Growth-Based Methodology for the Topology Optimisation of Trusses

  • Conference paper
  • First Online:
Towards Radical Regeneration (DMS 2022)

Included in the following conference series:

  • 1374 Accesses

Abstract

This paper presents a novel methodology for a growth-based topology optimization of trusses. While most methods of topology optimization are based on voxel grids that result in free-form volumes, the topology optimization of trusses exists as subtractive methods that start with a large number of initial beams. This method instead commences with a minimal amount of beams. The model is iteratively refined by node repositioning and node division according to structural forces to arrive at a complex truss. Case studies of a cantilever and a table show the results and reduction in mass achieved by the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aage, N., Andreassen, E., Lazarov, B.S., Sigmund, O.: Giga-voxel computational morphogenesis for structural design. Nature 550(7674), 84–86 (2017)

    Article  Google Scholar 

  • Andrasek, A.: Xenocells: in the mood for the unseen. Archit. Des. 86, 90–95 (2016)

    Google Scholar 

  • Lomas, A.: Cellular forms: an artistic exploration of morphogenesis. In: SIGGRAPH Studio (2014)

    Google Scholar 

  • Bearer, E.L., et al.: Multiparameter computational modeling of tumor invasion. Cancer Res. 69(10), 4493–4501 (2009)

    Article  Google Scholar 

  • Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods, and Applications. Springer, Heidelberg (2013)

    Google Scholar 

  • Dorn, W., Gomory, R., Greenberg, H.: Automatic design of optimal structures. J. De Mécanique 3(1), 25–52 (1964)

    Google Scholar 

  • Gardner, M.: Mathematical Games: the fantastic combinations of John Conway’s new solitaire game “Life.” Sci. Am. 223, 120–123 (1970)

    Article  Google Scholar 

  • He, L., Gilbert, M.: Rationalization of trusses generated via layout optimization. Struct. Multidiscip. Optim. 52(4), 677–694 (2015). https://doi.org/10.1007/s00158-015-1260-x

    Article  MathSciNet  Google Scholar 

  • Kwok, T.H., Li, Y., Chen, Y.: A structural topology design method based on principal stress line. CAD Comput. Aided Des. 80, 19–31 (2016)

    Article  Google Scholar 

  • Martínez, P., Martí, P., Querin, O.M.: Growth method for size, topology, and geometry optimization of truss structures. Struct. Multidiscip. Optim. 33(1), 13–26 (2007)

    Article  Google Scholar 

  • Michell, A.G.M.: The limits of economy of material in frame-structures. Lond. Edinb. Dublin Philoso. Mag. J. Sci. 8(47), 589–597 (1904)

    Article  Google Scholar 

  • Neufeld, E., Szczerba, D., Chavannes, N., Kuster, N.: A novel medical image data-based multi-physics simulation platform for computational life sciences. Interface Focus 3(2), 4 (2013)

    Article  Google Scholar 

  • Palm, M.M., Merks, R.M.H.: Large-scale parameter studies of cell-based models of tissue morphogenesis using CompuCell3D or VirtualLeaf. In: Nelson, C.M. (ed.) Tissue Morphogenesis. MMB, vol. 1189, pp. 301–322. Springer, New York (2015). https://doi.org/10.1007/978-1-4939-1164-6_20

    Chapter  Google Scholar 

  • Prager, W.: Optimal layout of cantilever trusses. J. Optim. Theory Appl. 23(1), 111–117 (1977)

    Article  MathSciNet  Google Scholar 

  • Preisinger, C.: Linking structure and parametric geometry. Archit. Des. 83(2), 110–113 (2013)

    Google Scholar 

  • Preisinger, C.: Parametric Structural Modeling - Karamba - User Manual for Version 1.2.2 (2016)

    Google Scholar 

  • Rozvany, G.I.N.: Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct. Multidiscip. Optim. 21(2), 90–108 (2001). https://doi.org/10.1007/s001580050174

    Article  MathSciNet  Google Scholar 

  • Shirinifard, A., Gens, J.S., Zaitlen, B.L., Popławski, N.J., Swat, M., Glazier, J.A.: 3D multi-cell simulation of tumor growth and angiogenesis. PLoS ONE 4(10), 10 (2009)

    Article  Google Scholar 

  • Subedi, S.C., Verma, C.S., Suresh, K.: A Review of methods for the geometric post-processing oftopology optimized models. J. Comput. Inf. Sci. Eng. 20(6), 12 (2020)

    Article  Google Scholar 

  • Walpole, J., Papin, J.A., Peirce, S.M.: Multiscale computational models of complex biological systems. Annu. Rev. Biomed. Eng. 15, 137–154 (2013)

    Article  Google Scholar 

  • Witten, T.A., Jr., Sander, L.M.: Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400 (1981)

    Article  Google Scholar 

  • **e, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimization. Comput. Struct. 49(5), 885–896 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

This project was carried out as part of a doctorate under the supervision of Klaus Bollinger at the University of Applied Arts Vienna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Klemmt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Klemmt, C. (2023). Growth-Based Methodology for the Topology Optimisation of Trusses. In: Gengnagel, C., Baverel, O., Betti, G., Popescu, M., Thomsen, M.R., Wurm, J. (eds) Towards Radical Regeneration. DMS 2022. Springer, Cham. https://doi.org/10.1007/978-3-031-13249-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13249-0_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13248-3

  • Online ISBN: 978-3-031-13249-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation