Poxvirus and the Role of Medicinal Plants in Controlling Infections: Ethnopharmacology, Chemistry, Clinical and Preclinical Studies, and Future Perspectives

  • Reference work entry
  • First Online:
Anti-Viral Metabolites from Medicinal Plants

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 328 Accesses

Abstract

Today, viral infections are causing an unexpectedly high incidence of mortality over the world. The enormous double-stranded DNA genomes of Phleboviruses give them their brick or oval form. People and animals of all kinds are infected by poxviruses, which are found all over the globe. Lesions, skin nodules, or a widespread rash are common symptoms of a poxvirus infection. Humans are most often infected when they come into touch with contaminated animals, people, or objects. Poxviruses may still cause illness even if some, like smallpox (variola virus), no longer exist in nature. Monkeypox, molluscum contagiosum, and other viruses are also included. Synthetic anti-viral medications have been shown to be hazardous and useless against resistant strains, which has fueled the hunt for effective and alternative therapeutic alternatives, such as plant-derived anti-viral drug molecules. This chapter, therefore, aims to outline the medicinal plants that have been shown to have anti-viral properties against the poxvirus. Hence, additional research into develo** effective and economical anti-viral medications for diverse poxviruses might consider anti-viral medicinal plants and the extracted bioactive components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 374.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 369.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

C.D.C.P.:

Centers for Disease Control and Prevention

CDV:

Cidofovir

NPTII:

Neomycin phosphotransferase

PFU:

Plaque-forming unit

VACV:

vaccinia virus

References

  1. Mosad SM, El-Tholoth M, El-Kenawy AA, Abdel-Hafez LJ, El-Gohary FA, El-Sharkawy H, Elsayed MM, Saleh AA, Elmahallawy EK (2020) Molecular detection of reticuloendotheliosis virus 5′ long terminal repeat integration in the genome of avipoxvirus field strains from different avian species in Egypt. Biology 9(9):257. https://doi.org/10.5501/wjv.v10.i4.156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Buller RM, Palumbo GJ (1991) Poxvirus pathogenesis. Microbiol Rev 55(1):80–122. https://doi.org/10.1128/mr.55.1.80-122.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gurjar VK, Pal D, Patel AD (2020) Recent advances in chemistry and synthesis of pyrazole derivatives as potential promising antimicrobial agents. In: Pal D (ed) Pyrazole preparation and uses. NOVA Science, USA. ISBN Number: 978-1-53618-250-7

    Google Scholar 

  4. Pal D, Mandal M, Senthilkumar GP, Padhiari A (2006) Antibacterial activity of methanol extract of Cuscuta reflexa Roxb. Stem and Corchorus olitorius Linn. Seed. Fitoterapia 77(7–8):589–591. https://doi.org/10.1016/j.fitote.2006.06.015

    Article  CAS  PubMed  Google Scholar 

  5. Mohanta TK, Patra JK, Rath SK, Pal D, Thatoi HN (2007) Evaluation of antimicrobial activity and phytochemical screening of oils and nuts of Semicarpus anacardium L.f. Sci Res Essays 2(11):486–490

    Google Scholar 

  6. Pal D, Singh V, Pandey DD, Maurya R (2014) Synthesis, characterization and antimicrobial evaluation of some 1, 2, 4-triazole derivatives. Int J Pharm Sci 6(8):213–216

    CAS  Google Scholar 

  7. Pal D, Tripathy R, Pandey DD, Mishra P (2014) Synthesis, characterization, antimicrobial and pharmacological evaluation of some 2,5-disubstituted sulphonyl amino 1,3,4- oxadiazole and 2-amino-disubstituted 1,3,4-thiadiazole derivatives. J Adv Pharm Technol Res 5(4):196–201. https://doi.org/10.4103/2F2231-4040.143040

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rani P, Pal D, Hegde RR, Hashim SR (2016) Acetamides: chemotherapeutic agents for inflammation associated cancers. J Chemother 28(4):255–265. https://doi.org/10.1179/1973947815Y.0000000060

    Article  CAS  PubMed  Google Scholar 

  9. Saha S, Pal D, Kumar S (2017) Antifungal and antibacterial activities of phenyl and ortho hydroxyl phenyl linked imidazolyl triazolo hydroxamic acid derivatives. Inventi Rapid: Med Chem 1:1–8

    Google Scholar 

  10. Carulei O, Douglass N, Williamson A-L (2017) Comparative analysis of avian poxvirus genomes, including a novel poxvirus from lesser flamingos (Phoenicopterus minor), highlights the lack of conservation of the central region. BMC Genomics 18(1):947. https://doi.org/10.1186/s12864-017-4315-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Finlay BB, See RH, Brunham RC (2004) Rapid response research to emerging infectious diseases: lessons from SARS. Nat Rev Microbiol 2(7):602–607. https://doi.org/10.1038/nrmicro930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Woo PC, Lau SK, Tsoi HW, Chan KH, Wong BH, Che XY, Tam VK, Tam SC, Cheng VC, Hung IF, Wong SS (2004) Relative rates of non-pneumonic SARS coronavirus infection and SARS coronavirus pneumonia. Lancet 363(9412):841–845. https://doi.org/10.1016/S0140-6736(04)15729-2

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tucker JB (2001) Scourge: the once and future threat of smallpox. Grove Press

    Google Scholar 

  14. Meyer H, Perrichot M, Stemmler M, Emmerich P, Schmitz H, Varaine F, Shungu R, Tshioko F, Formenty P (2002) Outbreaks of disease suspected of being due to human monkeypox virus infection in the Democratic Republic of Congo in 2001. J Clin Microbiol 40(8):2919–2921. https://doi.org/10.1128/JCM.40.8.2919-2921.2002

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gil J, Rullas J, Alcamí J, Esteban M (2001) MC159L protein from the poxvirus molluscum contagiosum virus inhibits NF-κB activation and apoptosis induced by PKR. J Gen Virol 82(12):3027–3034. https://doi.org/10.1099/0022-1317-82-12-3027

    Article  CAS  PubMed  Google Scholar 

  16. Oie KL, Pickup DJ (2001) Cowpox virus and other members of the orthopoxvirus genus interfere with the regulation of NF-κB activation. Virology 288(1):175–187. https://doi.org/10.1006/viro.2001.1090

    Article  CAS  PubMed  Google Scholar 

  17. Mutsafi Y, Zauberman N, Sabanay I, Minsky A (2010) Vaccinia-like cytoplasmic replication of the giant Mimivirus. Proc Natl Acad Sci 107(13):5978–5982. https://doi.org/10.1073/pnas.0912737107

    Article  PubMed  PubMed Central  Google Scholar 

  18. RoyChoudhury S, Pan A, Mukherjee D (2011) Genus specific evolution of codon usage and nucleotide compositional traits of poxviruses. Virus Genes 42(2):189–199. https://doi.org/10.1007/s11262-010-0568-2

    Article  CAS  PubMed  Google Scholar 

  19. Prangishvili D, Garrett RA (2004) Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses. Biochem Soc Trans 32(2):204–208. https://doi.org/10.1042/bst0320204

    Article  CAS  PubMed  Google Scholar 

  20. Chan WM, McFadden G (2014) Oncolytic poxviruses. Annu Rev Virol 1:191–214. https://doi.org/10.1146/annurev-virology-031413-085442

    Article  CAS  Google Scholar 

  21. Arndt W, Mitnik C, Denzler KL, White S, Waters R, Jacobs BL, Rochon Y, Olson VA, Damon IK, Langland JO (2012) In vitro characterization of a nineteenth-century therapy for smallpox. PLoS One 7(3):e32610. https://doi.org/10.1371/journal.pone.0032610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grant WH (1864) Two cases of small-pox successfully treated by Sarracenia purpurea. Lancet 83:161

    Article  Google Scholar 

  23. Miles HC (1862) On some cases of small-pox treated by the Sarracenia purpurea. Lancet 80:615–616

    Article  Google Scholar 

  24. Kern ER, Hartline C, Harden E, Keith K, Rodriguez N et al (2002) Enhanced inhibition of orthopoxvirus replication in vitro by alkoxyalkyl esters of cidofovir and cyclic cidofovir. Antimicrob Agents Chemother 46:991–995. https://doi.org/10.1128/AAC.46.4.991-995.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ciustea M, Silverman JE, Druck Shudofsky AM, Ricciardi RP (2008) Identification of non-nucleoside DNA synthesis inhibitors of vaccinia virus by high-throughput screening. J Med Chem 51:6563–6570. https://doi.org/10.1021/jm800366g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen N, Li G, Liszewski MK, Atkinson JP, Jahrling PB, Feng Z, Schriewer J, Buck C, Wang C, Lefkowitz EJ, Esposito JJ (2005) Virulence differences between monkeypox virus isolates from West Africa and the Congo basin. Virology 340(1):46–63. https://doi.org/10.1016/j.virol.2005.05.030

    Article  CAS  PubMed  Google Scholar 

  27. Neyts J, Clercq ED (1993) Efficacy of (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl) cytosine for the treatment of lethal vaccinia virus infections in severe combined immune deficiency (SCID) mice. J Med Virol 41(3):242–246. https://doi.org/10.1002/jmv.1890410312

    Article  CAS  PubMed  Google Scholar 

  28. Yang G, Pevear DC, Davies MH, Collett MS, Bailey T, Rippen S, Barone L, Burns C, Rhodes G, Tohan S, Huggins JW (2005) An orally bioavailable antipoxvirus compound (ST-246) inhibits extracellular virus formation and protects mice from lethal orthopoxvirus challenge. J Virol 79(20):13139–13149. https://doi.org/10.1128/JVI.79.20.13139-13149.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brandt TA, Jacobs BL (2001) Both carboxy- and amino-terminal domains of the vaccinia virus interferon resistance gene, E3L, are required for pathogenesis in a mouse model. J Virol 75:850–856. https://doi.org/10.1128/JVI.75.2.850-856.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Langland JO, Jacobs BL (2004) Inhibition of PKR by vaccinia virus: role of the N- and C-terminal domains of E3L. Virology 324:419–429. https://doi.org/10.1016/j.virol.2004.03.012

    Article  CAS  PubMed  Google Scholar 

  31. Miles DH, Kokpol U, Zalkow LH, Steindel SJ, Nabors JB (1974) Tumor inhibitors. I. Preliminary investigation of antitumor activity of Sarracenia flava. J Pharm Sci 63:613–615. https://doi.org/10.1002/jps.2600630427

    Article  CAS  PubMed  Google Scholar 

  32. Jesus DM, Moussatche N, Damaso CR (2009) In vitro activity of cidofovir against the emerging Cantagalo virus and the smallpox vaccine strain IOC. Int J Antimicrob Agents 33:75–79. https://doi.org/10.1016/j.ijantimicag.2008.07.015

    Article  CAS  PubMed  Google Scholar 

  33. Taylor J (1863) On the efficacy of Sarracenia purpurea in arresting the progress of small-pox. Lancet 82:664–665

    Article  Google Scholar 

  34. Ellison AM, Buckley HL, Miller TE, Gotelli NJ (2004) Morphological variation in Sarracenia purpurea (Sarraceniaceae): geographic, environmental, and taxonomic correlates. Am J Bot 91:1930–1935. https://doi.org/10.3732/ajb.91.11.1930

    Article  PubMed  Google Scholar 

  35. Martin KW, Ernst E (2003) Antiviral agents from plants and herbs: a systemic review. Antivir Ther 8:77–90. https://doi.org/10.1177/2F135965350300800201

    Article  PubMed  Google Scholar 

  36. Clarke JH (1900) A dictionary of practical materia medica. The Homeopathic Publishing, London

    Google Scholar 

  37. Regner F, da Câmara Machado A, da Câmara Machado ML et al (1992) Coat protein mediated resistance to Plum Pox Virus in Nicotiana clevelandii and N. benthamiana. Plant Cell Rep 11:30–33. https://doi.org/10.1007/BF00231835

    Article  CAS  PubMed  Google Scholar 

  38. Mattanovich D, Rüker F, da Câmara Machado A, Laimer M, Regner F, Steinkellner H, Himmler G, Katinger H (1989) Efficient transformation of Agrobacterium spp. by electroporation. Nucleic Acids Res 17:6747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maiss E, Timpe U, Brisske A, Jelkmann W, Casper R, Himmler G, Mattanovich D, Katinger H (1989) The complete nucleotide sequence of plum pox virus RNA. J Gen Virol 70:513–524

    Article  CAS  PubMed  Google Scholar 

  40. Mattanovich D, Himmler G, Laimer M, Maiss E, Regner F, Da Camara Machado A, Hanzer V, Casper R, Katinger HW (1989) Expression of the plum pox virus coat protein region in Escherichia coli. Virus Genes 2(2):119–127

    Google Scholar 

  41. Nelson R, Powell P, Beachy R (1990) In: Fraser RS (ed) Proceedings of the NATO advanced research workshop on recognition and response in plant-virus interactions. Springer, Heidelberg, pp 13–23

    Google Scholar 

  42. Osbourn JK, Sarkar S, Wilson TMA (1990) Complementation of coat protein-defective TMV mutants in transgenic tobacco plants expressing TMV coat protein. Virology 179(2):921–925

    Google Scholar 

  43. Powell PA, Sanders PR, Tumer N, Fraley RT, Beachy RN (1990) Protection against tobacco mosaic virus infection in transgenic plants requires accumulation of coat protein rather than coat protein RNA sequences. Virology 175(1):124–130

    Google Scholar 

  44. Wu X, Beachy RN, Michael T, Wilson A, Shaw J. G (1990) Inhibition of uncoating of tobacco mosaic virus particles in protoplasts from transqenic tobacco plants that express the viral coat protein gene. Virology 179(2):893–895

    Google Scholar 

  45. Stark D, Register J, Nejidat A, Beachy R (1990) In: Lamb CJ, Beachy RN (eds) Plant Gene transfer. Alan R. Liss, New York

    Google Scholar 

  46. Register III J C, Beachy RN (1988) Resistance to TMV in transgenic plants results from interference with an early event in infection Virology 166(2):524–532

    Google Scholar 

  47. Ahmed I, Aslam A, Mustafa G, Masood S, Ali MA, Nawaz M (2017) Anti-avian influenza virus H9N2 activity of aqueous extracts of Zingiber officinalis (ginger) and Allium sativum (garlic) in chick embryos. Pak J Pharm Sci 30(4):1341–1344

    PubMed  Google Scholar 

  48. Al-Niaame E (2013) A study of antibacterial activity and histological effects of Eruca sativa (L.) seeds on male mice. Al-Mustansiriyah J Sci 24(1):9–22

    Google Scholar 

  49. Ankri S, Mirelman D (1999) Antimicrobial properties of allicin from garlic. Microbes Infect 1(2):125–129

    Article  CAS  PubMed  Google Scholar 

  50. Augusti KT, Jose R, Augustine P (2010) Antiviral, anti-inflammatory and related effects of a food supplement made of garlic, ginger and black pepper. Indian J Clin Biochem 25(2):217–218

    Google Scholar 

  51. Celis JE (1998). Review from A laboratory handbook of cell biology, 2nd edn. MTT. Cell Prolif Assay 1:16–18

    Google Scholar 

  52. Chang JS, Wang KC, Yeh CF, Shieh DE, Chiang LC (2013) Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol 145(1):146–151

    Google Scholar 

  53. Im A, Kim YM, Chae CYW (2017) Protective effects of compounds from Garcinia mangostana L. (Mangosteen) against UVB damage in HaCaT cells and hairless mice. Int J Mol Med 40(6):1941–1949

    CAS  PubMed  Google Scholar 

  54. Hartati S, Untari T (2021) In ovo inhibition of avian pox virus replication by mangosteen rind and red ginger ethanolic extracts. Veterinarstvi 14(10):2640. https://doi.org/10.14202/2Fvetworld.2021.2640-2645

    Article  Google Scholar 

  55. Dieumou FE, Teguia A, Kuiate JR, Tamokou JD, Fonge NB, Dongmo MC (2009) Effects of ginger (zingiberofficinale) and garlic (allium sativum) essential oils on growth performance and gut microbial population of broiler chickens. Livest Res Rural Dev 21:25–34

    Google Scholar 

  56. Freshney RI (2010) Culture of animal cells, a manual of basic technique, 6th edn. Willey, Hoboken, p 314

    Book  Google Scholar 

  57. Khandelwal N, Chander Y, Kumar R, Riyesh T, Dedar RK, Kumar M, Gulati BR, Sharma S, Tripathi BN, Barua S, Kumar N (2020) Antiviral activity of Apigenin against buffalopox: novel mechanistic insights and drug-resistance considerations. Antivir Res 181:104870. https://doi.org/10.1016/j.antiviral.2020.104870

    Article  CAS  PubMed  Google Scholar 

  58. van der Schaar HM, van der Linden L, Lanke KH, Strating JR, Purstinger G, de Vries E, de Haan CA, Neyts J, van Kuppeveld FJ (2012) Coxsackievirus mutants that can bypass host factor PI4KIIIbeta and the need for high levels of PI4P lipids for replication. Cell Res 22:1576–1592

    Article  PubMed  PubMed Central  Google Scholar 

  59. Venditti A, Guarcini L, Bianco A, Rosselli S, Bruno M, Senatore F (2016) Phytochemical analysis of Achillea ligustica all. From lipari island (aeolian islands). Nat Prod Res 30:912–919

    Article  CAS  PubMed  Google Scholar 

  60. Venditti A, Maggi F, Vittori S, Papa F, Serrilli AM, Di Cecco M, Ciaschetti G, Mandrone M, Poli F, Bianco A (2015) Antioxidant and alpha-glucosidase inhibitory activities of Achillea tenorii. Pharm Biol 53:1505–1510

    Article  CAS  PubMed  Google Scholar 

  61. Dutta NK, Dave KH, Desai SM, Mhasalkar MY (1968) Anti-variola and antivaccinia principles from seeds of Banakadali (Ensete superbum, Cheesm, Musaceae). Indian J Med Res 56(5):735–741

    CAS  PubMed  Google Scholar 

  62. Yoosook C, Panpisutchai Y, Chaichana S, Santisuk T, Reutrakul V (1999) Evaluation of anti-HSV-2 activities of Barleria lupulina and Clinacanthus nutans. J Ethnopharmacol 67:179–187

    Article  CAS  PubMed  Google Scholar 

  63. Keith KA, Wan WB, Ciesla SL, Beadle JR, Hostetler KY, Kern ER (2004) Inhibitory activity of alkoxyalkyl and alkyl esters of cidofovir and cyclic cidofovir against orthopoxvirus replication in vitro. Antimicrob Agents Chemother 5:1869–1871

    Article  Google Scholar 

  64. Kirsi JJ, North JA, MacKernan PA, Murray BK, Canonico PG, Huggins JW, Srivastava PC, Robins RK (1983) Broad-spectrum antiviral activity of 2 ~ Dribofuranosylselenazole... 4-carboxamide, a new antiviral agent. Antimicrob Agents Chemother 24:353–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kotwal GJ, Hugin AW, Moss B (1989) Map** and insertional mutagenesis of a vaccinia virus gene encoding a 13,800-Da secreted protein. Virology 171:579–587

    Article  CAS  PubMed  Google Scholar 

  66. Kotwal GJ (2000) Poxviral mimicry of complement and chemokine system components: what’s the end game? Immunol Today 21:242–248

    Article  CAS  PubMed  Google Scholar 

  67. Becker Y, Asher Y, ZAkaya-Rones Z (1972) Congocidine and distamycin A, antipoxvirus antibiotics. Antimicrob Agents Chemother 1:483–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rao AR, Sukumar S, Paramasivam TV, Kamalakshi S, Parashuraman AR, Shantha M (1969) Study of antiviral activity of tender leaves of Margosa tree (Melia azadericta) on vaccinia and variola virus: a preliminary report. Indian J Med Res 57(3):495–502

    CAS  PubMed  Google Scholar 

  69. Nassiri Asl M, Hosseinzadeh H (2007) Review of antiviral effects of Glycyrrhiza glabra L. and its active component, glycyrrhizin. J Med Plants 6(22):1–2. http://dorl.net/dor/20.1001.1.2717204.2007.6.22.1.4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilipkumar Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pal, D., Raj, K. (2024). Poxvirus and the Role of Medicinal Plants in Controlling Infections: Ethnopharmacology, Chemistry, Clinical and Preclinical Studies, and Future Perspectives. In: Pal, D. (eds) Anti-Viral Metabolites from Medicinal Plants. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-12199-9_9

Download citation

Publish with us

Policies and ethics

Navigation