The Electron Density

  • Chapter
  • First Online:
Topological Approaches to the Chemical Bond

Abstract

In this chapter we analyze the basic scalar field in the topological theories of the chemical bond, the electron density, \(\rho \). After a succinct revision of the general properties of the \(\rho \) field, the topology that it induces in real space through its attractor basins is presented. This gives rise to an atomic partition, which is generally known as the Quantum Theory of Atoms in Molecules (QTAIM). In this Chapter, the types and properties of the different critical points of \(\rho \) are reviewed, and the physical roots of the partition are examined. As it will be shown, only when QTAIM basins are used several basin observables, like the atomic kinetic energy, can be defined consistently. In many instances, we also need to know the joint probability of finding not only one electron at a point, but a pair of electrons at a couple of positions, for instance. This leads us to conclude the chapter by presenting the general formalism of reduced densities and density matrices, and to use them to partition the energy in the interacting quantum atoms (IQA) approach or to construct localization and delocalization descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is interesting to recall that in the beginnings of quantum mechanics a significant debate arose related to the difficulty to find relativistic wave equations with positive definite density. For instance, the Klein–Gordon equation [40] \((\Box ^2 - m^2c^4) \Psi = 0 \) (The D’Alambertian operator is defined as \(\Box ^2 = \nabla ^2 - (1/c^2) \partial ^2/\partial t^2\)), which was the first relativistic equation to be proposed, has solutions with \(\rho >0\) and solutions with \(\rho <0\). The problem was finally solved after a revolution that proposed the existence of particles with proper positive energy as well as of a new set of \(E<0\) counterparts (antiparticles).

  2. 2.

    A similar demonstration for multielectron systems would integrate all but the coordinates that are averaged.

  3. 3.

    Recall that for any function f, \(\left[ \hat{f}, \hat{\boldsymbol{p}}\right] = i \hslash \boldsymbol{\nabla }f\). Using the commutator rule \([AB,C]=A[B,C]+[A,C]B\) it can also be deduced that:

    $$\begin{aligned} \left[ \hat{H}, \hat{\boldsymbol{r}} \right] = [\hat{T}+\hat{V}]= \frac{\hat{\boldsymbol{p}}}{m}[\hat{\boldsymbol{p}},\hat{\boldsymbol{r}}]=-\frac{i\hslash \hat{\boldsymbol{p}}}{m}\qquad \qquad \qquad {(3.84)} \end{aligned}$$

    since \([\hat{V},\hat{r}]=0\).

  4. 4.

    Recall from Combinatory Logic that: \( \left( N \atop m\right) =\frac{N!}{m!(N-m)!}\) , gives us the number of n-tuples in the system, so that the number of pairs is given by \( \left( N \atop 2\right) =\frac{N!}{2!(N-2)!}=\frac{N(N-1)}{2}\). If we know consider ordered pairs (e.g. \(AB\ne BA\)), we have twice as many, i.e. \(N(N-1)\). More generally, for ordered n-tuples (which allow m! permutations), we will have: \(\frac{N!}{(N-m)!}\). Note that different normalizations have been proposed depending on the use of ordered or unordered pairs.

  5. 5.

    Recall that given two events A and B, the conditional probability of A given B, P(A|B), is given by:

    $$\begin{aligned} P(A|B)=\frac{P(A\cap B)}{P(B)} \end{aligned}$$
    (3.148)

    where \(P(A\cap B)\) is the probability of the joint event A and B.

  6. 6.

    The first equality refers to the fact that the total probability must be equal to one by definition, which in our case, means summing up all the occupation probabilities. The second expression gives us the average occupation of a given \(\varOmega \) from the statistics of a random variable \(\bar{x}=\sum _i x_i P(X_i)\).

  7. 7.

    The concept of entropy in information theory provides the “uncertainty” in a given event. For example, a normal coin has maximum entropy (we have maximum probability of having either heads or tails). At the other end, a two-face coin has minimum entropy. Mathematically, this is measured by Shannon’s entropy:

    $$\begin{aligned} H(X)=-\sum _{i=1}P(x_i)\text {log} P(x_i)\qquad \qquad \qquad {(3.171)}, \end{aligned}$$
    (3.171)

    where the variable X can have \(x_1\ldots x_n\) values with \(P(X_1)\ldots P(x_n)\) probabilities.

  8. 8.

    You are probably acquainted with the variance of a discrete variable measured n times: \(S^2=\frac{(\sum x-\bar{x})^2}{n}\). For a random variable X taking values \(x_1\ldots x_n\) with probabilities \(P_1\ldots P_n\), \(S^2=(\sum _i x_i-\bar{x})^2P(X_i)\). Hence, using Eq. 3.170: \( \sigma ^2(\varOmega )= \sum _i (n-N_\varOmega )^2P_n(\varOmega )= \sum _i (n^2 P_n(\varOmega ))+N_\varOmega ^2-2N_\varOmega \sum _i (n P_n(\varOmega )=\sum _i (n^2 P_n(\varOmega ))-N_\varOmega ^2\).

  9. 9.

    Develo** Eq. 3.173 and introducing Eq. 3.172: \(2D_{\varOmega ,\varOmega }=\sum _n n^2P_n(\varOmega )-\sum _n nP_n(\varOmega )=\sigma ^2(\varOmega )+N_\varOmega ^2-N_\varOmega \). Reorganizing, we obtain Eq. 3.174.

  10. 10.

    From Eqs. 3.173 and 3.174: \(D_{\varOmega ,\varOmega }=N_\varOmega (N_\varOmega -1)=n(n-1)\).

  11. 11.

    \( \sigma ^2(\varOmega ) = \int _\varOmega \int _\varOmega (\rho (\boldsymbol{x}_1) \rho (\boldsymbol{x}_2) + \rho (\boldsymbol{x}_1) h_{xc}(\boldsymbol{x}_1, \boldsymbol{x}_2)) d \boldsymbol{x}_1 d \boldsymbol{x}_2-N_{\varOmega }^2 +N_{\varOmega }\) with \(\int _\varOmega \int _\varOmega \rho (\boldsymbol{x}_1) \rho (\boldsymbol{x}_2) d \boldsymbol{x}_1 d \boldsymbol{x}_2=N_{\varOmega }^2\).

  12. 12.

    \(\sum _B F_{\varOmega _A,\varOmega _B}= \int _{\varOmega _A} \rho (\boldsymbol{x}_1) d\boldsymbol{x}_1 \sum _B \int _{\varOmega _B} h_{xc}(\boldsymbol{x}_2| \boldsymbol{x}_1)d \boldsymbol{x}_2 = N_A \int _{\mathbb R^3} h_{xc}(\boldsymbol{x}_2| \boldsymbol{x}_1)d \boldsymbol{x}_2 =-N_A\)

  13. 13.
    $$\begin{aligned} \int _\varOmega \int _\varOmega \rho (\boldsymbol{x}_1)\rho (\boldsymbol{x}_2) d\boldsymbol{x}_1 d\boldsymbol{x}_2-\sum _i\sum _j\int _\varOmega \int _\varOmega (\phi _i^*(\boldsymbol{x}_1)\phi _i(\boldsymbol{x}_2))(\phi _j^*(\boldsymbol{x}_1)\phi _j(\boldsymbol{x}_2)) d\boldsymbol{x}_1 d\boldsymbol{x}_2= N_\varOmega ^2-\sum _iS_{ij}^2(\varOmega ) \qquad \qquad \qquad {(3.180)} \end{aligned}$$
    (3.180)
  14. 14.

    Isopycnic transformations are linear orbital transformations that leave the first-order density matrix invariant. They make it possible to localize not only the Hartree-Fock spin-orbitals, but also the natural spin-orbitals.

References

  1. Alcoba, D.R., Torre, A., Lain, L., Bochicchio, R.C.: Determination of local spins by means of a spin-free treatment. J. Chem. Theory Comput. 7(11), 3560–3566 (2011)

    Google Scholar 

  2. Angulo, J.C., Dehesa, J.S., Galvez, F.J.: Atomic-charge convexity and the electron density at the nucleus. Phys. Rev. A 42(1), 641 (1990)

    Article  CAS  PubMed  Google Scholar 

  3. Angyan, J.G., Loos, M., Mayer, I.: Covalent bond orders and atomic valence indices in the topological theory of atoms in molecules. J. Phys. Chem. 98(20), 5244–5248 (1994)

    Article  CAS  Google Scholar 

  4. Arfken, G.: Mathematical Methods for Physicists, 3rd edn. Academic, San Diego, California (1985)

    Google Scholar 

  5. Bader, R.F., Gatti, C.: A green’s function for the density. Chem. Phys. Lett. 287(3–4), 233–238 (1998)

    Google Scholar 

  6. Bader, R.F.W.: Atoms in Molecules. Oxford University Press, Oxford (1990)

    Google Scholar 

  7. Bader, R.F.W., Carroll, M.T., Cheeseman, J.R., Chang, C.: Properties of atoms in molecules: atomic volumes. J. Am. Chem. Soc. 109, 7968 (1987)

    Article  CAS  Google Scholar 

  8. Bader, R.F.W., Chang, C.: Properties of atoms in molecules: energetic of electrofilic aromatic substitution. J. Phys. Chem. 93, 5095 (1989)

    Article  CAS  Google Scholar 

  9. Bader, R.F.W., Popelier, P.L.A.: Atomic theorems. Int. J. Quantum Chem. 45, 189 (1993)

    Article  CAS  Google Scholar 

  10. Bader, R.F.W., Stephens, M.E.: Spatial localization of the electronic pair and number distributions in molecules. J. Am. Chem. Soc. 97, 7391 (1975)

    Article  CAS  Google Scholar 

  11. Baerends, E.J., Gritsenko, O.V.: A quantum chemical view of density functional theory. J. Phys. Chem. A 101, 5383 (1997)

    Article  CAS  Google Scholar 

  12. Bingel, W.A.: The behaviour of the first-order density matrix at the coulomb singularities of the Schrödinger equation. Z. Naturforsch. A 18, 1249 (1963)

    Google Scholar 

  13. Blanco, M.A., Martín Pendás, A., Francisco, E.: Interacting quantum atoms: a correlated energy decomposition scheme based on the quantum theory of atoms in molecules. J. Chem. Theory Comput. 1, 1096 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. Bochicchio, R., Ponec, R., Torre, A., Lain, L.: Multicenter bonding within the AIM theory. Theor. Chem. Acc.: Theory, Comput. Model. (Theoretica Chimica Acta) 105(4–5), 292–298 (2001)

    Google Scholar 

  15. Bollini, C.G., Giambiagi, M., de Giambiagi, M.S., de Figueiredo, A.P.: Graphical linking of a mo multicenter bond index to vb structures. Struct. Chem. 12(2), 113–120 (2001)

    Google Scholar 

  16. Born, M.: Zur Quantenmechanik der Stoßvorgänge. Z. Phys. 37(12), 863 (1926)

    Google Scholar 

  17. Boys, S., Bernardi, F.: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19(4), 553–566 (1970)

    Google Scholar 

  18. Bultinck, P., Ponec, R., Van Damme, S.J.: Multicenter bond indices as a new measure of aromaticity in polycyclic aromatic hydrocarbons. J. Phys. Org. Chem. A 18, 706 (2005)

    Article  CAS  Google Scholar 

  19. Cancès, E., Keriven, R., Lodier, F., Savin, A.: How electrons guard the space: shape optimization with probability distribution criteria. Theor. Chem. Acc. 111, 373 (2004)

    Article  Google Scholar 

  20. Cioslowski, J.: Isopycnic orbital transformations and localization of natural orbitals. Int. J. Quant. Chem. S24, 15 (1990)

    Article  Google Scholar 

  21. Clark, A.E., Davidson, E.R.: Local spin. J. Chem. Phys. 115(16), 7382–7392 (2001)

    Google Scholar 

  22. Cohen, L.: Local kinetic energy in quantum mechanics. J. Chem. Phys. 70, 788 (1979)

    Article  CAS  Google Scholar 

  23. Coleman, A.J., Yakulov, V.I.: Reduced Density Matrices. Coulson’s Challenge. Springer, New York, USA (2000)

    Google Scholar 

  24. Coppens, P.: Electron density from x-ray diffraction. Annu. Rev. Phys. Chem. 43, 663–692 (1992)

    Article  CAS  Google Scholar 

  25. Daudel, R.: The Fundamentals of Theoretical Chemistry. Pergamon Press, Oxford (1968)

    Google Scholar 

  26. Davidson, E.R., Clark, A.E.: Analysis of wave functions for open-shell molecules. Phys. Chem. Chem. Phys. 9(16), 1881 (2007)

    Google Scholar 

  27. Diner, S., Malrieu, J.P., Claverie, P.: Localized bond orbitals and the correlation problem. Theoret. Chim. Acta (Berl.) 13, 1 (1969)

    Google Scholar 

  28. Finzel, K.: How does the ambiguity of the electronic stress tensor influence its ability to serve as bonding indicator. Int. J. Quant. Chem. 114(9), 568 (2014)

    Article  CAS  Google Scholar 

  29. Fradera, X., Austen, M.A., Bader, R.F.W.: The Lewis model and beyond. J. Phys. Chem. A 103, 304 (1999)

    Article  CAS  Google Scholar 

  30. Francisco, E., Martín Pendás, A., Blanco, M.A.: A molecular energy decomposition scheme for atoms in molecules. J. Chem. Theory Comput. 2, 90 (2006)

    Article  CAS  PubMed  Google Scholar 

  31. Francisco, E., Martín Pendás, A., García-Revilla, M., Boto, R.A.: A hierarchy of chemical bonding indices in real space from reduced density matrices and cumulants. Comput. Theor. Chem. 1003, 71 (2013)

    Article  CAS  Google Scholar 

  32. Gatti, C.: The source function descriptor as a tool to extract chemical information from theoretical and experimental electron densities. Struct. Bond. 147, 193–286 (2012)

    Google Scholar 

  33. Gatti, C.: Challenging chemical concepts through charge density of molecules and crystals. Physica Scripta 87(4), 048,102 (2013)

    Google Scholar 

  34. Gatti, C., Cargnoni, F., Bertini, L.: Chemical information from the source function. J. Comput. Chem. 24(4), 422–436 (2003)

    Google Scholar 

  35. Gatti, C., Macchi, P. (eds.): Modern Charge-density Analysis. Springer, Dordrecht (2012)

    Google Scholar 

  36. Gatti, C., Saleh, G., Presti, L.L.: Source function applied to experimental densities reveals subtle electron-delocalization effects and appraises their transferability properties in crystals. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 72(2), 180–193 (2016)

    Google Scholar 

  37. Giambiagi, M., de Giambiagi, M.S., Mundim, K.C.: Definition of a multicenter bond index. Struct. Chem. 1, 423 (1990)

    Article  CAS  Google Scholar 

  38. Herrmann, C., Reiher, M., Hess, B.A.: Comparative analysis of local spin definitions. J. Chem. Phys. 122(3), 034,102 (2005)

    Google Scholar 

  39. Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T.: “Schrödinger inequalities” and asymptotic behavior of the electron density of atoms and molecules. Phys. Rev. A 16(5), 1782 (1977)

    Google Scholar 

  40. Itzykson, C., Zuber, J.B.: Quantum Field Theory, international edn. McGraw-Hill, New York (1985)

    Google Scholar 

  41. Jeziorski, B., Moszynski, R., Szalewicz, K.: Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem. Rev. 94, 1887 (1994)

    Article  CAS  Google Scholar 

  42. Kato, W.A.: On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math. 10, 151 (1957)

    Article  Google Scholar 

  43. Kitaura, K., Morokuma, K.: A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation. Int. J. Quant. Chem. 10, 325 (1976)

    Article  CAS  Google Scholar 

  44. Krishnan, R., Frisch, M.J., Pople, J.A.: Contribution of triple substitutions to the electron correlation energy in fourth order perturbation theory. J. Chem. Phys. 72, 4244 (1980)

    Article  CAS  Google Scholar 

  45. Landau, L.D., Lifshitz, E.M.: Mechanics. In: Course of Theoretical Physics, vol. 1, 3rd edn. Butterworth-Heinemann, Oxford (1993)

    Google Scholar 

  46. Martín Pendás, A., Blanco, M.A., Francisco, E.: The nature of the hydrogen bond: a synthesis from the interacting quantum atoms picture. J. Chem. Phys. 125, 184,112 (2006)

    Google Scholar 

  47. Martín Pendás, A., Francisco, E., Blanco, M.A., Gatti, C.: Bond paths as privileged exchange channels. Chem. Eur. J. 13, 9362 (2007)

    Google Scholar 

  48. Martín Pendás, A., Francisco, E., Casals-Sainz, J.: Quantitative determination of the nature of intermolecular bonds by EDA analysis, chapter 6. In: Novoa, J.A. (ed.) Intermolecular Interactions in Crystals: Fundamentals of Crystal Engineering, 1st edn. Royal Society of Chemistry, London (2018)

    Google Scholar 

  49. Matito, E., Duran, M., Solà, M.: A novel exploration of the Hartree-Fock homolytic bond dissociation problem in the hydrogen molecule by means of electron localization measures. J. Chem. Educ. 83(8), 1243 (2006)

    Article  CAS  Google Scholar 

  50. Matito, E., Solà, M., Salvador, P., Duran, M.: Electron sharing indexes at the correlated level. application to aromaticity calculations. Faraday Discuss. 135, 9904 (2007)

    Google Scholar 

  51. Mayer, I.: Bond orders and valences in the SCF theory: a comment. Theor. Chim. Acta 67, 315 (1985)

    Article  CAS  Google Scholar 

  52. Mayer, I.: On bond orders and valences in the ab initio quantum chemical theory. Int. J. Quant. Chem. 29, 73 (1986)

    Article  CAS  Google Scholar 

  53. Mayer, I.: Local spins: An alternative treatment for single determinant wave functions. Chem. Phys. Lett. 440(4–6), 357–359 (2007)

    Google Scholar 

  54. Mayer, I.: Local spins: an improved treatment for correlated wave functions. Chem. Phys. Lett. 478(4–6), 323–326 (2009)

    Google Scholar 

  55. Mayer, I.: Local spins: Improving the treatment for single determinant wave functions. Chem. Phys. Lett. 539–540, 172–174 (2012)

    Google Scholar 

  56. Mayer, I., Matito, E.: Calculation of local spins for correlated wave functions. Phys. Chem. Chem. Phys. 12(37), 11,308 (2010)

    Google Scholar 

  57. McWeeny, R.: Methods of Molecular Quantum Mechanics, 2nd edn. Academic, London (1992)

    Google Scholar 

  58. Menéndez, M., Boto, R.A., Francisco, E., Martín Pendás, A.: One-electron images in real space: natural adaptive orbitals. J. Comput. Chem. 36, 833 (2015)

    Article  PubMed  Google Scholar 

  59. Mezey, P.G.: The holographic electron density theorem and quantum similarity measures. Mol. Phys. 96, 169 (1999)

    Article  CAS  Google Scholar 

  60. Mohajeri, A., Ashrafi, A.: Aromaticity in terms of ring critical point properties. Chem. Phys. Lett. 458(4–6), 378 (2008)

    Article  CAS  Google Scholar 

  61. Monza, E., Gatti, C., Presti, L.L., Ortoleva, E.: Revealing electron delocalization through the source function. J. Phys. Chem. A 115(45), 12864–12878 (2011)

    Google Scholar 

  62. Ponec, R.: Electron pairing and chemical bonds. Chemical structure, valences and structural similarities from the analysis of the Fermi holes. J. Math. Chem. 21, 323 (1997)

    Google Scholar 

  63. Ponec, R.: Electron pairing and chemical bonds. molecular structure from the analysis of pair densities and related quantities. J. Math. Chem. 23, 85 (1998)

    Google Scholar 

  64. Ramos-Cordoba, E., Matito, E., Mayer, I., Salvador, P.: Toward a unique definition of the local spin. J. Chem. Theory Comput. 8(4), 1270–1279 (2012)

    Google Scholar 

  65. Ramos-Cordoba, E., Matito, E., Salvador, P., Mayer, I.: Local spins: improved Hilbert-space analysis. Phys. Chem. Chem. Phys. 14(44), 15,291 (2012)

    Google Scholar 

  66. Reiher, M.: On the definition of local spin in relativistic and nonrelativistic quantum chemistry. Faraday Discus. 135, 97–124 (2007)

    Google Scholar 

  67. Salvador, P., Mayer, I.: One- and two-center physical space partitioning of the energy in the density functional theory. J. Chem. Phys.126(23), 234,113 (2007)

    Google Scholar 

  68. Shanon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. llogr. A 32, 751 (1976)

    Google Scholar 

  69. Steiner, E.: Charge densities in atoms. J. Chem. Phys. 39, 689 (1963)

    Article  Google Scholar 

  70. Takatsuka, K., Fueno, T., Yamaguchi, K.: Distribution of odd electrons in ground-state molecules. Theor. Chim.Acta 48(3), 175–183 (1978)

    Google Scholar 

  71. Thomsen, M.K., Gatti, C., Overgaard, J.: Probing cyclic \(\pi \)-electron delocalization in an imidazol-2-ylidene and a corresponding imidazolium salt. Chem. - A Eur. J. 24(19), 4973–4981 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Martín Pendás .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martín Pendás, Á., Contreras-García, J. (2023). The Electron Density. In: Topological Approaches to the Chemical Bond. Theoretical Chemistry and Computational Modelling. Springer, Cham. https://doi.org/10.1007/978-3-031-13666-5_3

Download citation

Publish with us

Policies and ethics

Navigation