Realizing Food Security in Saline Environments in a Changing Climate: Mitigation Technologies

  • Chapter
  • First Online:
The Food Security, Biodiversity, and Climate Nexus

Abstract

The evolution of life on earth is increasingly shaped by dramatic climatic changes. These have consequently affected life-supporting factors on our planet, including air, light, soil, and water. In the last 150 years, humanity-driven changes in climate have promoted the salinization of agricultural lands. Salt accumulation in groundwater coupled with extended periods of droughts, a rise in sea levels, and deforestation are key processes that deteriorate agricultural lands needed for food production. The impact of salinization is significant and cripples farming communities, threatens economic and food independence and habitability of lands, and challenges the survival of planetary biota. In this chapter, we provide a comprehensive review of major progress made in soil management, plant genetics, molecular sciences, and indoor farming given their importance in the quest to reduce the impact of salinization on crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adeleke R, Nwangburuka C, Oboirien B (2017) Origins, roles and fate of organic acids in soils: a review. S Afr J Bot 108:393–406

    Article  CAS  Google Scholar 

  • Ahmad S, Aslam M, Zeb J, Hussian T, Zia M (1999) EM bio-generator for amending sodic groundwater

    Google Scholar 

  • ALKahtani MDF, Attia KA, Hafez YM, Khan N, Eid AM, Ali MAM, Abdelaal KAA (2020a) Chlorophyll fluorescence parameters and antioxidant defense system can display salt tolerance of salt acclimated sweet pepper plants treated with chitosan and plant growth promoting rhizobacteria. Agronomy 10:1180

    Google Scholar 

  • ALKahtani MDF, Fouda A, Attia KA, Al-Otaibi F, Eid AM, Ewais EE-D, Hijri M, St-Arnaud M, Hassan SE-D, Khan N, Hafez YM, Abdelaal KAA (2020b) Isolation and characterization of plant growth promoting endophytic bacteria from desert plants and their application as bioinoculants for sustainable agriculture. Agronomy 10:1325

    Google Scholar 

  • Amirbakhtiar N, Ismaili A, Ghaffari MR, Nazarian Firouzabadi F, Shobbar Z-S (2019) Transcriptome response of roots to salt stress in a salinity-tolerant bread wheat cultivar. PLOS ONE 14:e0213305

    Google Scholar 

  • Arora S, Patel PN, Vanza MJ, Rao G (2014) Isolation and characterization of endophytic bacteria colonizing halophyte and other salt tolerant plant species from coastal Gujarat. Afr J Microbiol Res 8:1779–1788

    Article  Google Scholar 

  • Ashraf M, Foolad MR (2013) Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. Plant Breed 132:10–20

    Article  Google Scholar 

  • Assaha DVM, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW (2017) The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol 8

    Google Scholar 

  • Banyal R, Sanwal SK, Sharma PC, Yadav RK, Dagar JC (2019) Fruit and vegetable-based saline agricultural systems for nutritional and livelihood security. In: Dagar JC, Yadav RK, Sharma PC (eds) Research developments in saline agriculture. Springer, Singapore, pp 729–751

    Google Scholar 

  • Benidire L, El Khalloufi F, Oufdou K, Barakat M, Tulumello J, Ortet P, Heulin T, Achouak W (2020) Phytobeneficial bacteria improve saline stress tolerance in Vicia faba and modulate microbial interaction network. Sci Total Environ 729:139020

    Article  CAS  Google Scholar 

  • Benke K, Tomkins B (2017) Future food-production systems: vertical farming and controlled-environment agriculture. Sustain Sci Pract Policy 13:13–26

    Google Scholar 

  • Beres BL, Hatfield JL, Kirkegaard JA, Eigenbrode SD, Pan WL, Lollato RP, Hunt JR, Strydhorst S, Porker K, Lyon D, Ransom J, Wiersma J (2020) Toward a better understanding of genotype × environment × management interactions—a global wheat initiative agronomic research strategy. Front Plant Sci 11

    Google Scholar 

  • Bonales-Alatorre E, Shabala S, Chen Z-H, Pottosin I (2013) Reduced tonoplast fast-activating and slow-activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, Quinoa. Plant Physiol 162:940–952

    Article  CAS  Google Scholar 

  • Boretti A, Al-Zubaidy S, Vaclavikova M, Al-Abri M, Castelletto S, Mikhalovsky S (2018) Outlook for graphene-based desalination membranes. npj Clean Water 1:5

    Google Scholar 

  • Bourke PM, van Geest G, Voorrips RE, Jansen J, Kranenburg T, Shahin A, Visser RGF, Arens P, Smulders MJM, Maliepaard C (2018) polymapR—linkage analysis and genetic map construction from F1 populations of outcrossing polyploids. Bioinformatics 34:3496–3502

    Article  CAS  Google Scholar 

  • Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143:1918–1928

    Article  CAS  Google Scholar 

  • Chandra S, Lata H, ElSohly MA (2017) Cannabis sativa L.-botany and biotechnology. Springer, Berlin

    Google Scholar 

  • Chandra D, Srivastava R, Gupta VVSR, Franco CMM, Sharma AK (2019) Evaluation of ACC-deaminase-producing rhizobacteria to alleviate water-stress impacts in wheat (Triticum aestivum L.) plants. Can J Microbiol 65:387–403

    Article  CAS  Google Scholar 

  • Chaurasia S, Singh AK, Songachan LS, Sharma AD, Bhardwaj R, Singh K (2020) Multi-locus genome-wide association studies reveal novel genomic regions associated with vegetative stage salt tolerance in bread wheat (Triticum aestivum L.). Genomics 112:4608–4621

    Article  CAS  Google Scholar 

  • Chen C, Norton GJ, Price AH (2020) Genome-wide association map** for salt tolerance of rice seedlings grown in hydroponic and soil systems using the Bengal and Assam Aus panel. Front Plant Sci 11

    Google Scholar 

  • Chhabra R (2004) Classification of salt-affected soils. Arid Land Res Manag 19:61–79

    Article  Google Scholar 

  • Chian ESK, Chen JP, Sheng P-X, Ting Y-P, Wang LK (2007) Reverse osmosis technology for desalination. In: Wang LK, Hung Y-T, Shammas NK (eds) Advanced physicochemical treatment technologies. Humana Press, Totowa, NJ, pp 329–366

    Chapter  Google Scholar 

  • Cox S (2016) Enough with the vertical farming fantasies: there are still too many unanswered questions about the trendy practice. Salon, Feb 17

    Google Scholar 

  • Cuartero J, Bolarin M, Asins M, Moreno V (2006) Increasing salt tolerance in the tomato. J Exp Bot 57:1045–1058

    Article  CAS  Google Scholar 

  • Davenport DM, Deshmukh A, Werber JR, Elimelech M (2018) High-pressure reverse osmosis for energy-efficient hypersaline brine desalination: current status, design considerations, and research needs. Environ Sci Technol Lett 5:467–475

    Article  CAS  Google Scholar 

  • Despommier D (2010) The vertical farm: feeding the world in the 21st century. Macmillan, London

    Google Scholar 

  • Despommier D (2019) Vertical farms, building a viable indoor farming model for cities. Field actions science reports. J Field Actions 68–73

    Google Scholar 

  • Ding Z, Kheir AMS, Ali MGM, Ali OAM, Abdelaal AIN, Lin XE, Zhou Z, Wang B, Liu B, He Z (2020) The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity. Sci Rep 10:2736

    Google Scholar 

  • Dotaniya ML, Datta SC, Biswas DR, Dotaniya CK, Meena BL, Rajendiran S, Regar KL, Lata M (2016) Use of sugarcane industrial by-products for improving sugarcane productivity and soil health. Int J Recycl Org Waste Agric 5:185–194

    Article  Google Scholar 

  • Dufresne F, Stift M, Vergilino R, Mable BK (2014) Recent progress and challenges in population genetics of polyploid organisms: an overview of current state-of-the-art molecular and statistical tools. Mol Ecol 23:40–69

    Article  Google Scholar 

  • Dwivedi SL, Scheben A, Edwards D, Spillane C, Ortiz R (2017) Assessing and exploiting functional diversity in germplasm pools to enhance abiotic stress adaptation and yield in cereals and food legumes. Front Plant Sci 8:1461

    Article  Google Scholar 

  • Eid AM, Salim SS, Hassan SE-D, Ismail MA, Fouda A (2019) Role of endophytes in plant health and abiotic stress management. In: Microbiome in plant health and disease. Springer, Berlin, pp 119–144

    Google Scholar 

  • El Shaer HM, Al Dakheel AJ (2016) 11-sustainable diversity of salt-tolerant fodder crop–livestock production system through utilization of saline natural resources: Egypt case study. In: Khan MA, Ozturk M, Gul B, Ahmed MZ (eds) Halophytes for food security in dry lands. Academic Press, San Diego, pp 177–195

    Google Scholar 

  • Farhat S, Jain N, Singh N, Sreevathsa R, Dash PK, Rai R, Yadav S, Kumar P, Sarkar AK, Jain A, Singh NK, Rai V (2019) CRISPR-Cas9 directed genome engineering for enhancing salt stress tolerance in rice. Semin Cell Dev Biol 96:91–99

    Article  CAS  Google Scholar 

  • Fedoroff NV (2015) Food in a future of 10 billion. Agric Food Secur 4:1–10

    Article  Google Scholar 

  • Fita A, Rodríguez-Burruezo A, Boscaiu M, Prohens J, Vicente O (2015) Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Front Plant Sci 6

    Google Scholar 

  • Flowers TJ, Garcia A, Koyama M, Yeo AR (1997) Breeding for salt tolerance in crop plants—the role of molecular biology. Acta Physiol Plant 19:427–433

    Article  CAS  Google Scholar 

  • Fouda A, Hassan S, Eid AM, El-Din Ewais E (2019) The interaction between plants and bacterial endophytes under salinity stress. In: Endophytes and secondary metabolites. Springer, Cham, pp 1–18

    Google Scholar 

  • Frommer WB, Ludewig U, Rentsch D (1999) Taking transgenic plants with a pinch of salt. Science 285:1222–1223

    Article  CAS  Google Scholar 

  • Genc Y, Taylor J, Lyons G, Li Y, Cheong J, Appelbee M, Oldach K, Sutton T (2019) Bread wheat with high salinity and sodicity tolerance. Front Plant Sci 10:1280–1280

    Article  Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Article  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  Google Scholar 

  • Guan J, Garcia DF, Zhou Y, Appels R, Li A, Mao L (2020) The battle to sequence the bread wheat genome: a tale of the three kingdoms. Genomics Proteomics Bioinform 18(3):221–229

    Google Scholar 

  • Gude VG (2018) Chapter 10—energy storage for desalination. In: Gude VG (ed) Renewable energy powered desalination handbook. Butterworth-Heinemann, UK, pp 377–414

    Google Scholar 

  • Haddad L, Hawkes C, Webb P, Thomas S, Beddington J, Waage J, Flynn D (2016) A new global research agenda for food. Nature 540:30–32

    Article  CAS  Google Scholar 

  • Han B, Xu W, Ahmed N, Yu A, Wang Z, Liu A (2020) Changes and associations of genomic transcription and histone methylation with salt stress in castor bean. Plant Cell Physiol 61:1120–1133

    Article  CAS  Google Scholar 

  • Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:1787–1787

    Article  Google Scholar 

  • Hanson B, May D (2010) Salinity control with drip irrigation. In: 2010 Pittsburgh, Pennsylvania, June 20–June 23, 2010. ASABE, St. Joseph, MI

    Google Scholar 

  • Hoang TML, Tran TN, Nguyen TKT, Williams B, Wurm P, Bellairs S, Mundree S (2016) Improvement of salinity stress tolerance in rice: challenges and opportunities. Agronomy 6:54

    Article  Google Scholar 

  • Houérou HNL (1994) Forage halophytes and salt-tolerant fodder crops in the Mediterranean Basin. In: Squires VR, Ayoub AT (eds) Halophytes as a resource for livestock and for rehabilitation of degraded lands. Springer Netherlands, Dordrecht, pp 123–137

    Google Scholar 

  • Hussain T (2000) Technology of beneficial microorganisms. BM-Technology

    Google Scholar 

  • Hussain T, Javaid T, Parr JF, Jilani G, Haq MA (1999) Rice and wheat production in Pakistan with effective microorganisms. Am J Altern Agric 14:30–36

    Article  Google Scholar 

  • Hussain T, Anwar-ul-Haq M, Tahir J (2004) Use of BM-technology in integrated nutrient management for rice–wheat and cotton production. Research Institute of Organic Agriculture, Yangpyung, pp 304–314

    Google Scholar 

  • Ilyas N, Mazhar R, Yasmin H, Khan W, Iqbal S, Enshasy HE, Dailin DJ (2020) Rhizobacteria isolated from saline soil induce systemic tolerance in wheat (Triticum aestivum L.) against salinity stress. Agronomy 10:989

    Google Scholar 

  • Iriti M, Scarafoni A, Pierce S, Castorina G, Vitalini S (2019) Soil application of effective microorganisms (EM) maintains leaf photosynthetic efficiency, increases seed yield and quality traits of bean (Phaseolus vulgaris L.) plants grown on different substrates. Int J Mol Sci 20:2327

    Google Scholar 

  • Ismail AM, Horie T (2017) Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annu Rev Plant Biol 68:405–434

    Article  CAS  Google Scholar 

  • Jarimi H, Powell R, Riffat S (2020) Review of sustainable methods for atmospheric water harvesting. Int J Low-Carbon Technol 15:253–276

    Article  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere—a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Juneseok Lee TY (2019) Desalination: opportunities and challenges. https://www.waterworld.com/

  • Kearl J, McNary C, Lowman JS, Mei C, Aanderud ZT, Smith ST, West J, Colton E, Hamson M, Nielsen BL (2019) Salt-tolerant halophyte rhizosphere bacteria stimulate growth of alfalfa in salty soil. Front Microbiol 10

    Google Scholar 

  • Khaliq A, Abbasi MK, Hussain T (2006) Effects of integrated use of organic and inorganic nutrient sources with effective microorganisms (EM) on seed cotton yield in Pakistan. Biores Technol 97:967–972

    Article  CAS  Google Scholar 

  • Khan N, Bano A (2019) Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions. PLoS ONE 14:e0222302

    Article  CAS  Google Scholar 

  • Khan N, Ali S, Tariq H, Latif S, Yasmin H, Mehmood A, Shahid MA (2020) Water conservation and plant survival strategies of rhizobacteria under drought stress. Agronomy 10:1683

    Article  Google Scholar 

  • Kreps JA, Wu Y, Chang H-S, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    Article  CAS  Google Scholar 

  • Kumar A, Shukla S, Dixit P, Tsewang T, Kumar K (2020) Vertical farming promising cultivation for horticultural crops. Int J Curr Microbiol App Sci 9:2491–2494

    Article  CAS  Google Scholar 

  • Kwon C-T, Heo J, Lemmon ZH, Capua Y, Hutton SF, Van Eck J, Park SJ, Lippman ZB (2020) Rapid customization of Solanaceae fruit crops for urban agriculture. Nat Biotechnol 38:182–188

    Article  CAS  Google Scholar 

  • Kyriakidou M, Tai HH, Anglin NL, Ellis D, Strömvik MV (2018) Current strategies of polyploid plant genome sequence assembly. Front Plant Sci 9

    Google Scholar 

  • Lakhdar A, Rabhi M, Ghnaya T, Montemurro F, Jedidi N, Abdelly C (2009) Effectiveness of compost use in salt-affected soil. J Hazard Mater 171:29–37

    Article  CAS  Google Scholar 

  • Lata RK, Divjot K, Yadav AN (2019) Paper: endophytic microbiomes: biodiversity, ecological significance and biotechnological applications

    Google Scholar 

  • Li J, Chen J, Qu Z, Wang S, He P, Zhang N (2019) Effects of alternating irrigation with fresh and saline water on the soil salt, soil nutrients, and yield of tomatoes. Water 11:1693

    Article  CAS  Google Scholar 

  • Liu Z, Rong Q, Zhou W, Liang G (2017) Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil. PLoS ONE 12:e0172767

    Article  Google Scholar 

  • Liu J-G, Han X, Yang T, Cui W-H, Wu A-M, Fu C-X, Wang B-C, Liu L-J (2019) Genome-wide transcriptional adaptation to salt stress in Populus. BMC Plant Biol 19:367

    Article  Google Scholar 

  • Loch DS, Loch RJ (2013) In: Carrow RN, Duncan RR (eds) Best management practices for saline and sodic turfgrass soils: assessment and reclamation. CRC Press (Taylor and Francis Group), Boca Raton

    Google Scholar 

  • Macias-Benitez S, Garcia-Martinez AM, Caballero Jimenez P, Gonzalez JM, Tejada Moral M, Parrado Rubio J (2020) Rhizospheric organic acids as biostimulants: monitoring feedbacks on soil microorganisms and biochemical properties. Front Plant Sci 11

    Google Scholar 

  • Maxton A, Singh P, Masih SA (2018) ACC deaminase-producing bacteria mediated drought and salt tolerance in Capsicum annuum. J Plant Nutr 41:574–583

    Article  CAS  Google Scholar 

  • Menezes-Blackburn D, Paredes C, Zhang H, Giles CD, Darch T, Stutter M, George TS, Shand C, Lumsdon D, Cooper P, Wendler R, Brown L, Blackwell M, Wearing C, Haygarth PM (2016) Organic acids regulation of chemical-microbial phosphorus transformations in soils. Environ Sci Technol 50:11521–11531

    Article  CAS  Google Scholar 

  • Millero FJ, Feistel R, Wright DG, McDougall TJ (2008) The composition of standard seawater and the definition of the reference-composition salinity scale. Deep Sea Res Part I 55:50–72

    Article  Google Scholar 

  • Misra S, Dixit VK, Khan MH, Kumar Mishra S, Dviwedi G, Yadav S, Lehri A, Singh Chauhan P (2017) Exploitation of agro-climatic environment for selection of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing salt tolerant indigenous plant growth promoting rhizobacteria. Microbiol Res 205:25–34

    Article  CAS  Google Scholar 

  • Miyamoto S, Prather RJ, Stroehlein JL (1975) Sulfuric acid and leaching requirements for reclaiming sodium-affected calcareous soils. Plant Soil 43:573–585

    Article  CAS  Google Scholar 

  • Mouhamad R, Mutlag L, Ibrahim K, Jassam O, Mussa R, Iqab M (2017) Reducing water salinity using effective microorganisms

    Google Scholar 

  • Mtolera I, Dongli S (2018) Effect of effective microorganism and gypsum amendments on nutrient leaching, pH, electrical conductivity, and Okra growth parameters under coastal saline soil. Commun Soil Sci Plant Anal 49:2327–2337

    Article  CAS  Google Scholar 

  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M, Plett D, Gilliham M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–364

    Article  CAS  Google Scholar 

  • Naamala J, Smith DL (2020) Relevance of plant growth promoting microorganisms and their derived compounds, in the face of climate change. Agronomy 10:1179

    Article  CAS  Google Scholar 

  • Naveed M, Mehboob I, Shaker MA, Hussain MB, Farooq M (2015) Biofertilizers in Pakistan: initiatives and limitations. Int J Agric Biol 17:411–420

    Article  Google Scholar 

  • Norlyn JD (1980) Breeding salt-tolerant crop plants. In: Rains DW, Valentine RC, Hollaender A (eds) Genetic engineering of osmoregulation: impact on plant productivity for food, chemicals, and energy. Springer US, Boston, pp 293–309

    Google Scholar 

  • Oh D-H, Leidi E, Zhang Q, Hwang S-M, Li Y, Quintero FJ, Jiang X, D’Urzo MP, Lee SY, Zhao Y, Bahk JD, Bressan RA, Yun D-J, Pardo JM, Bohnert HJ (2009) Loss of halophytism by interference with SOS1 expression. Plant Physiol 151:210–222

    Article  CAS  Google Scholar 

  • Park J, Cho KH, Ligaray M, Choi M-J (2019) Organic matter composition of manure and its potential impact on plant growth. Sustainability 11:2346

    Article  CAS  Google Scholar 

  • Paterson AH, Freeling M, Sasaki T (2005) Grains of knowledge: genomics of model cereals. Genome Res 15:1643–1650

    Article  CAS  Google Scholar 

  • Patishtan J, Hartley TN, Fonseca de Carvalho R, Maathuis FJM (2018) Genome-wide association studies to identify rice salt-tolerance markers. Plant Cell Environ 41:970–982

    Google Scholar 

  • Pérez Escolar R (1966) Reclamation of a saline-sodic soil by use of molasses and distillery slops. J Agric Univ Puerto Rico 50:209–217

    Google Scholar 

  • Quan R, Wang J, Hui J, Bai H, Lyu X, Zhu Y, Zhang H, Zhang Z, Li S, Huang R (2018) Improvement of salt tolerance using wild rice genes. Front Plant Sci 8

    Google Scholar 

  • Razzaque S, Elias SM, Haque T, Biswas S, Jewel GMNA, Rahman S, Weng X, Ismail AM, Walia H, Juenger TE, Seraj ZI (2019) Gene expression analysis associated with salt stress in a reciprocally crossed rice population. Sci Rep 9:8249

    Article  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    Article  CAS  Google Scholar 

  • Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37:613–620

    Article  Google Scholar 

  • Rouphael Y, Cardarelli M, Rea E, Colla G (2012) Improving melon and cucumber photosynthetic activity, mineral composition, and growth performance under salinity stress by grafting onto Cucurbita hybrid rootstocks. Photosynthetica 50:180–188

    Article  CAS  Google Scholar 

  • Ruppel S, Franken P, Witzel K (2013) Properties of the halophyte microbiome and their implications for plant salt tolerance. Funct Plant Biol 40:940–951

    Article  CAS  Google Scholar 

  • Sadiq M, Hassan G, Mehdi SM, Hussain N, Jamil M (2007) Amelioration of saline-sodic soils with tillage implements and sulfuric acid application. Pedosphere 17:182–190

    Article  CAS  Google Scholar 

  • Santos J, Al-Azzawi M, Aronson J, Flowers TJ (2016) eHALOPH a database of salt-tolerant plants: hel** put halophytes to work. Plant Cell Physiol 57:e10

    Google Scholar 

  • Santosh Kumar VV, Verma RK, Yadav SK, Yadav P, Watts A, Rao MV, Chinnusamy V (2020) CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiol Mol Biol Plants 26:1099–1110

    Article  CAS  Google Scholar 

  • Sarkar A, Pramanik K, Mitra S, Soren T, Maiti TK (2018) Enhancement of growth and salt tolerance of rice seedlings by ACC deaminase-producing Burkholderia sp. MTCC 12259. J Plant Physiol 231:434–442

    Article  CAS  Google Scholar 

  • Scheben A, Batley J, Edwards D (2018) Revolution in genoty** platforms for crop improvement. Adv Biochem Eng Biotechnol 164:37–52

    CAS  Google Scholar 

  • Seleiman MF, Kheir AMS (2018) Saline soil properties, quality and productivity of wheat grown with bagasse ash and thiourea in different climatic zones. Chemosphere 193:538–546

    Article  CAS  Google Scholar 

  • Sevostianova E, Leinauer B, Sallenave R, Karcher D, Maier B (2011) Soil salinity and quality of sprinkler and drip irrigated warm-season turfgrasses. Agron J 103:1773–1784

    Article  Google Scholar 

  • Sgroy V, Cassán F, Masciarelli O, Del Papa MF, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85:371–381

    Article  CAS  Google Scholar 

  • Shahid SA, Zaman M, Heng L (2018) Soil salinity: historical perspectives and a world overview of the problem. In: Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer International Publishing, Cham, pp 43–53

    Google Scholar 

  • Shivakumar S, Bhaktavatchalu S (2017) Role of plant growth-promoting rhizobacteria (PGPR) in the improvement of vegetable crop production under stress conditions. In: Zaidi A, Khan MS (eds) Microbial strategies for vegetable production. Springer International Publishing, Cham, pp 81–97

    Chapter  Google Scholar 

  • Shultana R, Tan Kee Zuan A, Yusop MR, Mohd Saud H, Ayanda AF (2020) Effect of salt-tolerant bacterial inoculations on rice seedlings differing in salt-tolerance under saline soil conditions. Agronomy 10:1030

    Google Scholar 

  • Sidhu M, Iqbal M, Malik AA, Subhani KM (2009) Role of effective micro-organisms (EM) technology in soil reclamation and crop production. Pak J Water Resour 13:25–30

    Google Scholar 

  • Singh R, Shelke G, Kumar A, Jha P (2015) Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbiol 6

    Google Scholar 

  • Solis CA, Yong MT, Vinarao R, Jena K, Holford P, Shabala L, Zhou M, Shabala S, Chen Z-H (2020) Back to the wild: on a quest for donors toward salinity tolerant rice. Front Plant Sci 11

    Google Scholar 

  • Sparks DL (2003) 10—the chemistry of saline and sodic soils. In: Sparks DL (ed) Environmental soil chemistry, 2nd edn. Academic Press, Burlington, pp 285–300

    Google Scholar 

  • Sun Y-P, Yang J-S, Yao R-J, Chen X-B, Wang X-P (2020) Biochar and fulvic acid amendments mitigate negative effects of coastal saline soil and improve crop yields in a three year field trial. Sci Rep 10:8946

    Article  CAS  Google Scholar 

  • Tejada M, Garcia C, Gonzalez J, Hernandez M (2006) Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil. Soil Biol Biochem 38:1413–1421

    Article  CAS  Google Scholar 

  • Tingwu L, Juan X, Guangyong L, Jianhua M, Jian** W, Zhizhong L, Jianguo Z (2003) Effect of drip irrigation with saline water on water use efficiency and quality of watermelons. Water Resour Manage 17:395–408

    Article  Google Scholar 

  • Varshney RK, Hoisington DA, Tyagi AK (2006) Advances in cereal genomics and applications in crop breeding. Trends Biotechnol 24:490–499

    Article  CAS  Google Scholar 

  • Wang L, Sun X, Li S, Zhang T, Zhang W, Zhai P (2014) Application of organic amendments to a coastal saline soil in north China: effects on soil physical and chemical properties and tree growth. PLoS ONE 9:e89185

    Article  Google Scholar 

  • Wichern F, Islam MR, Hemkemeyer M, Watson C, Joergensen RG (2020) Organic amendments alleviate salinity effects on soil microorganisms and mineralisation processes in aerobic and anaerobic paddy rice soils. Front Sustain Food Syst 4

    Google Scholar 

  • Wu Y, Li Y, Zheng C, Zhang Y, Sun Z (2013) Organic amendment application influence soil organism abundance in saline alkali soil. Eur J Soil Biol 54:32–40

    Article  Google Scholar 

  • Wu H, Wu L, Zhu Q, Wang J, Qin X, Xu J, Kong L, Chen J, Lin S, Umar Khan M, Amjad H, Lin W (2017) The role of organic acids on microbial deterioration in the Radix pseudostellariae rhizosphere under continuous monoculture regimes. Sci Rep 7:3497

    Article  Google Scholar 

  • **e Y, Feng Y, Chen Q, Zhao F, Zhou S, Ding Y, Song X, Li P, Wang B (2019) Genome-wide association analysis of salt tolerance QTLs with SNP markers in maize (Zea mays L.). Genes Genomics 41:1135–1145

    Article  CAS  Google Scholar 

  • Yamada K, Xu H-L (2001) Properties and applications of an organic fertilizer inoculated with effective microorganisms. J Crop Prod 3:255–268

    Article  Google Scholar 

  • Zhang F, Zhu G, Du L, Shang X, Cheng C, Yang B, Hu Y, Cai C, Guo W (2016) Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii. Sci Rep 6:20582

    Article  CAS  Google Scholar 

  • Zhang A, Liu Y, Wang F, Li T, Chen Z, Kong D, Bi J, Zhang F, Luo X, Wang J, Tang J, Yu X, Liu G, Luo L (2019) Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol Breeding 39:47

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jibran Tahir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tahir, J., Belgacem, A.O., Jibran, R. (2022). Realizing Food Security in Saline Environments in a Changing Climate: Mitigation Technologies. In: Behnassi, M., Gupta, H., Barjees Baig, M., Noorka, I.R. (eds) The Food Security, Biodiversity, and Climate Nexus. Springer, Cham. https://doi.org/10.1007/978-3-031-12586-7_20

Download citation

Publish with us

Policies and ethics

Navigation