal deformation. Int. J. Adv. Manufactur. Technol. 86(5–8), 1739–1751 (2016). https://doi.org/10.1007/s00170-015-8314-5

    Article  Google Scholar 

  19. Li, T., Li, F., Jiang, Y., Wang, H.: Thermal error modeling and compensation of a heavy gantry-type machine tool and its verification in machining. Int. J. Adv. Manufactur. Technol. 92(9–12), 3073–3092 (2017). https://doi.org/10.1007/s00170-017-0353-7

    Article  Google Scholar 

  20. Ramesh, R., Mannan, M.A., Poo, A.N.: Error compensation in machine tools—a review part II: thermal errors. Int. J. Mach. Tool Manuf. 40, 1257–1284 (2000). https://doi.org/10.1016/S0890-6955(00)00010-9

    Article  Google Scholar 

  21. Yao, X.-D., Du, Z.-C., Ge, G.-Y., Yang, J.-G.: Dynamic temperature gradient and unfalsified control approach for machine tool thermal error compensation. J. Mech. Sci. Technol. 34(1), 319–331 (2020). https://doi.org/10.1007/s12206-019-1232-y

    Article  Google Scholar 

  22. Huang, Z., Liu, Y., Du, L., Yang, H.: Thermal error analysis, modeling and compensation of five-axis machine tools. J. Mech. Sci. Technol. 34(10), 4295–4305 (2020). https://doi.org/10.1007/s12206-020-0920-y

    Article  Google Scholar 

  23. Pavlov, S.: Sistemy vysokoproizvoditel'nyh vychislenij v 2019–2020 godah: obzor dostizhenij i analiz rynkov. CHast’ V. Sfera PLM, vklyuchaya CAE i EDA (High Performance Computing in 2019–2020: Overview of Advances and Market Analysis. Part V. Scope of PLM, including CAE and EDA). CAD/CAM/CAE Observer (2020). http://www.cadcamcae.lv/N139/04-19.pdf. Accessed 16 Jan 2022

  24. Berselli, G., Bilancia, P., Luzi, L.: Project-based learning of advanced CAD/CAE tools in engineering education. Int. J. Interact. Des. Manuf. (IJIDeM) 14(3), 1071–1083 (2020). https://doi.org/10.1007/s12008-020-00687-4

    Article  Google Scholar 

  25. Polyakov, A.N., Dodorov, A.I.: Metodika vybora tverdotel'nyh konechno-elementnyh modelej nesushchih sistem stankov pri provedenii ih inzhenernogo analiza (Method for selecting solid-state finite element models of machine tool support systems when conducting their engineering analysis). Bulletin of BSTU named after V.G. Shukhov, Belgoroddoi (2019). https://doi.org/10.34031/article_5d07863d89d1e9.79636729

  26. Park, H., Easwaran, A., Andalam, S.: Challenges in digital twin development for cyber-physical production systems. In: Chamberlain, R., Taha, W., Törngren, M. (eds.) CyPhy/WESE -2018. LNCS, vol. 11615, pp. 28–48. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23703-5_2

    Chapter  Google Scholar 

  27. Nikitina, I.P., Polyakov, A.N.: Experimental study of double-sided face grinding machine tool. J. Phys. Conf. Ser. 1399(4), 044026 (2019). https://doi.org/10.1088/1742-6596/1399/4/044026

    Article  Google Scholar 

  28. Nikitina, I.P., Polyakov, A.N.: Experimental thermal performance double-sided face grinding machine. In: Radionov, A.A., Gasiyarov, V.R. (eds.) Proceedings of the 7th International Conference on Industrial Engineering (ICIE 2021): Volume I, pp. 134–142. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-85233-7_16

    Chapter  Google Scholar 

  29. Kozhevnikova, M.E., Rotanova, T.A., et al.: Komp'yuternoe modelirovanie ploskih zadach termouprugosti: sravnitel'nyj analiz reshenij v svyazannoj i nesvyazannoj postanovkah (Computer Simulation of Plane Problems of Thermoelasticity: Comparative Analysis of Solutions in Coupled and Uncoupled Statements). Computational Continuum Mechanics, Perm (2017)

    Google Scholar 

Download references

Acknowledgments

The study was carried out with financial support from the federal budget in 2021, a grant in the form of a subsidy for the implementation of the program of strategic academic leadership “Priority-2030” under agreements No. 075–15-2021–1171, 075–15-2021–1112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Polyakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nikitina, I.P., Polyakov, A.N. (2023). Method of Simulation of the Thermal Deformation Behavior of Double-Sided Face Grinding Machines. In: Radionov, A.A., Gasiyarov, V.R. (eds) Proceedings of the 8th International Conference on Industrial Engineering. ICIE 2022. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-14125-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14125-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14124-9

  • Online ISBN: 978-3-031-14125-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation