Abstract

In this chapter, we discuss approaches for a problem called model selection. Model selection is always needed when there are a number of candidate models that could be used for a prediction task and the best among them must be chosen. For instance, for a classification problem, we may consider a support vector machine or a decision tree. Similarly, for a regression analysis, there may be different options for the number of predictors of the model. In either case, one needs to decide which statistical model to select from the available candidates. We’ve just discussed the topic of model selection. There is a related topic called model assessment. Model selection and model assessment are frequently confused, although each of these topics focuses on a different goal. For this reason, we start our discussion about model selection by clarifying the difference compared to model assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Aho, D. Derryberry, T. Peterson, Model selection for ecologists: the worldviews of AIC and BIC. Ecology 95(3), 631–636 (2014).

    Article  Google Scholar 

  2. H. Akaike, A new look at the statistical model identification, in Selected Papers of Hirotugu Akaike (Springer, Berlin, 1974), pp. 215–222.

    Book  Google Scholar 

  3. S. Arlot, A. Celisse, et al., A survey of cross-validation procedures for model selection. Stat. Surv. 4, 40–79 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  4. E.M.L. Beale, M.G. Kendall, D.W. Mann, The discarding of variables in multivariate analysis. Biometrika 54(3–4), 357–366 (1967).

    Article  MathSciNet  Google Scholar 

  5. C.M. Bishop, Pattern Recognition and Machine Learning (Springer, Berlin, 2006).

    MATH  Google Scholar 

  6. K.P. Burnham, D.R. Anderson, Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33(2), 261–304 (2004).

    Article  MathSciNet  Google Scholar 

  7. S. Derksen, H.J. Keselman, Backward, forward and stepwise automated subset selection algorithms: frequency of obtaining authentic and noise variables. Br. J. Math. Stat. Psychol. 45(2), 265–282 (1992).

    Article  Google Scholar 

  8. J. Ding, V. Tarokh, Y. Yang, Model selection techniques: an overview. IEEE Sig. Proces. Mag. 35(6), 16–34 (2018).

    Article  Google Scholar 

  9. N.R. Draper, H. Smith, Applied regression analysis, vol. 326. (John Wiley & Sons, Hoboken, 2014).

    MATH  Google Scholar 

  10. P.K. Dunn, G.K. Smyth, Generalized linear models with examples in R (Springer, Berlin, 2018).

    Book  MATH  Google Scholar 

  11. M.R. Forster, Key concepts in model selection: Performance and generalizability. J. Math. Psychol. 44(1), 205–231 (2000).

    Article  MATH  Google Scholar 

  12. M.R. Forster, Predictive accuracy as an achievable goal of science. Philos. Sci. 69(S3), S124–S134 (2002).

    Article  Google Scholar 

  13. S. Geisser, The predictive sample reuse method with applications. J. Am. Stat. Assoc. 70(350), 320–328 (1975).

    Article  MATH  Google Scholar 

  14. S.G. Gilmour, The interpretation of Mallows’s c_p-statistic. Statistician, 49–56 (1996).

    Google Scholar 

  15. E.T. Jaynes, Probability theory: the logic of science (Cambridge University Press, Cambridge, 2003).

    Book  MATH  Google Scholar 

  16. R.E. Kass, A.E. Raftery, Bayes factors. J. Am. Stat. Assoc. 90(430), 773–795 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Kuha, AIC and BIC: comparisons of assumptions and performance. Sociol. Methods Res. 33(2), 188–229 (2004).

    Article  MathSciNet  Google Scholar 

  18. M. Lavine, M.J. Schervish, Bayes factors: what they are and what they are not. Am. Stat. 53(2), 119–122 (1999).

    MathSciNet  Google Scholar 

  19. R.D. Morey, J.-W. Romeijn, J.N. Rouder, The philosophy of Bayes factors and the quantification of statistical evidence. J. Math. Psychol. 72, 6–18 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  20. A.A. Neath, J.E. Cavanaugh, The bayesian information criterion: background, derivation, and applications. Wiley Interdiscip. Rev. Comput. Stat. 4(2), 199–203 (2012).

    Article  Google Scholar 

  21. A.M. Nicholson, Generalization error estimates and training data valuation. Ph.D. Thesis, California Institute of Technology (2002).

    Google Scholar 

  22. A.E. Raftery, Bayesian model selection in social research. Sociol. Methodol. 111–163 (1995).

    Google Scholar 

  23. G. Schwarz, et al., Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Stone, Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B Methodol. 111–147 (1974).

    Google Scholar 

  25. M.R.E. Symonds, A. Moussalli, A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65(1), 13–21 (2011).

    Article  Google Scholar 

  26. S.I. Vrieze, Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the bayesian information criterion (BIC). Psychol. Methods 17(2), 228 (2012).

    Google Scholar 

  27. Q.H. Vuong, Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica, 307–333 (1989).

    Google Scholar 

  28. J. Wand, X. Shen, Estimation of generalization error: random and fixed inputs. Stat. Sin. 16(2), 569 (2006).

    Google Scholar 

  29. S. Wright, Correlation and causation. J. Agricult. Res. 20, 557–585 (1921).

    Google Scholar 

  30. Y. Yang, Can the strengths of AIC and BIC be shared? A conflict between model identification and regression estimation. Biometrika 92(4), 937–950 (2005).

    MATH  Google Scholar 

  31. C. Zuccaro, Mallows’ cp statistic and model selection in multiple linear regression. Market Res. Soc. J. 34(2), 1–10 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Emmert-Streib .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Emmert-Streib, F., Moutari, S., Dehmer, M. (2023). Model Selection. In: Elements of Data Science, Machine Learning, and Artificial Intelligence Using R. Springer, Cham. https://doi.org/10.1007/978-3-031-13339-8_12

Download citation

Publish with us

Policies and ethics

Navigation