The Intraseasonal Variations

  • Chapter
  • First Online:
An Introduction to Large-Scale Tropical Meteorology

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

  • 275 Accesses

Abstract

The intraseasonal variations that bridge weather and climate time scales in the range of 20–90 days are introduced in this chapter by way of illustrating their features from observations and reanalysis. The various theories proposed to explain their features are also presented. The operational detection of the propagating intraseasonal signal is described. The potential influence of the large-scale intraseasonal variations on extreme weather events is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 84.39
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 116.04
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adames, A. F. and J. M. Wallace, 2015: Three-dimensional structure and evolution of the moisture field in the MJO. J Atmos Sci., 72(10):3733–3754.

    Google Scholar 

  • Adames, A. F. and E. D. Maloney, 2021: Moisture mode theory’s contribution to advances in our understanding of the Madden-Julian Oscillation and other tropical disturbances. Curr. Clim. Change reports, 7, 72–85. https://doi.org/10.1007/s40641-021-00172-4.

    Article  Google Scholar 

  • Adames, A. F., S. W. Powell, F. Ahmed, V. C. Mayta, and J. D. Neelin, 2021: Tropical precipitation evolution in a buoyancy-budget framework. J Atmos Sci., 78(2), 509–528.

    Google Scholar 

  • Camargo, S. J., M. C. Wheeler, and A. H. Sobel, 2009: Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J. Atmos. Sci., 66, 3061–3074.

    Google Scholar 

  • Carvalho, L. M. V., C. Jones, and T. Ambrizzi, 2005: Opposite phases of the Antarctic Oscillation and relationships with intraseasonal to interannual activity in the tropics during the austral summer. J. Climate, 18, 702–718.

    Google Scholar 

  • Chang, C. P., and H. Lim, 1988: Kelvin wave-CISK: A possible mechanism for the 30–50 day oscillations, J. Atmos. Sci., 45,1709–1720.

    Google Scholar 

  • Chen, S. S., and R. A. Houze Jr., 1997: Diurnal variation of deep convective systems over the tropical Pacific warm pool, Q. J. R. Meteorol. Soc., 123, 357–388.

    Google Scholar 

  • DeMott, C. A., N. P. Klingaman, and S. J. Woolnough, 2015: Atmosphere-ocean coupled processes in the Madden-Julian oscillation. Rev Geophys. 53(4):1099–1154.

    Google Scholar 

  • DeMott, C. A., N. P. Klingaman, W. -L. Tseng, M. A. Burt, Y. Gao, and D. A. Randall, 2019: The convection connection: how ocean feedbacks affect tropical mean moisture and MJO propagation. J Geophys Res Atmosph., 124(22):11910–11931.

    Google Scholar 

  • Domeisen, D. I. V., and Coauthors, 2020: The role of the stratosphere in subseasonal to seasonal prediction: 2. Predictability arising from stratosphere-troposphere coupling. J. Geophys. Res. Atmos., 125, e2019JD030923, https://doi.org/10.1029/2019jd030923.

    Article  Google Scholar 

  • Goswami, B. N., R. S. Ajayamohan, P. K. Xavier, and D. Sengupta, 2003: Clustering of synoptic activity by Indian summer monsoon intraseasonal oscillations. Geophys. Res. Lett., 30(8), https://doi.org/10.1029/2002GL016734.

  • Grimm, A. M., and P. L. Silva Dias, 1995: Analysis of tropical–extratropical interactions with influence functions of a barotropic model. J. Atmos. Sci., 52, 3538–3555.

    Google Scholar 

  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden-Julian Oscillation, J. Atmos. Sci., 51, 2225–2237.

    Google Scholar 

  • Herbertson, A. J., 1901: Outlines of Physiography: An Introduction to the Study of the Earth. Edward Arnold, 312 pp.

    Google Scholar 

  • Janicot, S., F. Mounier, N. M. J. Hall, S. Leroux, B. Sultan, and G. N. Kiladis, 2009: Dynamics of the West African monsoon. Part IV: Analysis of 25–90-day variability of convection and the role of the Indian monsoon. J. Climate, 22, 1541–1565.

    Google Scholar 

  • Janicot, S., and Coauthors, 2011: Intraseasonal variability of the West African monsoon. Atmos. Sci. Lett., 12, 58–66.

    Google Scholar 

  • Jones, C. and B. C. Weare, 1996: The role of the low-level moisture convergence and ocean latent heat fluxes in the Madden and Julian Oscillation: An observational analysis using ISCCB data and ECMWF analyses. J. Climate, 9, 3086–3104.

    Google Scholar 

  • Jones, C., D. E. Waliser, K. M. Lau, and W. Stern, 2004: Global occurrences of extreme precipitation events and the Madden–Julian oscillation: Observations and predictability. J. Climate, 17, 4575–4589.

    Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Google Scholar 

  • Karmakar, N. and V. Misra, 2019: The relation of intraseasonal variations with local onset and demise of the Indian summer monsoon. J. Geophys. Res., https://doi.org/10.1029/2018JD029642.

  • Karmakar, N. and V. Misra, 2020: Differences in northward propagation of convection over the Arabian Sea and Bay of Bengal during boreal summer. Journal of Geophysical Research: Atmospheres, 125, e2019JD031648. https://doi.org/10.1029/2019JD031648

    Article  Google Scholar 

  • Karmakar, N., W. R. Boos, and V. Misra, 2020: Influence of intraseasonal variability on the development of monsoon depressions. Geophys. Res. Lett., 48, e2020GL090425, https://doi.org/10.1029/2020GL090425.

    Article  Google Scholar 

  • Kemball-Cook, S. and B. Wang, 2001: Equatorial waves and air-sea interaction in the Boreal summer intraseasonal oscillation. J. Climate, 14, 2923–2942.

    Google Scholar 

  • Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433–440, https://doi.org/10.1038/ngeo2424.

    Article  Google Scholar 

  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden-Julian oscillation. J. Atmos. Sci., 62, 2790–2809, https://doi.org/10.1175/JAS3520.1.

    Article  Google Scholar 

  • Koster, R.D., and others 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophysical Research Letters, 37, L02402, https://doi.org/10.1029/2009GL041677.

    Article  Google Scholar 

  • Krishnamurti, T. N. and H. Bhalme, 1976: Oscillations of a monsoon system. Part I: Observational aspects. J. Atmos. Sci., 33(10), 1937–1954.

    Google Scholar 

  • Krishnamurti, T. N. and D. Subrahmanyam, 1982: The 30–50 day mode at 850 mb during MONEX. J. Atmos. Sci., 39, 2088–2095.

    Google Scholar 

  • Lau, K.-M., and L. Peng. 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: Basic theory, J. Atmos. Sci., 44, 950–972.

    Google Scholar 

  • Lawrence, D. M. and P. J. Webster, 2002: The boreal summer intraseasonal oscillation: relationship between northward and eastward movement of convection. J Atmos Sci., 59(9):1593–1606

    Google Scholar 

  • L’Heureux, M. L., and R. W. Higgins, 2008: Boreal winter links between the Madden–Julian oscillation and the Arctic Oscillation. J. Climate, 21, 3040–3050.

    Google Scholar 

  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275–1277.

    Google Scholar 

  • Lin, J., B. Mapes, M. Zhang, and M. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden-Julian Oscillation. J. Atmos. Sci., 61, 296–309.

    Google Scholar 

  • Lin, H., and G. Brunet, 2009: The influence of the Madden–Julian oscillation on Canadian wintertime surface air temperature. Mon. Wea. Rev., 137, 2250–2262.

    Google Scholar 

  • Link, J., Tolman, H. & Robinson, K. NOAA’s strategy for unified modelling. Nature 549, 458 (2017). https://doi.org/10.1038/549458b.

    Article  Google Scholar 

  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40- 50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708.

    Google Scholar 

  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 1109–1123.

    Google Scholar 

  • Marengo, J. A., and Coauthors, 2012: Recent developments on the South American Monsoon System. Int. J. Climatol., 32(1), 1–21, https://doi.org/10.1002/joc.2254.

    Article  Google Scholar 

  • McPhaden, M. J., 1982: Variability in the central equatorial Indian Ocean. Part I: Ocean dynamics. J. Mar. Res., 40, 157–176.

    Google Scholar 

  • Meehl, G. A., L. Goddard, G. Boer, R. Burgman, G. Brantstator, C. Cassou, S. Corti, G. Danabasoglu, F. Doblas-Reyes, and Co-Authors, 2014: Decadal climate prediction: An update from the trenches. Bull. Amer. Soc., 95(2), 243–267, https://doi.org/10.1175/BAMS-D-12-00241.1.

    Article  Google Scholar 

  • Merryfield, W. J., and Coauthors, 2020: Current and emerging developments in subseasonal to decadal prediction. Bull. Amer. Soc., https://doi.org/10.1175/BAMS-D-19-0037.1.

    Book  Google Scholar 

  • Mo, K. C., C. Jones, and J. N. Paegle, 2012: Pan-America. Intraseasonal Variability of the Atmosphere–Ocean Climate System, 2nd ed. W. K.-M. Lau and D. E. Waliser, Eds., Springer, 111–146.

    Google Scholar 

  • Molcard, R., M. Fieux, and A. G. Ilahude, 1996: The Indo–Pacific throughflow in the Timor Passage. J. Geophys. Res., 101 (C5), 12 411–12 420.

    Google Scholar 

  • Murakami, M.,1976: Analysis of summer monsoon fluctuations over India. J. Meteor. Soc. Japan, 54 (1), 15–31.

    Google Scholar 

  • Nakazawa, T., 1986: Mean features of 30–60 day variations as inferred from 8-year OLR data, J. Meteorol. Soc. Jpn., 64, 777–786.

    Google Scholar 

  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific, J. Meteorol. Soc. Jpn., 66, 823–836.

    Google Scholar 

  • Orsolini, Y. J., R. Senan, G. Balsamo, F. J. Doblas-Reyes, F. Vitart, A. Weisheimer, A. Carrasco, and R. E. Benestad, 2013: Impact of snow initialization on sub-seasonal forecasts. Climate Dyn., 41, 1969–1982, https://doi.org/10.1007/s00382-013-1782-0.

    Article  Google Scholar 

  • Rao, S. A., J.-J. Luo, S. K. Behera, and T. Yamagata, 2008: Generation and termination of Indian Ocean dipole events in 2003, 2006 and 2007. Climate Dyn., 33, 751–767, https://doi.org/10.1007/s00382-008-0498-z.

    Article  Google Scholar 

  • Raymond, D. J., 2001: A new model of the Madden-Julian oscillation. J. Atmos. Sci., 58, 2807–2819.

    Google Scholar 

  • Rui, H., and B. Wang, 1990: Development characteristics and dynamic structure of tropical intraseasonal convection anomalies. J. Atmos. Sci., 47, 357–379.

    Google Scholar 

  • Sigmond, M., J. F. Scinocca, V. V. Kharin, and T. G. Shepherd, 2013: Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat. Geosci., 6, 98–102, https://doi.org/10.1038/ngeo1698.

    Article  Google Scholar 

  • Sikka, D. and S. Gadgil, 1980: On the maximum cloud zone and the ITCZ over Indian, longitudes during the southwest monsoon. Mon Weather Rev 108(11):1840–1853. https://doi.org/10.1175/1520-0493(1980)1082.0.CO;2.

    Article  Google Scholar 

  • Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equatorial waves. part II: Westward-propagating inertiogravity waves, J. Meteorol. Soc. Jpn., 72, 451–465.

    Google Scholar 

  • Tam, C. -Y. and N. -C. Lau, 2005: Modulation of the Madden-Julian Oscillation by ENSO: Inferences from observations and GCM simulations. J. Met. Soc. Japan, 83, 727–743.

    Google Scholar 

  • Teng, H., G. Branstator, A. B. Tawfik, and P. Callaghan, 2019: Circumglobal response to prescribed soil moisture over North America. J. Climate, 32, 4525–4545, https://doi.org/10.1175/JCLI-D-18-0823.1.

    Article  Google Scholar 

  • Thompson, D. B., and P. E. Roundy, 2013: The relationship between the Madden–Julian oscillation and U.S. violent tornado outbreaks in the spring. Mon. Wea. Rev., 141, 2087–2095.

    Google Scholar 

  • Uehling, J., V. Misra, A. Bhardwaj, and N. Karmakar, 2021: Characterizing the local variations of the Northern Australian Rainy Season. Mon. Wea. Rev. In review.

    Google Scholar 

  • Vitart, F., 2017: Madden–Julian oscillation prediction and teleconnections in the S2S database. Quart. J. Roy. Meteor. Soc., 143, 2210–2220, https://doi.org/10.1002/qj.3079.

    Article  Google Scholar 

  • Wang, B., 2003: Fundamental dynamics of the tropical intraseasonal oscillation. Extended abstract to ECMWF workshop, November 3–6. Available from: https://www.ecmwf.int/sites/default/files/elibrary/2004/12985-fundamental-dynamics-tropical-intraseasonal-oscillation.pdf.

  • Wang, B., and H. Rui, 1990: Dynamics of the coupled moist Kelvin-Rossby wave on an equatorial beta plane, J. Atmos. Sci., 47, 397–413.

    Google Scholar 

  • Weickmann, K. M., G. R. Lussky, and J. E. Kutzbach, 1985: Intraseasonal (30–60 day) fluctuations of outgoing longwave radiation and 250 mb stream function during northern winter. Mon. Wea. Rev., 113, 941–961.

    Google Scholar 

  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain, J. Atmos. Sci., 56, 374– 399.

    Google Scholar 

  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea.Rev., 132, 1917–1932.

    Google Scholar 

  • Wheeler, M. C. and J. L. McBride, 2012: Australian monsoon. Intraseasonal Variability of the Atmosphere–Ocean Climate System, 2nd ed. W. K.-M. Lau and D. E. Waliser, Eds., Springer, 147–198.

    Google Scholar 

  • Williams, I. N., Y. Lu, L. M. Kueppers, W. J. Riley, S. Biraud, J. E. Bagley, and M. S. Torn, 2016: Land–atmosphere coupling and climate prediction over the US southern Great Plains. J. Geophys. Res. Atmos., 121, 12 125–12 144, https://doi.org/10.1002/2016JD025223.

    Article  Google Scholar 

  • **e, Y.-B., S.-J. Chen, I.-L. Zhang, and Y.-L. Hung, 1963: A preliminarily statistic and synoptic study about the basic currents over southeastern Asia and the initiation of typhoon (in Chinese). Acta Meteor. Sin., 33, 206–217.

    Google Scholar 

  • Yano, J.-I., and K. Emanuel, 1991: An improved model of the equatorial troposphere and its coupling with stratosphere, Atmos. Sci., 48, 377–389.

    Google Scholar 

  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

    Article  Google Scholar 

  • Zhang, C., 2013: Madden-Julian oscillation: bridging weather and climate. Bull. Amer. Soc., 1849–1870, https://doi.org/10.1175/BAMS-D-12-00026.1.

  • Zhang, F., Y. Q. Sun, L. Magnusson, R. Buizza, S. -J. Lin, J. -H. Chen, and K. Emanuel, 2019: What is the predictability limit of midlatitude weather? J. Atmos. Sci., 76(4), 1077–1091, https://doi.org/10.1175/JAS-D-18-0269.1.

  • Straub, K. H., 2013: MJO initiation in the real-time multivariate MJO index. J. Climate, 26, 1130–1151, https://doi.org/10.1175/JCLI-D-12-00074.1.

    Article  Google Scholar 

  • Ventrice, M. J., M. C. Wheeler, H. H. Hendon, C. J. Schreck III, C. D. Thorncroft, and G. N. Kiladis, 2013: A modified multivariate Madden–Julian oscillation index using velocity potential. Mon. Wea. Rev., 141, 4197–4210, https://doi.org/10.1175/MWR-D-12-00327.1.

    Article  Google Scholar 

  • Wolding, B. O., and E. D. Maloney, 2015: Objective diagnosis and the Madden–Julian oscillation. Part I: Methodology. J. Climate, 28, 4127–4140, https://doi.org/10.1175/JCLI-D-14-00688.1.

    Article  Google Scholar 

  • Liu, P., 2014: MJO structure associated with the higher-order CEOF modes. Climate Dyn., 43, 1939–1950, https://doi.org/10.1007/s00382-013-2017-0.

    Article  Google Scholar 

  • Liu, P., Q. Zhang, C. Zhang, Y. Zhu, M. Khairoutdinov, H. -M. Kim, C. Schumacher, and M. Zhang, 2016: A revised real-time multivariate MJO index. Mon. Wea. Rev., 144, 627–642, https://doi.org/10.1175/MWR-D-15-0237.1.

    Article  Google Scholar 

  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289–307. https://doi.org/10.3402/tellusa.v21i3.10086.

    Article  Google Scholar 

  • Maycock, A. C. and P. Hitchcock, 2015: Do split and displacement sudden stratospheric warmings have different annular mode signatures? Geophys. Res. Lett., 42, 10,943-10,951. https://doi.org/10.1002/2015GL066754

    Article  Google Scholar 

  • Sui, C.-H., and K.-M. Lau (1989), Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part II: Structure and propagation of mobile wave-CISK modes and their modification by lower boundary forcings, J. Atmos. Sci., 46, 37–56.

    Google Scholar 

  • Cho, H. R., and D. Pendlebury, 1997: Wave CISK of equatorial waves and the vertical distribution of cumulus heating. J. Atmos. Sci., 54 , 2429–2440.

    Google Scholar 

  • Sobel, A. H., S. E. Yuter, C. S. Bretherton, and G. N. Kiladis, 2004: Large-scale meteorology and deep convection during TRMM KWAJEX. Mon. Wea. Rev., 132, 422–444.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Misra, V. (2023). The Intraseasonal Variations. In: An Introduction to Large-Scale Tropical Meteorology. Springer Atmospheric Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-12887-5_6

Download citation

Publish with us

Policies and ethics

Navigation