Top-Down Processing of Nanocellulose Materials

  • Chapter
  • First Online:
Emerging Nanotechnologies in Nanocellulose

Part of the book series: NanoScience and Technology ((NANO))

  • 730 Accesses

Abstract

This chapter discusses the top-down processing of nanocellulose materials and their potential applications in various fields. The hierarchically porous structure of biomass, the source material for producing top-down nanocellulose materials, is first introduced to provide basic understanding of its intrinsic structure. With such understanding, a variety of fabrication and modification strategies such as delignification, densification, patterning, surface functionalization and hybridization have been developed to tune the structure and properties of top-down nanocellulose materials. The rich tunability of structure and properties imparts these top-down nanocellulose materials with multiple functions for a wide range of applications in the fields of lightweight structural materials, thermal management, light management, water-energy technologies, electronics and so on. With advantageous features of inherited aligned structure, tunable structure and properties, improved performance and potentially low cost and environmental impacts, top-down nanocellulose materials have emerged as promising candidate of value-added sustainable materials for our society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Li, C. Chen, A.H. Brozena, J.Y. Zhu, L. Xu, C. Driemeier et al., Develo** fibrillated cellulose as a sustainable technological material. Nature 590(7844), 47–56 (2021). https://doi.org/10.1038/s41586-020-03167-7

    Article  CAS  Google Scholar 

  2. B. Thomas, M.C. Raj, A.K. B, R.M. H, J. Joy, A. Moores, et al., Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem. Rev. 118 (24), 11575–11625. (2018). https://doi.org/10.1021/acs.chemrev.7b00627

  3. J. Gan, Y. Wu, F. Yang, X. Wu, Y. Wang, J. Wang, UV-filtering cellulose nanocrystal/carbon quantum dot composite films for light conversion in glass windows. ACS Appl. Nano Mater. (2021). https://doi.org/10.1021/acsanm.1c03082

    Article  Google Scholar 

  4. C. Chen, L. Hu, Nanoscale ion regulation in wood‐based structures and their device applications. Adv. Mater. 33(28) (2020). https://doi.org/10.1002/adma.202002890

  5. C. Chen, Y. Kuang, S. Zhu, I. Burgert, T. Keplinger, A. Gong et al., Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 5(9), 642–666 (2020). https://doi.org/10.1038/s41578-020-0195-z

    Article  CAS  Google Scholar 

  6. Z. Li, C. Chen, H. **e, Y. Yao, X. Zhang, A. Brozena et al., Sustainable high-strength macrofibers extracted from natural bamboo. Nat. Sustain. (2021). https://doi.org/10.1038/s41893-021-00831-2

    Article  Google Scholar 

  7. Z. Li, C. Chen, R. Mi, W. Gan, J. Dai, M. Jiao et al., A strong, tough, and scalable structural material from fast-growing bamboo. Adv. Mater. 32(10), e1906308 (2020). https://doi.org/10.1002/adma.201906308

    Article  CAS  Google Scholar 

  8. Y. Liu, B. Guo, Q. **a, J. Meng, W. Chen, S. Liu et al., Efficient cleavage of strong hydrogen bonds in cotton by deep eutectic solvents and facile fabrication of cellulose nanocrystals in high yields. ACS Sustain. Chem. Eng. 5(9), 7623–7631 (2017). https://doi.org/10.1021/acssuschemeng.7b00954

    Article  CAS  Google Scholar 

  9. J. Li, C. Chen, W. Gan, Z. Li, H. **e, M. Jiao et al., A bio-inspired, hierarchically porous structure with a decoupled fluidic transportation and evaporative pathway toward high-performance evaporation. J. Mater. Chem. A 9(15), 9745–9752 (2021). https://doi.org/10.1039/d0ta11385a

    Article  CAS  Google Scholar 

  10. X. Wang, Q. **a, S. **g, C. Li, Q. Chen, B. Chen et al., Strong, hydrostable, and degradable straws based on cellulose-lignin reinforced composites. Small 17(18), e2008011 (2021). https://doi.org/10.1002/smll.202008011

    Article  CAS  Google Scholar 

  11. A. Tampieri, S. Sprio, A. Ruffini, G. Celotti, I.G. Lesci, N. Roveri, From wood to bone: multi-step process to convert wood hierarchical structures into biomimetic hydroxyapatite scaffolds for bone tissue engineering. J. Mater. Chem. 19 (28) (2009). https://doi.org/10.1039/b900333a

  12. V. Eta, J.-P. Mikkola, Deconstruction of Nordic hardwood in switchable ionic liquids and acylation of the dissolved cellulose. Carbohyd. Polym. 136, 459–465 (2016). https://doi.org/10.1016/j.carbpol.2015.09.058

    Article  CAS  Google Scholar 

  13. T. Heinze, O.A. El Seoud, A. Koschella, Production and characteristics of cellulose from different sources, in Cellulose Derivatives. Springer Series on Polymer and Composite Materials (2018), pp. 1–38

    Google Scholar 

  14. E. Hosseini Koupaie, S. Dahadha, A.A. Bazyar Lakeh, A. Azizi, E. Elbeshbishy, Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production-A review. J. Environ. Manag. 233, 774–784 (2019). https://doi.org/10.1016/j.jenvman.2018.09.106

    Article  CAS  Google Scholar 

  15. V. Hlavata, P. Kuklik, J. Celler, J. Vanerek, Microfiber angle and its effect on wood cell behavior. Adv. Mater. Res. 1144, 88–93 (2017). https://doi.org/10.4028/www.scientific.net/AMR.1144.88

    Article  Google Scholar 

  16. B. Ghislain, B. Clair, Diversity in the organisation and lignification of tension wood fibre walls—A review. IAWA J. 38(2), 245–265 (2017). https://doi.org/10.1163/22941932-20170170

    Article  Google Scholar 

  17. S.S. Hindi, R.A. Abohassan, Cellulosic microfibril and its embedding matrix within plant cell wall. Int. J. Innov. Res. Sci. Eng. Technol. 5(3), 2727–2734 (2016)

    Google Scholar 

  18. J. Gierer, Chemistry of delignification. Wood Sci. Technol. 20(1), 1–33 (1986)

    Article  CAS  Google Scholar 

  19. G. Pipon, C. Chirat, D. Lachenal, Comparative effect of ozone, chlorine dioxide, and hydrogen peroxide on lignin: reactions affecting pulp colour in the final bleaching stage. Holzforschung 61(6), 628–633 (2007). https://doi.org/10.1515/hf.2007.100

    Article  CAS  Google Scholar 

  20. J. Gierer, The chemistry of delignification. A general concept (1982)

    Google Scholar 

  21. Q. Fu, F. Ansari, Q. Zhou, L.A. Berglund, Wood nanotechnology for strong, mesoporous, and hydrophobic biocomposites for selective separation of oil/water mixtures. ACS Nano 12(3), 2222–2230 (2018). https://doi.org/10.1021/acsnano.8b00005

    Article  CAS  Google Scholar 

  22. Y. Li, Y. Liu, W. Chen, Q. Wang, Y. Liu, J. Li et al., Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation. Green Chem. 18(4), 1010–1018 (2016). https://doi.org/10.1039/c5gc02576a

    Article  CAS  Google Scholar 

  23. H.Q. Le, A. Zaitseva, J.P. Pokki, M. Stahl, V. Alopaeus, H. Sixta, Solubility of organosolv lignin in gamma-valerolactone/water binary mixtures. Chemsuschem 9(20), 2939–2947 (2016). https://doi.org/10.1002/cssc.201600655

    Article  CAS  Google Scholar 

  24. M. Wu, J.-K. Liu, Z.-Y. Yan, B. Wang, X.-M. Zhang, F. Xu et al., Efficient recovery and structural characterization of lignin from cotton stalk based on a biorefinery process using a γ-valerolactone/water system. RSC Adv. 6(8), 6196–6204 (2016). https://doi.org/10.1039/c5ra23095k

    Article  CAS  Google Scholar 

  25. F.-L. Wang, S. Li, Y.-X. Sun, H.-Y. Han, B.-X. Zhang, B.-Z. Hu et al., Ionic liquids as efficient pretreatment solvents for lignocellulosic biomass. RSC Adv. 7(76), 47990–47998 (2017). https://doi.org/10.1039/c7ra08110c

    Article  CAS  Google Scholar 

  26. J. Shi, S. Pattathil, R. Parthasarathi, N.A. Anderson, J. Im Kim, S. Venketachalam et al., Impact of engineered lignin composition on biomass recalcitrance and ionic liquid pretreatment efficiency. Green Chem. 18(18), 4884–4895 (2016)

    Article  CAS  Google Scholar 

  27. H. Wu, M. Mora-Pale, J. Miao, T.V. Doherty, R.J. Linhardt, J.S. Dordick, Facile pretreatment of lignocellulosic biomass at high loadings in room temperature ionic liquids. Biotechnol. Bioeng. 108(12), 2865–2875 (2011). https://doi.org/10.1002/bit.23266

    Article  CAS  Google Scholar 

  28. Y.T. Tan, A.S.M. Chua, G.C. Ngoh, Deep eutectic solvent for lignocellulosic biomass fractionation and the subsequent conversion to bio-based products—A review. Bioresour. Technol. 297, 122522 (2020). https://doi.org/10.1016/j.biortech.2019.122522

    Article  CAS  Google Scholar 

  29. Q. **a, Y. Liu, J. Meng, W. Cheng, W. Chen, S. Liu et al., Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass. Green Chem. 20(12), 2711–2721 (2018). https://doi.org/10.1039/c8gc00900g

    Article  CAS  Google Scholar 

  30. J. Song, C. Chen, S. Zhu, M. Zhu, J. Dai, U. Ray et al., Processing bulk natural wood into a high-performance structural material. Nature 554(7691), 224–228 (2018). https://doi.org/10.1038/nature25476

    Article  CAS  Google Scholar 

  31. M. Frey, D. Widner, J.S. Segmehl, K. Casdorff, T. Keplinger, I. Burgert, Delignified and densified cellulose bulk materials with excellent tensile properties for sustainable engineering. ACS Appl. Mater. Interf. 10(5), 5030–5037 (2018). https://doi.org/10.1021/acsami.7b18646

    Article  CAS  Google Scholar 

  32. K. Li, S. Wang, H. Chen, X. Yang, L.A. Berglund, Q. Zhou, Self-Densification of highly mesoporous wood structure into a strong and transparent film. Adv. Mater. 32(42), e2003653 (2020). https://doi.org/10.1002/adma.202003653

    Article  CAS  Google Scholar 

  33. C. Jia, C. Chen, Y. Kuang, K. Fu, Y. Wang, Y. Yao et al., From wood to textiles: top-down assembly of aligned cellulose nanofibers. Adv. Mater. 30(30), e1801347 (2018). https://doi.org/10.1002/adma.201801347

    Article  CAS  Google Scholar 

  34. D. Huang, J. Wu, C. Chen, X. Fu, A.H. Brozena, Y. Zhang et al., Precision imprinted nanostructural wood. Adv. Mater. 31(48), e1903270 (2019). https://doi.org/10.1002/adma.201903270

    Article  CAS  Google Scholar 

  35. T. Li, S.X. Li, W. Kong, C. Chen, E. Hitz, C. Jia, et al., A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Sci. Adv. 5, eaau4238 (2019). https://doi.org/10.1126/sciadv.aau4238

  36. F. Chen, A.S. Gong, M. Zhu, G. Chen, S.D. Lacey, F. Jiang et al., Mesoporous, three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment. ACS Nano 11(4), 4275–4282 (2017). https://doi.org/10.1021/acsnano.7b01350

    Article  CAS  Google Scholar 

  37. H. Liu, C. Chen, H. Wen, R. Guo, N.A. Williams, B. Wang et al., Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification. J. Mater. Chem. A 6(39), 18839–18846 (2018). https://doi.org/10.1039/c8ta05924a

    Article  CAS  Google Scholar 

  38. M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai et al., Highly anisotropic, highly transparent wood composites. Adv. Mater. 28(26), 5181–5187 (2016). https://doi.org/10.1002/adma.201600427

    Article  CAS  Google Scholar 

  39. Q. Fu, L. Medina, Y. Li, F. Carosio, A. Hajian, L.A. Berglund, Nanostructured wood hybrids for fire-retardancy prepared by clay impregnation into the cell wall. ACS Appl. Mater. Interf. 9(41), 36154–36163 (2017). https://doi.org/10.1021/acsami.7b10008

    Article  CAS  Google Scholar 

  40. S. He, C. Chen, T. Li, J. Song, X. Zhao, Y. Kuang, et al., An energy‐efficient, wood‐derived structural material enabled by pore structure engineering towards building efficiency. Small Methods 4(1) (2019). https://doi.org/10.1002/smtd.201900747

  41. T. Li, J. Song, X. Zhao, Z. Yang, G. Pastel, S. Xu, et al., Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Sci. Adv. 4(3), eaar3724 (2018)

    Google Scholar 

  42. C. Chen, J. Song, S. Zhu, Y. Li, Y. Kuang, J. Wan et al., Scalable and sustainable approach toward highly compressible, anisotropic Lamellar carbon sponge. Chem. 4(3), 544–554 (2018). https://doi.org/10.1016/j.chempr.2017.12.028

    Article  CAS  Google Scholar 

  43. J. Song, C. Chen, Z. Yang, Y. Kuang, T. Li, Y. Li et al., Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano 12(1), 140–147 (2017). https://doi.org/10.1021/acsnano.7b04246

    Article  CAS  Google Scholar 

  44. M. Zhu, Y. Wang, S. Zhu, L. Xu, C. Jia, J. Dai, et al., Anisotropic, transparent films with aligned cellulose nanofibers. Adv. Mater. 29(21) (2017). https://doi.org/10.1002/adma.201606284

  45. M. Zhu, C. Jia, Y. Wang, Z. Fang, J. Dai, L. Xu et al., Isotropic paper directly from anisotropic wood: top-down green transparent substrate toward biodegradable electronics. ACS Appl. Mater. Interf. 10(34), 28566–28571 (2018). https://doi.org/10.1021/acsami.8b08055

    Article  CAS  Google Scholar 

  46. R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011). https://doi.org/10.1039/c0cs00108b

    Article  CAS  Google Scholar 

  47. S. **ao, C. Chen, Q. **a, Y. Liu, Y. Yao, Q. Chen et al., Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science 374(6566), 465–471 (2021)

    Article  CAS  Google Scholar 

  48. T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad et al., A radiative cooling structural material. Science 364(6442), 760–763 (2019)

    Article  CAS  Google Scholar 

  49. S. Fink, Transparent wood–a new approach in the functional study of wood structure. Holzforschung 46, 403 (1992)

    Article  CAS  Google Scholar 

  50. R. Mi, T. Li, D. Dalgo, C. Chen, Y. Kuang, S. He et al., A clear, strong, and thermally insulated transparent wood for energy efficient windows. Adv. Func. Mater. 30(1), 1907511 (2020)

    Article  CAS  Google Scholar 

  51. C. Jia, T. Li, C. Chen, J. Dai, I.M. Kierzewski, J. Song et al., Scalable, anisotropic transparent paper directly from wood for light management in solar cells. Nano Energy 36, 366–373 (2017). https://doi.org/10.1016/j.nanoen.2017.04.059

    Article  CAS  Google Scholar 

  52. Z. Yu, Y. Yao, J. Yao, L. Zhang, Z. Chen, Y. Gao et al., Transparent wood containing Cs x WO 3 nanoparticles for heat-shielding window applications. J. Mater. Chem. A 5(13), 6019–6024 (2017)

    Article  CAS  Google Scholar 

  53. W. Gan, S. **ao, L. Gao, R. Gao, J. Li, X. Zhan, Luminescent and transparent wood composites fabricated by poly(methyl methacrylate) and γ-Fe2O3@YVO4:Eu3+ nanoparticle impregnation. ACS Sustain. Chem. Eng. 5(5), 3855–3862 (2017). https://doi.org/10.1021/acssuschemeng.6b02985

    Article  CAS  Google Scholar 

  54. T. Li, M. Zhu, Z. Yang, J. Song, J. Dai, Y. Yao, et al., Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation. Adv. Energy Mater. 6(22) (2016). https://doi.org/10.1002/aenm.201601122

  55. M. Zhu, T. Li, C.S. Davis, Y. Yao, J. Dai, Y. Wang et al., Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy 26, 332–339 (2016). https://doi.org/10.1016/j.nanoen.2016.05.020

    Article  CAS  Google Scholar 

  56. R. Mi, C. Chen, T. Keplinger, Y. Pei, S. He, D. Liu et al., Scalable aesthetic transparent wood for energy efficient buildings. Nat. Commun. 11(1), 3836 (2020). https://doi.org/10.1038/s41467-020-17513-w

    Article  CAS  Google Scholar 

  57. Q. **a, C. Chen, T. Li, S. He, J. Gao, X. Wang, et al., Solar-assisted fabrication of large-scale, patternable transparent wood. Sci. Adv. 7(5), abd7342 (2021). https://doi.org/10.1126/sciadv.abd7342

  58. C. Chen, Y. Kuang, L. Hu, Challenges and opportunities for solar evaporation. Joule 3(3), 683–718 (2019). https://doi.org/10.1016/j.joule.2018.12.023

    Article  CAS  Google Scholar 

  59. C. Chen, Y. Zhang, Y. Li, Y. Kuang, J. Song, W. Luo, et al., Highly conductive, lightweight, low‐tortuosity carbon frameworks as ultrathick 3d current collectors. Adv. Energy Mater. 7(17) (2017). https://doi.org/10.1002/aenm.201700595

  60. C. Chen, S. Xu, Y. Kuang, W. Gan, J. Song, G. Chen, et al., Nature-inspired tri-pathway design enabling high-performance flexible Li-O2 batteries. Adv. Energy Mater. 9 (9) (2019). https://doi.org/10.1002/aenm.201802964

  61. S. He, C. Chen, G. Chen, F. Chen, J. Dai, J. Song et al., High-performance, scalable wood-based filtration device with a reversed-tree design. Chem. Mater. 32(5), 1887–1895 (2020). https://doi.org/10.1021/acs.chemmater.9b04516

    Article  CAS  Google Scholar 

  62. M. Zhu, Y. Li, G. Chen, F. Jiang, Z. Yang, X. Luo, et al., Tree-inspired design for high-efficiency water extraction. Adv. Mater. 29(44) (2017). https://doi.org/10.1002/adma.201704107

  63. C. Chen, Y. Li, J. Song, Z. Yang, Y. Kuang, E. Hitz, et al., Highly flexible and efficient solar steam generation device. Adv. Mater. 29(30) (2017). https://doi.org/10.1002/adma.201701756

  64. W. Li, Q. Liu, Y. Zhang, C. Li, Z. He, W.C.H. Choy, et al., Biodegradable materials and green processing for green electronics. Adv. Mater. 32(33) (2020). https://doi.org/10.1002/adma.202001591

  65. W. Gan, C. Chen, HT. Kim, et al., Single-digit-micrometer thickness wood speaker. Nat. Commun. 10(5084) (2019). https://doi.org/10.1038/s41467-019-13053-0

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoji Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, C., Gan, W., **a, Q. (2023). Top-Down Processing of Nanocellulose Materials. In: Hu, L., Jiang, F., Chen, C. (eds) Emerging Nanotechnologies in Nanocellulose. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-14043-3_2

Download citation

Publish with us

Policies and ethics

Navigation