Estimation of the Weibull Tail Coefficient Through the Power Mean-of-Order-p

  • Conference paper
  • First Online:
Recent Developments in Statistics and Data Science (SPE 2021)

Abstract

The Weibull tail coefficient (WTC) is the parameter \(\theta \) in a right-tail function of the type \(\overline{F}:=1-F\), such that \(H:=-\ln \overline{F}\) is a regularly varying function at infinity with an index of regular variation equal to \(\theta \in \mathbb {R}^{+}\). In a context of extreme value theory for maxima, it is possible to prove that we have an extreme value index (EVI) \(\xi =0\), but usually a very slow rate of convergence. Most of the recent WTC-estimators are proportional to the class of Hill EVI-estimators, the average of the log-excesses associated with the k upper order statistics, \(1\le k<n\). The interesting performance of EVI-estimators based on generalized means leads us to base the WTC-estimation on the power mean-of-order-p (MO\(_p\)) EVI-estimators. Consistency of the WTC-estimators is discussed and their performance, for finite samples, is illustrated through a small-scale Monte Carlo simulation study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Encyclopaedia Britannica.: The Editors of Encyclopaedia Britannica, North Sea flood. Encyclopaedia Britannica (2022). https://www.britannica.com/event/North-Sea-flood. https://doi.org/10.57805/revstat.v4i3.37

  2. Fréchet, M.: Sur la loi de probabilité de l’écart maximum. Annales de la Société Polonaise de Mathematique 6, 93–116 (1927)

    MATH  Google Scholar 

  3. Fisher, R.A., Tippett, L.H.C.: Limiting forms of the frequency distributions of the largest or smallest member of a sample. Proc. Camb. Philos. Soc. 24, 180–190 (1928). https://doi.org/10.1017/S0305004100015681

  4. Gnedenko, B.V.: Sur la distribution limite du terme maximum d’une série aléatoire. Ann. Math. 44, 423–453 (1943). https://doi.org/10.2307/1968974

  5. Gumbel, E.J.: Statistics of Extremes. Columbia University Press, NY (1958). https://doi.org/10.7312/gumb92958

  6. Haan, L. de: On Regular Variation and its Application to the Weak Convergence of Sample Extremes. Mathematical Centre Tract 32, Amsterdam (1970)

    Google Scholar 

  7. Weissman, I.: Multivariate extremal processes generated by independent non-identically distributed random variables. J. Appl. Probab. 12, 477–487 (1975). https://doi.org/10.2307/3212862

  8. Weissman, I.: Estimation of parameters and large quantiles based on the \(k\) largest observations. J. Amer. Stat. Assoc. 73, 812–815 (1978). https://doi.org/10.2307/2286285

  9. Pickands III, J.: Statistical inference using extreme order statistics. Ann. Stat. 3, 119–131 (1975). https://doi.org/10.1214/aos/1176343003

  10. Gomes, M.I.: Some Probabilistic and Statistical Problems in Extreme Value Theory. Ph.D. Thesis, The University of Sheffield (1978)

    Google Scholar 

  11. Gomes, M.I.: An i-dimensional limiting distribution function of largest values and its relevance to the statistical theory of extremes. In: Taillie, C., et al. (eds.) Statistical Distributions in Scientific Work, vol. 6, pp. 389–410. D. Reidel, Dordrecht (1981)

    Google Scholar 

  12. Gomes, M.I.: Statistical theory of extremes–comparison of two approaches. Stat. Decis. 2, 33–37 (1985)

    MathSciNet  Google Scholar 

  13. Smith, R.L.: Extreme value theory based on the \(r\) largest annual events. J. Hydrol. 86, 27–43 (1986). https://doi.org/10.1016/0022-1694(86)90004-1

  14. Davison, A.C.: Modeling excesses over high threshold with an application. In: Tiago de Oliveira, J. (eds.) Statistical Extremes and Applications, pp.461–482. D. Reidel, Dordrecht (1984). https://doi.org/10.1007/978-94-017-3069-3_34

  15. Smith, R.L.: Threshold methods for sample extremes. In: Tiago de Oliveira, J. (ed.) Statistical Extremes and Applications, pp. 621–638. D. Reidel, Dordrect (1984). https://doi.org/10.1007/978-94-017-3069-3_48

  16. Davison, A.C., Smith, R.L.: Models for exceedances over high thresholds. J. R. Stat. Soc. B Stat. Meth. 52, 393–442 (1990). http://www.jstor.org/stable/2345667

  17. Hill, B.M.: A simple general approach to inference about the tail of a distribution. Ann. Stat. 3, 1163–1174 (1975). https://doi.org/10.1214/aos/1176343247

  18. Brilhante, M.F., Gomes, M.I., Pestana, D.: A simple generalisation of the Hill estimator. Comput. Statist. Data Anal. 57(1), 518–535 (2013). https://doi.org/10.1016/j.csda.2012.07.019

  19. Paulauskas, V., Vaičiulis, M.: On the improvement of Hill and some other estimators. Lith. Math. J. 53, 336–355 (2013). https://doi.org/10.1007/s10986-013-9212-x

  20. Beran, J., Schell, D., Stehlík, M.: The harmonic moment tail index estimator: asymptotic distribution and robustness. Ann. Inst. Statist. Math. 66, 193–220 (2014). https://doi.org/10.1007/s10463-013-0412-2

  21. Segers, J.: Residual estimators. J. Stat. Plann. Infer. 98(1–2), 15–27 (2001). https://doi.org/10.1016/s0378-3758(00)00321-9

  22. Caeiro, F., Gomes, M.I., Beirlant, J., de Wet, T.: Mean-of-order p reduced-bias extreme value index estimation under a third-order framework. Extremes 19(4), 561–589 (2016). https://doi.org/10.1007/s10687-016-0261-5

  23. Gomes, M.I., Henriques-Rodrigues, L., Pestana D.: Non-regular Frameworks and the Mean-of-order \(p\) Extreme Value Index Estimation. J. Stat. Theory Practice 16(37) (2022). https://doi.org/10.1007/s42519-022-00264-w

  24. Gomes, M.I., Henriques-Rodrigues, L., Pestana, D.: Estimação de um índice de valores extremos positivo através de médias generalizadas e em ambiente de não-regularidade. In: Milheiro, P. et al. (eds.) Estatística: Desafios Transversais às Ciências com Dados – Atas do XXIV Congresso da Sociedade Portuguesa de Estatística, Edições SPE, pp. 213–226 (2021)

    Google Scholar 

  25. Gomes, M.I.: Penultimate behaviour of the extremes. In: Galambos, J., Lechner, J., Simiu, E. (eds.) Extreme Value Theory and Applications, pp. 403–418. Kluwer Academic Publishers (1994). https://doi.org/10.1007/978-1-4613-3638-9

  26. Gomes, M.I., de Haan, L.: Approximation by penultimate extreme value distributions. Extremes 2(1), 71–85 (1999). https://doi.org/10.1023/A:1009920327187

  27. Gardes, L., Girard, S.: Comparison of Weibull tail-coefficient estimators. Revstat.—Stat. J. 4, 163–188 (2006). https://doi.org/10.57805/revstat.v4i2.34

  28. Penalva, H., Caeiro, F., Gomes, M.I., Neves, M.M.: An Efficient Naive Generalization of the Hill Estimator-Discrepancy between Asymptotic and Finite Sample Behaviour. Notas e Comunicações CEAUL 02/2016 (2016). http://ceaul.org/wp-content/uploads/2018/10/NotaseCom-2.pdf

  29. Penalva, H., Gomes, M.I., Caeiro, C., Neves, M.M.: A couple of non reduced bias generalized means in extreme value theory: an asymptotic comparison. Revstat.—Stat. J. 18(3), 281–298 (2020). https://doi.org/10.57805/revstat.v18i3.301

  30. Penalva, H., Gomes, M.I., Caeiro, C., Neves, M.M.: Lehmer’s mean-of-order-p extreme value index estimation: a simulation study and applications. J. Appl. Stat. 47, 13–15, 2825–2845 (2020). https://doi.org/10.1080/02664763.2019.1694871

  31. Caeiro, F., Gomes, M.I.: Threshold selection in extreme value analysis. In: Dey Yan (eds.) Extreme Value Modeling and Risk Analysis: Methods and Applications (Chap. 4), pp. 69–87. Chapman-Hall/CRC (2015). https://doi.org/10.1201/b19721-5

  32. Gomes, M.I., Caeiro, F., Henriques-Rodrigues, L., Manjunath, B.G.: Bootstrap methods in statistics of extremes. In: Longin, F. (ed.) Handbook of Extreme Value Theory and Its Applications to Finance and Insurance (Chap. 6), pp. 117–138 . Wiley (2016). https://doi.org/10.1002/9781118650318.ch6

  33. Araújo Santos, P., Fraga Alves, M.I., Gomes, M.I.: Peaks over random threshold methodology for tail index and high quantile estimation. Revstat.—Statist. J. 4(3), 227–247 (2006). https://doi.org/10.57805/revstat.v4i3.37

  34. Stehlík, M., Potocký, R., Waldl, H., Fabián Z.: On the favourable estimation of fitting heavy tailed data. Comput. Stat. 25, 485–503 (2010). https://doi.org/10.1007/s00180-010-0189-1

  35. Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer, Berlin (1997). https://springer.longhoe.net/book/10.1007/978-3-642-33483-2

  36. Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of Extremes: Theory and Applications. Wiley, England (2004). https://onlinelibrary.wiley.com/doi/book/10.1002/0470012382

  37. Gomes, M.I., Fraga Alves, M.I., Neves, C.: Análise de Valores Extremos: uma Introdução. Edições S.P.E. and I.N.E. (2013). ISBN: 978-972-8890-30-8

    Google Scholar 

  38. Dey, D.K., Yan, J.: Extreme Value Modeling and Risk Analysis: Methods and Applications. Chapman and Hall/CRC (2015). https://doi.org/10.1201/b19721

  39. Davison, A.C., Huser, R.: Statistics of extremes. Ann. Rev. Stat. Appl. 2(1), 203–235 (2015). https://doi.org/10.1146/annurev-statistics-010814-020133

  40. Gomes, M.I., Guillou, A.: Extreme value theory and statistics of univariate extremes: a review. Intern. Stat. Rev. 83(2), 263–292 (2015). https://doi.org/10.1111/insr.12058

  41. Diebolt, J., Gardes, L., Girard, S., Guillou, A.: Bias-reduced extreme quantile estimators of Weibull tail distributions. J. Stat. Plan. Infer. 138, 1389–1401 (2008). https://doi.org/10.1016/j.jspi.2007.04.025

  42. Gardes, L., Girard, S.: Estimation of the Weibull tail-coefficient with linear combination of upper order statistics. J. Stat. Plan. Infer. 138, 1416–1427 (2008). https://doi.org/10.1016/j.jspi.2007.04.026f

  43. Gardes, L., Girard, S.: On the estimation of the functional Weibull tail-coefficient. J. Multivar. Anal. 146(C), 29–45 (2016). https://doi.org/10.1016/j.jmva.2015.05.007

  44. Goegebeur, Y., Beirlant, J., de Wet T.: Generalized kernel estimators for the Weibull-tail coefficient. Commun. Stat. Theory Methods 39, 3695–3716 (2010). https://doi.org/10.1080/03610920903324882

  45. Gong, C., Ling, C.: Robust estimations for the tail index of Weibull-type distribution. Risks 6, 119 (2018). https://doi.org/10.3390/risks6040119

  46. Kpanzou T.A., Gamado K.M., Hounnon H.: A Beran-inspired estimator for the Weibull-type tail coefficient. J. Stat. Theory Pract. 13 (2019). https://doi.org/10.1007/s42519-018-0013-8

  47. Worms, J., Worms, R.: Estimation of extremes for Weibull-tail distributions in the presence of random censoring. Extremes 22, 667–704 (2019). https://doi.org/10.1007/s10687-019-00354-2

Download references

Acknowledgements

The research was partially supported by National Funds through FCT—Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through projects UIDB/00297/2020 (CMA/UNL), UIDB/00006/2020 (CEA/UL) and UIDB/04674/2020 (CIMA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederico Caeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Caeiro, F., Gomes, M.I., Henriques-Rodrigues, L. (2022). Estimation of the Weibull Tail Coefficient Through the Power Mean-of-Order-p. In: Bispo, R., Henriques-Rodrigues, L., Alpizar-Jara, R., de Carvalho, M. (eds) Recent Developments in Statistics and Data Science. SPE 2021. Springer Proceedings in Mathematics & Statistics, vol 398. Springer, Cham. https://doi.org/10.1007/978-3-031-12766-3_4

Download citation

Publish with us

Policies and ethics

Navigation