The Role of the Diabatic Heating in the Tropical Atmosphere

  • Chapter
  • First Online:
An Introduction to Large-Scale Tropical Meteorology

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

  • 297 Accesses

Abstract

The chapter places the importance of atmospheric convection in tropical climate and its discovery from early field studies. Early concepts of atmospheric convection are discussed alongside new concepts developed in the recent decade. The equatorial wave theory is introduced in this chapter and concluded with a discussion of the concept of organization of atmospheric convection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 85.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 117.69
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adames, A. F. and J. M. Wallace, 2015: Three-dimensional structure and evolution of the moisture field in the MJO. J Atmos Sci., 72(10):3733–3754.

    Article  Google Scholar 

  • Adames, A. F. and Y. Ming, 2018: Interactions between water vapor and potential vorticity in synoptic-scale monsoonal disturbances: moisture vortex instability. J Atmos Sci., 75(6):2083–2106.

    Article  Google Scholar 

  • Adames, A. F. and E. D. Maloney, 2021: Moisture mode theory’s contribution to advances in our understanding of the Madden-Julian Oscillation and other tropical disturbances. Curr. Clim. Change reports, 7, 72–85. https://doi.org/10.1007/s40641-021-00172-4.

    Article  Google Scholar 

  • Arakawa, A. and W. H. Schubert, 1974: Interaction of cumulus cloud ensemble with the large-scale environment. Part I. J. Atmos. Sci., 31, 674–701.

    Article  Google Scholar 

  • Bretherton, F. P., 1964: Low frequency oscillations trapped near the equator, Tellus, 16, 181–185.

    Article  Google Scholar 

  • Charney, J. G. and A. Eliassen, 1964: On the growth of the hurricane depression. J. Amos. Sci., 21, 68–75.

    Google Scholar 

  • Chiang, J. C. H., S. E. Zebiak, and M. A. Cane, 2001: Relative roles of elevated heating and surface temperature gradients in driving anomalous surface winds over tropical oceans. J. Atmos. Sci., 58, 1371–1394.

    Article  Google Scholar 

  • Cronin, T. W. and A. A. Wing, 2017: Clouds, circulation, and climate sensitivity in a radiative-convective equilibrium channel model. J Adv Model Earth Syst., 9, 2833–905. https://doi.org/10.1002/2017MS001111.

    Article  Google Scholar 

  • Dessler, A. E., S. P. Palm, and J. D. Spinhirne, 2006: Tropical cloud-top height distributions revealed by the Ice, Cloud, and Land Elevation Satellite (ICESat)/Geoscience Laser Altimeter System (GLAS), J. Geophys. Res., 111, D12215, https://doi.org/10.1029/2005JD006705.

    Article  Google Scholar 

  • de Szoeke, S. P., J. B. Edson, J. R. Marion, C. W. Fairall, and L. Bariteau, 2015: The MJO and air-sea interaction in toga coare and dynamo. J. Clim., 28(2):597–622.

    Article  Google Scholar 

  • Diaz, M. and W. R. Boos, 2019: Monsoon depression amplification by moist barotropic instability in a vertically sheared environment. Q J R Meteorol Soc., 145(723):2666–2684.

    Article  Google Scholar 

  • Emanuel, K. A., 1995: The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J Atmos Sci., 52(22):3960–3968.

    Article  Google Scholar 

  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 1111–1143.

    Article  Google Scholar 

  • Feng, J., T. Li, and W. Zhu, 2015: Propagating and nonpropagating MJO events over Maritime Continent. J Clim., 28(211), 8430–8449.

    Article  Google Scholar 

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulations. Q. Roy. Met. Soc., 106, 447–462.

    Article  Google Scholar 

  • Gregory, D. and M. J. Miller, 1989: A numerical study of the parameterization of deep tropical convection. Q. J. R. Meteorol. Soc., 115, 1209–1242.

    Article  Google Scholar 

  • Haertel, P.T. and Kiladis, G.N., 2004: Dynamics of 2-day equatorial waves. Journal of the atmospheric sciences, 61(22), pp. 2707–2721.

    Google Scholar 

  • Holton, J. R., 1972:Waves in the equatorial stratosphere generated by tropospheric heat sources, J. Atmos. Sci., 29, 368–375, https://doi.org/10.1175/1520-0469(1972)029<0368:WITESG>2.0.CO;2.

    Article  Google Scholar 

  • Holton, J. R., 1973: On the frequency distribution of atmospheric Kelvin waves, J. Atmos. Sci., 30, 499–501, https://doi.org/10.1175/1520-0469(1973)030<0499:OTFDOA>2.0.CO;2.

    Article  Google Scholar 

  • Johnson, R. H., T.M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 2397–2418, https://doi.org/10.1175/1520-0442(1999)012,2397:TCOTC.2.0.CO;2.

    Article  Google Scholar 

  • Kiladis G N, Wheeler M C, Haertel P T, Straub K H and Roundy P E 2009 Convectively coupled equatorial waves Rev. Geophys. 47 RG2003.

    Article  Google Scholar 

  • Krishnamurti, T. N., H. S. Bedi, D. Oosterhof, and V. Hardiker, 1994: The formation of Hurricane Frederic of 1979. Mon. Wea. Rev., 122, 1050–1074.

    Article  Google Scholar 

  • Krishnamurti, T. N., S. Pattnaik, L. Stefanova, T. S. V. VijayaKumar, B. P. Mackey, O’Shay, and R. J. Pasch, 2005: The hurricane intensity issue. Mon. Wea. Rev., 133, 1886–1912.

    Article  Google Scholar 

  • Krishnamurti, T. N., R. Krishnamurti, A. Simon, A. Thomas, and V. Kumar, 2016: A mechanism of the MJO invoking scale interactions. Meteorol Monogr 56:5.1–5.16. https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0009.1

    Article  Google Scholar 

  • Kuo, H. L., 1965: On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci., 22, 40–63.

    Article  Google Scholar 

  • Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31, 1232–1240.

    Article  Google Scholar 

  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 2418–2436.

    Article  Google Scholar 

  • Liu, C. S. Shige, Y. N. Takayabu, E. Zipser, 2015: Latent heating contribution from precipitation systems with different sizes, depths, and intensities in the tropics. J. Climate, 28, 186–203.

    Article  Google Scholar 

  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157–167, https://doi.org/10.1111/j.2153-3490.1955.tb01148.x

    Article  Google Scholar 

  • Lorenz, E. N., 1967: The nature and theory of the general circulation of the atmosphere. World Meteorological Organization, Tech Note No. 218, T. P. 115, 161 pp.

    Google Scholar 

  • Matsuno, T., 1966: Quasi-Geostrophic Motions in the Equatorial Area. J. Meteor. Soc. Jpn., 44, 25–43.

    Article  Google Scholar 

  • Moncrieff, M. W., 2004: Analytic representation of the large-scale organization of tropical convection. J. Atmos. Sci., 61, 1521–1538.

    Article  Google Scholar 

  • Neelin, J. D. and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 3–12.

    Article  Google Scholar 

  • Nigam, S. and C. Chung, 2000: ENSO surface winds in CCM3 simulation: diagnosis of errors. J. Climate, 13, 3172–3186.

    Article  Google Scholar 

  • Nigam, S., C. Chung, and E. DeWeaver, 2000: ENSO diabatic heating in ECMWF and NCEP reanalyses, and NCAR CCM3 simulation. J. Climate, 13, 3152–3171.

    Article  Google Scholar 

  • Raymond, D. J., 1995: Regulation of moist convection over the West Pacific warm pool. J. Atmos. Sci., 52, 3945–3959.

    Article  Google Scholar 

  • Raymond, D. J. and K. A. Emanuel, 1993: The Kuo Cumulus Parameterization. In: Emanuel, K. A. and D. J. Raymond (eds) The representation of convection in numerical models. Meteorological Monographs. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-935704-13-3_12

    Chapter  Google Scholar 

  • Raymond, D. J. and Z. Fuchs, 2009: Moisture modes and the Madden–Julian oscillation. J Clim., 22:3031–3046.

    Article  Google Scholar 

  • Raymond, D. J., S. K. Esbensen, C. Paulson, M. Gregg, C. S. Bretherton, W. A. Petersen, R. Cifelli, L. K. Shay, C. Ohlmann and P. Zuidema, 2004: EPIC2001 and the Coupled Ocean-Atmosphere System of the Tropical East Pacific. Bull. of the Amer. Meteor. Soc., 85, 1341–1354.

    Article  Google Scholar 

  • Riehl, H. and J. S. Malkus, 1958: On the heat balance of the equatorial trough zone. Geophysica, Helsinki, 503–537.

    Google Scholar 

  • Romps, D. M., 2014: An analytical model for tropical relative humidity, J. Clim., 27(19), 7432–7449, https://doi.org/10.1175/JCLI-D-14-00255.1.

    Article  Google Scholar 

  • Seeley, J. T. and D. M. Romps, 2016: Tropical cloud buoyancy is the same in a world with or without ice. Geophys. Res. Lett., https://doi.org/10.1002/2016GL068583.

  • Sobel, A. H., and C. S. Bretherton, 2000: Modeling tropical precipitation in a single column. J. Climate, 13, 4378–4392.

    Article  Google Scholar 

  • Sobel, A. H. and E. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J Atmos Sci., 70, 187–192.

    Article  Google Scholar 

  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 3650–3665.

    Article  Google Scholar 

  • Sun, J. and Z. Wu, 2020: Isolating spatiotemporally local mixed Rossby-gravity waves using multi-dimensional ensemble empirical mode decomposition. Clim. Dyn., 54, 1383–1405.

    Article  Google Scholar 

  • Tobin, I., S. Bony, R. Roca, 2012: Observational evidence for relationships between the degree of aggregation of deep convection, water vapor, surface fluxes, and radiation. J Clim., 25, 6885–6904.

    Article  Google Scholar 

  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain, J. Atmos. Sci., 56, 374– 399.

    Article  Google Scholar 

  • Wing, A. A. and K. A. Emanuel, 2014: Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. J Adv Model Earth Syst. 2014;6:59–74.

    Article  Google Scholar 

  • Wing, A. A. and T. W. Cronin, 2016: Self-aggregation of convection in long channel geometry. Q J R Meteorol Soc., 142,1–15. https://doi.org/10.1002/qj.2628.

    Article  Google Scholar 

  • Wing, A. A., K. Emanuel, C. E. Holloway, C. Muller, 2017: Convective self-aggregation in numerical simulations: a review. Surv Geophys., 38(6):1173–1197. https://doi.org/10.1007/s10712-017-9408-4.

    Article  Google Scholar 

  • Wing, A. A., 2019: Self-aggregation of deep convection and its implications on climate. Current Climate Change Reports, 5, 1–11, https://doi.org/10.1007/s40641-019-00120-3.

    Article  Google Scholar 

  • Wu, Z., D. S. Battisti, and E. S. Sarachik, 2000a: Rayleigh friction, Newtonian Cooling, and the Linear Response to Steady Tropical Heating. J. Atmos. Sci., 57, 1937–1957.

    Article  Google Scholar 

  • Wu, Z., E. S. Sarachik, and D. S. Battisti, 2000b: Vertical structure of convective heating and the three-dimensional structure of the forced circulation on an Equatorial Beta Plane. J. Atmos. Sci., 57, 2169–2187.

    Article  Google Scholar 

  • Wunsch, C., and A. E. Gill, 1976: Observations of equatorially trapped waves in Pacific sea level variations, Deep Sea Res., 23, 371–390.

    Google Scholar 

  • Yanai, M., and T. Maruyama, 1966: Stratospheric wave disturbances propagating over the equatorial Pacific, J. Meteorol. Soc. Japan., 44, 291–294.

    Article  Google Scholar 

  • Yanai, M., S. Esbensen, and J. -H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611–627.

    Google Scholar 

  • Yu, J. -Y. and J. D. Neelin, 1994: Modes of tropical variability under convective adjustment and the MaddenJulian oscillation. Part II: numerical results. J Atmos Sci, 51(13):1895–1914.

    Google Scholar 

  • Zipser, 2003: Some views on “Hot Towers” after 50 years of Tropical Field Programs and Two years of TRMM data. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM), Meteor. Monogr., No. 51, Amer. Meteor. Soc., 49–58.

    Google Scholar 

  • Arakawa, A., 2003: The cumulus parameterization problem: past, present, and future. J. Clim., 17, 2493-2525.

    Article  Google Scholar 

  • Arakawa, A., 1969: Parameterization of cumulus clouds. Proc. Symp. on Numerical Weather Prediction, Tokyo, Japan, WMO/International Union of Geodesy and Geophysics, 1–6.

    Google Scholar 

  • Stevens, B., D. A. Randall, X. Lin, and M. T. Montgomery, 1997: On large-scale circulations in convecting atmospheres by Kerry A. Emanuel, J. David Neelin and Cristopher S. Bretherton. Quart. J. Roy. Meteor. Soc., 123, 1771– 1778.

    Google Scholar 

  • Yoshida, K. 1959: Preprints, International Oceanographic Congress, American Association for the Advancement of Science, 789-791. Washington D.C., 1959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Misra, V. (2023). The Role of the Diabatic Heating in the Tropical Atmosphere. In: An Introduction to Large-Scale Tropical Meteorology. Springer Atmospheric Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-12887-5_3

Download citation

Publish with us

Policies and ethics

Navigation