Transgenerational Epigenetic Programming

  • Chapter
  • First Online:
Epigenetics, Development, Ecology and Evolution
  • 614 Accesses

Abstract

Ever since the theory of natural selection was proposed, the study of how characters are inherited across generations has become a principal paramount in biology. These studies have focused on deciphering how phenotypic variation and plasticity across generations contribute to population maintenance and evolution. In this regard, studying how the experience of environmental conditions of a parental population influences offspring phenotypic characteristics through epigenetic processes has gained substantial attention in the past decades. In particular, the mechanisms underpinning this type of transgenerational acclimation include maternal provisioning, microbiome transfer, inheritance of epigenetic markers (e.g., DNA methylation, small RNAs, and histone modifications), and behavioral and cultural processes. These phenomena can result in the programming of the next generation and influence their survival and adaptability to changing environmental conditions. To better understand this topic, in the first part of this chapter I will introduce the reader to the scientific framework on which transgenerational epigenetic programming, and non-genetic inheritance in general, finds its roots. In the second part, I revised the concepts of ‘epigenetics’, ‘transgenerational inheritance’, and, ‘programming’, with the purpose of building a solid ground on which we can base an integrated and deeper discussion in the subsequent sections. The third part of this chapter is focused on discussing the connection between these three concepts, as well as to delve into the tight, but complex, link between ‘transgenerational epigenetic programming’ and developmental biology. After revieing the concept and providing examples of its complexity, I discuss the potential evolutionary implications of transgenerational epigenetic programming in the fourth part of the chapter. Finally, I posit a list of topics and approaches that warrant further research in this scientific field and provide future directions that will help to elucidate knowledge gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Krogh’s principle for a new era (2003) Nat Genet 34(4):345–346

    Article  Google Scholar 

  • Aiken CE, Ozanne SE (2014) Transgenerational developmental programming. Hum Reprod Update 20(1):63–75

    Article  PubMed  Google Scholar 

  • Aiken CE, Tarry-Adkins JL, Ozanne SE (2015) Transgenerational developmental programming of ovarian reserve. Sci Rep 5:16175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alfaradhi MZ, Fernandez-Twinn DS, Martin-Gronert MS, Musial B, Fowden A, Ozanne SE (2014) Oxidative stress and altered lipid homeostasis in the programming of offspring fatty liver by maternal obesity. Am J Phys Regul Integr Comp Phys 307:R26–R34

    CAS  Google Scholar 

  • Andreas E, Reid M, Zhang W, Moley KH (2019) The effect of maternal high-fat/high-sugar diet on offspring oocytes and early embryo development. Mol Hum Reprod 25:717–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anway MD, Rekow SS, Skinner MK (2008) Transgenerational epigenetic programming of the embryonic testis transcriptome. Genomics 91:30–40

    Article  CAS  PubMed  Google Scholar 

  • Ardura A, Zaiko A, Morán P, Planes S, Garcia-Vazquez E (2017) Epigenetic signatures of invasive status in populations of marine invertebrates. Sci Rep 7:42193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ausió J, González-Romero R, Woodcock CL (2014) Comparative structure of vertebrate sperm chromatin. J Struct Biol 188:142–155

    Article  PubMed  Google Scholar 

  • Bautista NM, Crespel A (2021) Within-and trans-generational environmental adaptation to climate change: perspectives and new challenges. Front Physiol 8:1–12

    Google Scholar 

  • Bautista NM, Crespel A, Crossley J, Padilla P, Burggren W (2020) Parental transgenerational epigenetic inheritance related to dietary crude oil exposure in Danio rerio. J Exp Biol jeb.222224

    Google Scholar 

  • Bautista NM, do Amaral-Silva L, Dzialowski E, Burggren WW (2021) Dietary exposure to low levels of crude oil affects physiological and morphological phenotype in adults and their eggs and hatchlings of the king quail (Coturnix chinensis). Front Physiol 12:477

    Article  Google Scholar 

  • Beddall BG (1968) Wallace, Darwin, and the theory of natural selection: a study in the development of ideas and attitudes. J Hist Biol 1:261–323

    Article  Google Scholar 

  • Bell MA, Aguirre W (2013) Contemporary evolution, allelic recycling, and adaptive radiation of the threespine stickleback. Evol Ecol Res 15:377–411

    Google Scholar 

  • Bergman Y, Cedar H (2013) DNA methylation dynamics in health and disease. Nat Struct Mol Biol 20:274–281

    Article  CAS  PubMed  Google Scholar 

  • Bernatchez L (2016) On the maintenance of genetic variation and adaptation to environmental change: considerations from population genomics in fishes. J Fish Biol 89:2519–2556

    Article  CAS  PubMed  Google Scholar 

  • Bian Y, Alberio R, Allegrucci C, Campbell KH, Johnson AD (2009) Epigenetic marks in somatic chromatin are remodelled to resemble pluripotent nuclei by amphibian oocyte extracts. Epigenetics 4:194–202

    Article  CAS  PubMed  Google Scholar 

  • Biswas S, Rao CM (2018) Epigenetic tools (the writers, the readers and the erasers) and their implications in cancer therapy. Eur J Pharmacol 837:8–24

    Article  CAS  PubMed  Google Scholar 

  • Bonduriansky R, Day T (2018) Extended heredity: a new understanding of inheritance and evolution, p 281

    Book  Google Scholar 

  • Burggren W (2016) Epigenetic inheritance and its role in evolutionary biology: re-evaluation and new perspectives. Biology 5:1–22

    Article  Google Scholar 

  • Burggren WW (2017) Epigenetics in insects: mechanisms, phenotypes and ecological and evolutionary implications. Elsevier, pp 1–30

    Book  Google Scholar 

  • Caldji C, Tannenbaum B, Sharma S, Francis D, Plotsky PM, Meaney MJ (1998) Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proc Natl Acad Sci 95:5335–5340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantone I, Fisher AG (2013) Epigenetic programming and reprogramming during development. Nat Struct Mol Biol 20:282–289

    Article  CAS  PubMed  Google Scholar 

  • Carroll SP, Hendry AP, Reznick DN, Fox CW (2007) Evolution on ecological time-scales. Funct Ecol 21:387–393

    Article  Google Scholar 

  • Cavalieri V, Spinelli G (2017) Environmental epigenetics in zebrafish. Epigenetics Chromatin 10:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavieres G, Rezende EL, Clavijo-Baquet S, Alruiz JM, Rivera-Rebella C, Boher F, Bozinovic F (2020) Rapid within- and transgenerational changes in thermal tolerance and fitness in variable thermal landscapes. Ecol Evol 10:8105–8113

    Article  PubMed  PubMed Central  Google Scholar 

  • Charlesworth D, Barton NH, Charlesworth B (2017) The sources of adaptive variation. Proc R Soc B Biol Sci 284:20162864

    Article  Google Scholar 

  • Chavatte-Palmer P, Velazquez MA, Jammes H, Duranthon V (2018) Review: epigenetics, developmental programming and nutrition in herbivores. Animal 12:s363–s371

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Zhang L (2011) Epigenetic mechanisms in developmental programming of adult disease. Drug Discov Today 16:1007–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chittka A, Wurm Y, Chittka L (2012) Epigenetics: the making of ant castes. Curr Biol 22:R835–R838

    Article  CAS  PubMed  Google Scholar 

  • Cummins J (1998) Mitochondrial DNA in mammalian reproduction. Rev Reprod 3:172–182

    Article  CAS  PubMed  Google Scholar 

  • Darr J (2020) Future perspectives in epigenetic inheritance. Springer International Publishing:231–259

    Google Scholar 

  • Day T, Bonduriansky R (2011) A unified approach to the evolutionary consequences of genetic and nongenetic inheritance. Am Nat 178:E18–E36

    Article  PubMed  Google Scholar 

  • De Kloet ER, Vreugdenhil E, Oitzl MS, JoëLs M (1998) Brain corticosteroid receptor balance in health and disease*. Endocr Rev 19:269–301

    PubMed  Google Scholar 

  • Dean W, Santos F, Reik W (2003) Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer. Semin Cell Dev Biol 14:93–100

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Freije E, Gestal C, Castellanos-Martínez S, Morán P (2014) The role of DNA methylation on Octopus vulgaris development and their perspectives. Front Physiol 5:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickins TE, Dickins BJA (2018) The extent of the modern synthesis: the foundational framework for evolutionary biology. Springer International Publishing, pp 155–176

    Google Scholar 

  • Dobzhansky T (1982) Genetics and the origin of species. Columbia university press

    Google Scholar 

  • Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci 104:13056–13061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donelson JM, Sunday JM, Figueira WF, Gaitán-Espitia JD, Hobday AJ, Johnson CR, Leis JM, Ling SD, Marshall D, Pandolfi JM, Pecl G, Rodgers GG, Booth DJ, Munday PL (2019) Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Philosophical Transactions of the Royal Society B: Biological Sciences 374:1–14

    Article  Google Scholar 

  • Duffié R, Bourc'his D (2013) Chapter nine- parental epigenetic asymmetry in mammals. In: Heard E (ed) Current topics in developmental biology. Academic Press, pp 293–328

    Google Scholar 

  • Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    Article  CAS  PubMed  Google Scholar 

  • Elango N, Hunt BG, Goodisman MAD, Yi SV (2009) DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera. Proc Natl Acad Sci 106:11206–11211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falconer DS, Mackay TFC (1981) Introduction to quantitative genetics, 2nd edn. Longman Group, New York

    Google Scholar 

  • Feil R, Fraga MF (2012) Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 13:97–109

    Article  CAS  PubMed  Google Scholar 

  • Fetterman JL, Pompilius M, Westbrook DG, Uyeminami D, Brown J, Pinkerton KE, Ballinger SW (2013) Developmental exposure to second-hand smoke increases adult Atherogenesis and alters mitochondrial DNA copy number and deletions in apoE−/− mice. PLoS One 8:e66835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming AS, Fau O'DD, Kraemer GW (1999) Neurobiology of mother-infant interactions: experience and central nervous system plasticity across development and generations. Neurosci Biobehav Rev 23:673–685

    Article  CAS  PubMed  Google Scholar 

  • Flores K, Wolschin F, Corneveaux JJ, Allen AN, Huentelman MJ, Amdam GV (2012) Genome-wide association between DNA methylation and alternative splicing in an invertebrate. BMC Genomics 13:480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsman A (2015) Rethinking phenotypic plasticity and its consequences for individuals, populations and species. Heredity 115:276–284

    Article  CAS  PubMed  Google Scholar 

  • Francis D, Diorio J, Liu D, Meaney MJ (1999) Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science 286:1155–1158

    Article  CAS  PubMed  Google Scholar 

  • Frésard L, Morisson M, Brun J-M, Collin A, Pain B, Minvielle F, Pitel F (2013) Epigenetics and phenotypic variability: some interesting insights from birds. Genet Sel Evol 45:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Futuyma DJ (2015) Can modern evolutionary theory explain macroevolution? Macroevolution Springer:29–85

    Google Scholar 

  • Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21:394–407

    Article  Google Scholar 

  • Ghasemi S (2020) Cancer's epigenetic drugs: where are they in the cancer medicines? Pharmacogenomics J 20:367–379

    Article  CAS  PubMed  Google Scholar 

  • Gilbert SF, Opitz JM, Raff RA (1996) Resynthesizing evolutionary and developmental biology. Dev Biol 173:357–372

    Article  CAS  PubMed  Google Scholar 

  • Ginder GD, Williams DC (2018) Readers of DNA methylation, the MBD family as potential therapeutic targets. Pharmacol Ther 184:98–111

    Article  CAS  PubMed  Google Scholar 

  • Gould SJ (2002) The structure of evolutionary theory. Harvard University Press

    Book  Google Scholar 

  • Guerrero-Bosagna C, Morisson M, Liaubet L, Rodenburg TB, de Haas EN, Košťál Ľ, Pitel F (2018) Transgenerational epigenetic inheritance in birds. Environmental. Epigenetics 4

    Google Scholar 

  • Guo F, Li X, Liang D, Li T, Zhu P, Guo H, Wu X, Wen L, Gu TP, Hu B, Walsh CP (2014) Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell 15(4):447–459

    Article  CAS  PubMed  Google Scholar 

  • Gyllenhammer LE, Entringer S, Buss C, Wadhwa PD (2020) Developmental programming of mitochondrial biology: a conceptual framework and review. Proc R Soc B Biol Sci 287:20192713

    Article  CAS  Google Scholar 

  • Hairston NG, Ellner SP, Geber MA, Yoshida T, Fox JA (2005) Rapid evolution and the convergence of ecological and evolutionary time. Ecol Lett 8:1114–1127

    Article  Google Scholar 

  • Hammond SA, Nelson CJ, Helbing CC (2016) Environmental influences on the epigenomes of herpetofauna and fish. Biochem Cell Biol 94:95–100

    Article  CAS  PubMed  Google Scholar 

  • Hanafi MY, Abdelkhalek TM, Saad MI, Saleh MM, Haiba MM, Kamel MA (2016) Diabetes-induced perturbations are subject to intergenerational transmission through maternal line. J Physiol Biochem 72:315–326

    Article  PubMed  Google Scholar 

  • Hanif EAM, Shah SA (2018) Overview on epigenetic re-programming: a potential therapeutic intervention in triple negative breast cancers. Asian Pac J Cancer Prev 19:3341–3351

    Article  CAS  PubMed Central  Google Scholar 

  • Hitchler M, Domann F (2007) An epigenetic perspective on the free radical theory of development. Free Radic Biol Med 43:1023–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Chen Y, Zhao ZJ (2015) Structure, regulation, and function of TET family proteins. Elsevier, pp 379–395

    Google Scholar 

  • Huey RB, Deutsch CA, Tewksbury JJ, Vitt LJ, Hertz PE, Álvarez Pérez HJ, Garland T (2009) Why tropical forest lizards are vulnerable to climate warming. Proc R Soc B Biol Sci 276:1939–1948

    Article  Google Scholar 

  • Huxley J (1942) The modern synthesis. In: Evolution. The modern synthesis. Evolution

    Google Scholar 

  • Inoue A, Jiang L, Lu F, Suzuki T, Zhang Y (2017) Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature 547:419–424

    Article  CAS  PubMed  Google Scholar 

  • Ishihara T, Hickford D, Shaw G, Pask AJ, Renfree MB (2019) DNA methylation dynamics in the germline of the marsupial tammar wallaby, Macropus eugenii. DNA Res 26:85–94

    Article  CAS  PubMed  Google Scholar 

  • Jablonka E, Lamb MJ (2014) Evolution in four dimensions, revised edition: genetic, epigenetic, behavioral, and symbolic variation in the history of life. MIT press

    Book  Google Scholar 

  • Jablonka E, Lamb MJ (2015) The inheritance of acquired epigenetic variations. Int J Epidemiol 44:1094–1103

    Article  PubMed  Google Scholar 

  • Jablonka E, Lamb MJ (2020) Inheritance systems and the extended synthesis. Cambridge University Press

    Book  Google Scholar 

  • Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. 84:131–176

    Google Scholar 

  • Jiang L, Zhang J, Wang J-J, Wang L, Zhang L, Li G, Yang X, Ma X, Sun X, Cai J, Zhang J, Huang X, Yu M, Wang X, Liu F, Wu C-I, He C, Zhang B, Ci W, Liu J (2013) Sperm, but not oocyte, DNA Methylome is inherited by zebrafish early embryos. Cell 153:773–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y-H, Bressler J, Beaudet AL (2004) Epigenetics and human disease. Annu Rev Genomics Hum Genet 5:479–510

    Article  CAS  PubMed  Google Scholar 

  • Jurkowska RZ, Jeltsch A (2016) Enzymology of mammalian DNA Methyltransferases. Springer International Publishing, pp 87–122

    Google Scholar 

  • Kass SU, Pruss D, Wolffe AP (1997) How does DNA methylation repress transcription? Trends Genet 13:444–449

    Article  CAS  PubMed  Google Scholar 

  • Klironomos FD, Berg J, Collins S (2013) How epigenetic mutations can affect genetic evolution: model and mechanism. BioEssays 35:571–578

    Article  PubMed  Google Scholar 

  • Klosin A, Lehner B (2016) Mechanisms, timescales and principles of trans-generational epigenetic inheritance in animals. Curr Opin Genet Dev 36:41–49

    Article  CAS  PubMed  Google Scholar 

  • Krebs HA (1975) The august Krogh principle: “for many problems there is an animal on which it can be most conveniently studied”. J Exp Zool 194:221–226

    Article  CAS  PubMed  Google Scholar 

  • Lacal I, Ventura R (2018) Epigenetic inheritance: concepts, mechanisms and perspectives. Front Mol Neurosci 11:1–22

    Article  Google Scholar 

  • Laland K, Matthews B, Feldman MW (2016) An introduction to niche construction theory. Evol Ecol 30:191–202

    Article  PubMed  PubMed Central  Google Scholar 

  • Laland K, Uller T, Feldman M, Sterelny K, Müller GB, Moczek A, Jablonka E, Odling-Smee J, Wray GA, Hoekstra HE, Futuyma DJ, Lenski RE, Mackay TFC, Schluter D, Strassmann JE (2014) Does evolutionary theory need a rethink? Nature 514:161–164

    Article  CAS  PubMed  Google Scholar 

  • Laland, K.N., Uller, T., Feldman, M.W., Sterelny, K., Mu, G.B., Uller, T., Moczek, A., 2015. The extended evolutionary synthesis: its structure, assumptions and predictions

    Google Scholar 

  • Langley-Evans SC (2006) Developmental programming of health and disease. Proc Nutr Soc 65:97–105

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee H, Hore TA, Reik W (2014) Reprogramming the Methylome: erasing memory and creating diversity. Cell Stem Cell 14:710–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis A, Austin E, Knapp R, Vaiano T, Galbally M (2015) Perinatal maternal mental health, fetal programming and child development. Healthcare 3:1212–1227

    Article  PubMed  PubMed Central  Google Scholar 

  • Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366:362–365

    Article  CAS  PubMed  Google Scholar 

  • Li E, Zhang Y (2014) DNA methylation in mammals. Cold Spring Harb Perspect Biol 6:a019133–a019133

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu D, Diorio J, Tannenbaum B, Caldji C, Francis D, Freedman A, Sharma S, Pearson D, Plotsky Paul M, Meaney Michael J (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 277:1659–1662

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Wang X, Wang H-D, Wu J, Ren J, Meng L, Wu Q, Dong H, Wu J, Kao T-Y, Ge Q, Wu Z-X, Yuh C-H, Shan G (2012) Escherichia coli noncoding RNAs can affect gene expression and physiology of Caenorhabditis elegans. Nat Commun 3:1073

    Article  PubMed  Google Scholar 

  • Manhard CV, Joyce JE, Gharrett AJ (2017) Evolution of phenology in a salmonid population: a potential adaptive response to climate change. Can J Fish Aquat Sci 74:1519–1527

    Article  CAS  Google Scholar 

  • Mayr E (1982) The growth of biological thought: diversity, evolution, and inheritance. Harvard University Press

    Google Scholar 

  • Mayr E (1991) One long argument: Charles Darwin and the genesis of modern evolutionary thought. Harvard University Press

    Google Scholar 

  • Mayr E (1993) What was the evolutionary synthesis? Trends Ecol Evol 8:31–34

    Article  CAS  PubMed  Google Scholar 

  • Meaney MJ (2001) Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu Rev Neurosci 24:1161–1192

    Article  CAS  PubMed  Google Scholar 

  • Meaney MJ, Szyf M (2005) Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome. Dialogues Clin Neurosci 7:103–123

    Article  PubMed  PubMed Central  Google Scholar 

  • Migicovsky Z, Kovalchuk I (2011) Epigenetic memory in mammals. Front Genet 2:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Minocherhomji S, Tollefsbol TO, Singh KK (2012) Mitochondrial regulation of epigenetics and its role in human diseases. Epigenetics 7:326–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moczek AP, Sultan S, Foster S, Ledón-Rettig C, Dworkin I, Nijhout HF, Abouheif E, Pfennig DW (2011) The role of developmental plasticity in evolutionary innovation. Proc R Soc B Biol Sci 278:2705–2713

    Article  Google Scholar 

  • Moghadam H, Mørkøre T, Robinson N (2015) Epigenetics–potential for programming fish for aquaculture? J Marine Sci Eng 3:175–192

    Article  Google Scholar 

  • Moore DS (2015) The develo** genome: an introduction to behavioral epigenetics. Oxford University Press

    Google Scholar 

  • Morgan R, Finnøen MH, Jensen H, Pélabon C, Jutfelt F (2020) Low potential for evolutionary rescue from climate change in a tropical fish. Proc Natl Acad Sci 117:33365–33372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson TB, Veland N, Chen T (2015) Writers, readers, and erasers of epigenetic Marks. Elsevier, pp 31–66

    Google Scholar 

  • Nilsson E, Skinner MK (2014) Chapter 2–definition of epigenetic transgenerational inheritance and biological impacts. In: Tollefsbol T (ed) Transgenerational epigenetics. Academic Press, Oxford, pp 11–16

    Chapter  Google Scholar 

  • Nilsson EE, Maamar MB, Skinner MK (2020) Environmentally induced epigenetic transgenerational inheritance and the Weismann barrier: the Dawn of neo-Lamarckian theory. J Develop Biol 8(4):28. https://doi.org/10.3390/jdb8040028

    Article  CAS  Google Scholar 

  • Noble D (2015) Conrad Waddington and the origin of epigenetics. J Exp Biol 218:816 LP -818

    Article  Google Scholar 

  • Noble D, Jablonka E, Joyner M, Müller GB, Omholt S, Roux E, Badyaev AV, Baverstock K, Rönkkö M, Jaeger J (2014) The integration of evolutionary biology with physiological science. J Physiol 592:2237–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odling-Smee FJ, Laland KN, Feldman MW (1996) Niche construction. Am Nat 147:641–648

    Article  Google Scholar 

  • Ortega-Recalde O, Day RC, Gemmell NJ, Hore TA (2019) Zebrafish preserve global germline DNA methylation while sex-linked rDNA is amplified and demethylated during feminisation. Nature. Communications 10

    Google Scholar 

  • Peat JR, Dean W, Clark SJ, Krueger F, Smallwood SA, Ficz G, Kim JK, Marioni JC, Hore TA, Reik W (2014) Genome-wide bisulfite sequencing in zygotes identifies demethylation targets and maps the contribution of TET3 oxidation. Cell Rep 9:1990–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterside IE, Selak MA, Simmons RA (2003) Impaired oxidative phosphorylation in hepatic mitochondria in growth-retarded rats. Am J Physiol-Endocrinol Metabolism 285:E1258–E1266

    Article  CAS  Google Scholar 

  • Pigliucci, M., Müller, G.B., 2010. Evolution–the extended synthesis

    Book  Google Scholar 

  • Potok ME, Nix DA, Parnell TJ, Cairns BR (2013) Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell 153:759–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Provine WB (2020) The origins of theoretical population genetics. University of Chicago Press

    Google Scholar 

  • Qureshi IA, Mehler MF (2018) Epigenetic mechanisms underlying nervous system diseases. Elsevier:43–58

    Google Scholar 

  • Reznick DN, Losos J, Travis J (2019) From low to high gear: there has been a paradigm shift in our understanding of evolution. Ecol Lett 22:233–244

    Article  PubMed  Google Scholar 

  • Richards EJ (2006) Inherited epigenetic variation — revisiting soft inheritance. Nat Rev Genet 7:395

    Article  CAS  PubMed  Google Scholar 

  • Ruhr I, Bierstedt J, Rhen T, Das D, Singh SK, Miller S, Crossley DA, Galli GLJ (2021) Developmental programming of DNA methylation and gene expression patterns is associated with extreme cardiovascular tolerance to anoxia in the common snap** turtle. Epigenetics Chromatin 14

    Google Scholar 

  • Ryu T, Veilleux HD, Donelson JM, Munday PL, Ravasi T (2018) The epigenetic landscape of transgenerational acclimation to ocean warming. Nat Clim Chang 8:504–509

    Article  Google Scholar 

  • Saben JL, Boudoures AL, Asghar Z, Thompson A, Drury A, Zhang W, Chi M, Cusumano A, Scheaffer S, Moley KH (2016) Maternal metabolic syndrome programs mitochondrial dysfunction via germline changes across three generations. Cell Rep 16:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarda S, Zeng J, Hunt BG, Yi SV (2012) The evolution of invertebrate gene body methylation. Mol Biol Evol 29:1907–1916

    Article  CAS  PubMed  Google Scholar 

  • Sarma RR, Edwards RJ, Crino OL, Eyck HJF, Waters PD, Crossland MR, Shine R, Rollins LA (2020) Do epigenetic changes drive corticosterone responses to alarm cues in larvae of an invasive amphibian? Integr Comp Biol 60:1481–1494

    Article  CAS  PubMed  Google Scholar 

  • Seidel GE (2002) Chapter 10 - genetic and phenotypic similarity among members of mammalian clonal sets. In: Cibelli J, Lanza RP, Campbell KHS, West MD (eds) Principles of cloning. Academic Press, San Diego, pp 215–225

    Chapter  Google Scholar 

  • Seisenberger S, Peat JR, Hore TA, Santos F, Dean W, Reik W (2013) Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philosophical Transactions of the Royal Society B: Biological Sciences 368:20110330

    Article  Google Scholar 

  • Sharma U, Conine Colin C, Shea Jeremy M, Boskovic A, Derr Alan G, Bing **n Y, Belleannee C, Kucukural A, Serra Ryan W, Sun F, Song L, Carone Benjamin R, Ricci Emiliano P, Li **n Z, Fauquier L, Moore Melissa J, Sullivan R, Mello Craig C, Garber M, Rando Oliver J (2016) Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351:391–396

    Article  CAS  PubMed  Google Scholar 

  • Skinner MK, Anway MD, Savenkova MI, Gore AC, Crews D (2008) Transgenerational epigenetic programming of the brain transcriptome and anxiety behavior. PLoS One 3:e3745

    Article  PubMed  PubMed Central  Google Scholar 

  • Skvortsova K, Iovino N, Bogdanović O (2018) Functions and mechanisms of epigenetic inheritance in animals. Nat Rev Mol Cell Biol 19:774–790

    Article  CAS  PubMed  Google Scholar 

  • Smith ZD, Chan MM, Humm KC, Karnik R, Mekhoubad S, Regev A, Eggan K, Meissner A (2014) DNA methylation dynamics of the human preimplantation embryo. Nature 511:611–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith ZD, Chan MM, Mikkelsen TS, Gu H, Gnirke A, Regev A, Meissner A (2012) A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484:339–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Søreide K (2017) Cancer epigenetics. Elsevier, pp 519–534

    Google Scholar 

  • Stearns T (2001) Centrosome Duplication. Cell 105:417–420

    Article  CAS  PubMed  Google Scholar 

  • Sultan SE (2015) Organism and environment: ecological development, niche construction, and adaption. Oxford University Press, USA

    Book  Google Scholar 

  • Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465–476

    Article  CAS  PubMed  Google Scholar 

  • Szyf M (2015) Nongenetic inheritance and transgenerational epigenetics, pp 1–11

    Google Scholar 

  • Tate PH, Bird AP (1993) Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev 3:226–231

    Article  CAS  PubMed  Google Scholar 

  • Tollefsbol T (2017a) Handbook of epigenetics: the new molecular and medical genetics. Academic Press

    Google Scholar 

  • Tollefsbol T (2019) Translational epigenetics series. In: Tollefsbol TO (ed) Transgenerational epigenetics, 2nd edn. Academic Press

    Google Scholar 

  • Tollefsbol TO (2014) Transgenerational epigenetics. Transgenerational Epigenetics Elsevier:1–8

    Google Scholar 

  • Tollefsbol TO (2017b) An overview of epigenetics. Handbook of Epigenetics:1–6

    Google Scholar 

  • Torres IO, Fujimori DG (2015) Functional coupling between writers, erasers and readers of histone and DNA methylation. Curr Opin Struct Biol 35:68–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uller T, English S, Pen I (2015) When is incomplete epigenetic resetting in germ cells favoured by natural selection? Proc R Soc B Biol Sci 282:1–8

    Google Scholar 

  • Uller T, Laland KN (2019) Evolutionary causation: biological and philosophical reflections. Mit Press

    Book  Google Scholar 

  • Vaiserman A (2014) Developmental epigenetic programming of caste-specific differences in social insects: an impact on longevity. Curr Aging Sci 7:176–186

    Article  PubMed  Google Scholar 

  • Van Cauwenbergh O, Di Serafino A, Tytgat J, Soubry A (2020) Transgenerational epigenetic effects from male exposure to endocrine-disrupting compounds: a systematic review on research in mammals. Clinical. Epigenetics 12

    Google Scholar 

  • Veland N, Chen T (2017) Mechanisms of DNA methylation and demethylation during mammalian development. Handbook of Epigenetics Elsevier:11–24

    Google Scholar 

  • Vickers M, Sloboda D (2012) Strategies for reversing the effects of metabolic disorders induced as a consequence of developmental programming. Front Physiol 3:242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, Gertler A, Breier BH, Harris M (2005) Neonatal leptin treatment reverses developmental programming. Endocrinology 146:4211–4216

    Article  CAS  PubMed  Google Scholar 

  • Vinci MC, Polvani G, Pesce M (2013) Epigenetic programming and risk: the birthplace of cardiovascular disease? Stem Cell Rev Rep 9:241–253

    Article  PubMed  Google Scholar 

  • Vriens A, Nawrot TS, Baeyens W, Den Hond E, Bruckers L, Covaci A, Croes K, De Craemer S, Govarts E, Lambrechts N, Loots I, Nelen V, Peusens M, De Henauw S, Schoeters G, Plusquin M (2017) Neonatal exposure to environmental pollutants and placental mitochondrial DNA content: A multi-pollutant approach. Environ Int 106:60–68

    Article  CAS  PubMed  Google Scholar 

  • Waddington CH (1942) The Epigenotype. In: Endeavour, vol 1, pp 18–20

    Google Scholar 

  • Wallace DC (2016) Mitochondrial DNA in evolution and disease. Nature 535:498–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhang J, Duan J, Gao X, Zhu W, Lu X, Yang L, Zhang J, Li G, Ci W, Li W, Zhou Q, Aluru N, Tang F, He C, Huang X, Liu J (2014) Programming and inheritance of parental DNA Methylomes in mammals. Cell 157:979–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Bhandari RK (2019) DNA methylation dynamics during epigenetic reprogramming of medaka embryo. Epigenetics 14:611–622

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Bhandari RK (2020) DNA methylation reprogramming in medaka fish, a promising animal model for environmental epigenetics research. Environmental. Epigenetics 6

    Google Scholar 

  • Weaver ICG (2005) Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci 25:11045–11054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver ICG, Cervoni N, Champagne FA, D'Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ (2004a) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854

    Article  CAS  PubMed  Google Scholar 

  • Weaver ICG, Diorio J, Seckl JR, Szyf M, Meaney MJ (2004b) Early environmental regulation of hippocampal glucocorticoid receptor gene expression: characterization of intracellular mediators and potential genomic target sites. Ann N Y Acad Sci 1024:182–212

    Article  CAS  PubMed  Google Scholar 

  • Weiner SA, Toth AL (2012) Epigenetics in social insects: a new direction for understanding the evolution of castes. Genetics Research International 2012:1–11

    Article  Google Scholar 

  • Weismann A (1893) The germ-plasm: a theory of heredity. Scribner's

    Book  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press

    Book  Google Scholar 

  • Wild G, Traulsen A (2007) The different limits of weak selection and the evolutionary dynamics of finite populations. J Theor Biol 247:382–390

    Article  PubMed  Google Scholar 

  • Wu X, Zhang Y (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 18:517–534

    Article  CAS  PubMed  Google Scholar 

  • Yin J, Zhou M, Lin Z, Li QQ, Zhang YY (2019) Transgenerational effects benefit offspring across diverse environments: a meta-analysis in plants and animals. Ecol Lett 22:1976–1986

    Article  PubMed  Google Scholar 

  • Zander-Fox DL, Fullston T, McPherson NO, Sandeman L, Kang WX, Good SB, Spillane M, Lane M (2015) Reduction of mitochondrial function by FCCP during mouse cleavage stage embryo culture reduces birth weight and impairs the metabolic health of offspring 1. Biol Reprod 92:124–124

    Article  PubMed  Google Scholar 

  • Zapata-Martín Del Campo C, Martínez-Rosas M, Guarner-Lans V (2018) Epigenetic programming of synthesis, release, and/or receptor expression of common mediators participating in the risk/resilience for comorbid stress-related disorders and coronary artery disease. Int J Mol Sci 19:1224

    Article  PubMed Central  Google Scholar 

  • Zhu Z, Cao F, Li X (2019) Epigenetic programming and fetal metabolic programming. Front Endocrinol 10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bautista, N.M. (2022). Transgenerational Epigenetic Programming. In: Vaschetto, L.M. (eds) Epigenetics, Development, Ecology and Evolution. Springer, Cham. https://doi.org/10.1007/978-3-031-13771-6_5

Download citation

Publish with us

Policies and ethics

Navigation