Medicinal Plants Against Herpes Simplex Virus (HSV) Type 2 Infections: Ethnopharmacology, Chemistry, and Clinical and Preclinical Studies

  • Reference work entry
  • First Online:
Anti-Viral Metabolites from Medicinal Plants

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 317 Accesses

Abstract

Herpes simplex viruses (HSV), long double-stranded DNA viruses, cause various types of infections in the human body. HSV-1 causes predominantly orofacial infection, whereas HSV-2 provokes principally genital infection. It is reported that when HSV-2 attacks neurons especially those of the eye and the brain, it causes herpes keratitis and herpes encephalitis respectively. HSV-2 is liable to cause various life-threatening diseases like Alzheimer’s disease, acquired immunodeficiency syndrome (AIDS), and encephalitis, and even death may occur. Moreover, the resistance of HSV-2 to the current available nucleoside derivative drugs such as acyclovir and valaciclovir originated the search for vital and useful therapies for the management of HSV-2 manifestation. The researchers are very much interested to naturally occurring substances to discover potential phytoconstituents or a mixture of phytoconstituents or a mixture of herbs with nucleotide analogs so that the expenditure, as well as the problems regarding resistance to drug and recurrence of infections, will be minimized. Various scientific evidences have proved that a lot of natural plant products are capable to prevent the infections caused by HSV-2. Several review papers reveal that compounds isolated from various plants, like phenolic acids, flavonoids, alkaloids, tannins, saponins, lignan terpenoids, essential oils, etc., exhibit anti-viral properties against HSV-2. The medicinal plants are indicated to be highly promising medicine against simplex herpes virus, the mechanism of which is either directly preventing life cycle such as adsorption, penetration, genetic material replication, and protein synthesis or indirectly improving the immunity of the human body. This chapter is focused on the study of the cell structure of herpes simplex virus type 2 and its replication inside the host cell, medicines derived from natural sources mainly from whole plants or plant parts, the chemistry of phytoconstituents, and preclinical and clinical trials of recently developed drugs with their future trends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 374.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 374.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AIDS:

Acquired immunodeficiency syndrome

AP:

Assembly of protein

CNS:

Central nervous system

CPE:

Cytopathic effect

CSF:

Cerebrospinal fluid

DNA:

Deoxyribonucleic acid

EGFR:

Epidermal growth factor receptor

g:

Glycoprotein

HSPG:

Heparan sulfate proteoglycan

HIV:

Human immunodeficiency virus

HPLC:

High-performance liquid chromatography

HRESIMS:

High-resolution electrospray ionization mass spectroscopy

HSV:

Herpes simplex viruses

HVEM:

Herpes virus entry medium

IL:

Interleukin

IR:

Infrared

MCP:

Major capsid protein

MS:

Mass spectroscopy

NMR:

Nuclear magnetic resonance

ORFs:

Open reading frames

OSMAC:

One strain many compounds

PCR:

Polymerase chain reaction

PDA:

Photodiode array

RNA:

Ribonucleic acid

ssDNA:

Single-stranded DNA

TAL:

Tyrosine ammonia lyase

Th:

T-helper cell

UL:

Long unique region

US:

Short unique region

UV:

Ultraviolet

WHO:

World Health Organization

References

  1. Wildy P (1973) Herpes: history and classification. In: Kaplan AS (ed) The herpes- viruses. Academic Press, New York, pp 1–25

    Google Scholar 

  2. Johnston C, Gottlieb SL, Wald A (2016) Status of vaccine research and development of vaccines for herpes simplex virus. Vaccine 34:2948–2952

    Article  CAS  PubMed  Google Scholar 

  3. Whitley RJ, Roizman B (2001) Herpes simplex virus infections. Lancet 357:1513–1518

    Article  CAS  PubMed  Google Scholar 

  4. Richard J, Whitley DWK, Roizman B (1998) Herpes simplex viruses. Cli Inf Dis 26:541–555

    Article  Google Scholar 

  5. World Health Organization (2019) Herpes simplex virus 1. World Health Organization. Available via https://www.who.int/newsroom/fact-sheets/detail/herpes-simplex-virus hsv1. Accessed 6 July 2019

  6. Chattopadhyay D, Khan MTH (2008) Ethnomedicines and ethnomedicinal phytophores against herpes viruses. Biotechnol Annu Rev 14:297–348

    Article  CAS  PubMed  Google Scholar 

  7. Chattopadhyay D, Naik TN (2007) Antivirals of ethnomedicinal origin: structure-activity relationship and scope. Mini-Rev in Med Chem 7:275–301

    Article  CAS  Google Scholar 

  8. Kandar CC (2020) Current status of pyrazolo moiety in drug discovery (synthetic vs. natural). In: Pal DK (ed) Pyrazole preparation and uses. Nova Publication, New York, pp 1–26

    Google Scholar 

  9. Roizman B (1996) Herpesviridae. In: Fields BN, Knipe DM, Howley PM (eds) Fields virology. Lippincott-Raven, Philadelphia, pp 2221–2230

    Google Scholar 

  10. Roizman B, Sears AE (1996) Herpes simplex viruses and their replication. In: Fields BN, Knipe DM, Howley PM (eds) Fields virology. Lippincott-Raven, Philadelphia, pp 2231–2295

    Google Scholar 

  11. McGeoch DJ, Rixon FJ, Davison AJ (2006) Topics in herpes virus genomics and evolution. Virus Res 117:90–104

    Article  CAS  PubMed  Google Scholar 

  12. Mettenleiter TC, Klupp BG, Granzow H (2006) Herpes virus assembly: a tale of two membranes. Curr Opin Microbiol 9:423–429

    Article  CAS  PubMed  Google Scholar 

  13. Ward PL, Roizman B (1994) Herpes simplex genes: the blueprint of a successful human pathogen. Trends Genet 0:267–274

    Article  Google Scholar 

  14. Fleming DT, Leone P, Esposito D, Heitman CK, Justus S, Chin S, Fife KH (2006) Herpes virus type 2 infection and genital symptoms in primary care patients. Sex Transm Dis 33:416–421

    Article  PubMed  Google Scholar 

  15. Sauerbrei A (2016) Herpes genitalis: diagnosis, treatment and prevention. Geburtshilfe Frauenheilkd 76:1310–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Anzivino E, Fioriti D, Mischitelli M, Bellizzi A, Barucca V, Chiarini F, Pietropaolo V (2009) Herpes simplex virus infection in pregnancy and in neonate: status of art of epidemiology, diagnosis, therapy and prevention. Virol J 6:40

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fatahzadeh M, Schwartz RA (2007) Human herpes simplex virus infections: epidemiology, pathogenesis, symptomatology, diagnosis, and management. J Am Acad Dermatol 57:737–763

    Article  PubMed  Google Scholar 

  18. Corey L, Adams HG, Brown ZA, Holmes KK (1983) Genital herpes simplex virus infections: clinical manifestations, course, and complications. Ann Int Med 98:958–972

    Article  CAS  PubMed  Google Scholar 

  19. Johnston C, Magaret A, Selke S, Remington M, Corey L, Wald A (2008) Herpes simplex virus viremia during primary genital infection. J Infect Dis 198:31–34

    Article  PubMed  Google Scholar 

  20. Freeman EE, Weiss HA, Glynn JR, Cross PL, Whitworth JA, Hayes RJ (2006) Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. AIDS 20:73–83

    Article  PubMed  Google Scholar 

  21. Berger JR, Houff S (2008) Neurological complications of herpes simplex virus type 2 infection. Arch Neurol 65:596–600

    Article  PubMed  Google Scholar 

  22. Spear PG (2004) Herpes simplex virus: receptors and ligands for cell entry. Cell. Microbiol 6:401–410

    Article  CAS  PubMed  Google Scholar 

  23. Kleymann G (2005) Agents and strategies in development for improved management of herpes simplex virus infection and disease. Expert Opin Investig Drugs 14:135–161

    Article  CAS  PubMed  Google Scholar 

  24. Gerber SI, Belval BJ, Herold BC (1995) Differences in the role of glycoprotein C ofHSV-1 and HSV-2 in viral binding may contribute to serotype differences in cell tropism. Virol 214:29–39

    Article  CAS  Google Scholar 

  25. Spear PG, Longnecker R (2003) Herpes virus entry: an update. J Virol 77:10179–10185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Atanasiu D, Whitbeck JC, Cairns TM, Reilly B, Cohen GH, Eisenberg RJ (2007) Bimolecular complementation reveals that glycoproteins gB and gH/gL of herpes simplex virus interact with each other during cell fusion. Proc Natl Acad Sci USA 104:18718–18723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wei WX, **g LL, Liu XY, Zhan P (2020) New progress in medicinal chemistry of anti-herpes viruses drug research. Chin J Acta Pharm Sin (China) 2020:1–23

    Google Scholar 

  28. Arena A, Bisignano C, Stassi G, Mandalari G, Wickham MS, Bisignano G (2010) Immunomodulatory and antiviral activity of almond skins. Immunol Lett 132:18–23

    Article  CAS  PubMed  Google Scholar 

  29. Arena A, Gugliandolo C, Stassi G, Pavone B, Iannello D, Bisignano G, Maugeri TL (2009) An exopolysaccharide produced by Geobacillus thermodenitrificans strain B3-72: antiviral activity on immunocompetent cells. Immunol Lett 123:132–137

    Article  CAS  PubMed  Google Scholar 

  30. Fujioka N, Akazawa R, Ohashi K, Fujii M, Ikeda M, Kurimoto M (1999) Interleukin-18protects mice against acute herpes simplex virus type 1 infection. J Virol 73:2401–2409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mogensen TH, MelchjorsenJ ML, Casola A, Paludan SR (2004) Suppression of proinflammatory cytokine expression by herpes simplex virus type1. J Virol 78:5883–5890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Spanò A, Arena A (2016) Bacterial exopolysaccharide of shallow marine vent origin as agent in counteracting immune disorders induced by herpes virus. J ImmunoassayImmunochem 37:251–260

    Google Scholar 

  33. Kandar CC (2021) Herbal flavonoids in healthcare. In: Mandal SC, Nayak AK, Dhara AK (eds) Herbal biomolecules in healthcare applications. Academic Press/Elsevier, London, pp 295–309

    Google Scholar 

  34. Hassan ST, Masarcikova R, Berchova K (2015) Bioactive natural products with anti-herpes simplex virus properties. J Pharm Pharmacol 67:1325–1336

    Article  CAS  PubMed  Google Scholar 

  35. Kandar CC (2021) Secondary metabolites from plant sources. In: Pal DK (ed) Bioactive natural products for pharmaceutical applications. Springer International Publishing, pp 329–377

    Chapter  Google Scholar 

  36. Delattre C, Fenoradosoa TA, Michaud P (2011) Galactans: an overview of their most important sourcing and applications as natural polysaccharides. Braz Arch Biol Technol 54:1075–1092

    Article  CAS  Google Scholar 

  37. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661

    Article  CAS  PubMed  Google Scholar 

  38. da Cunha PL, de Paula RC, Feitosa JP (2009) Polissacarídeos da biodiversidadebrasileira: uma oportunidade de transformar conhecimento em valor economic polysaccharides from Brazilian biodiversity: an opportunity to change knowledge into economic value. Química Nova 32:649–660

    Article  Google Scholar 

  39. Kandar CC (2020) Role of pyrazolo ring in plant system. In: Pal DK (ed) Pyrazole preparation and uses. Nova Publication, New York, pp 447–470

    Google Scholar 

  40. Zandi K, Zadeh MA, Sartavi K, Rastian Z (2007) Antiviral activity of Aloe vera against herpes simplex virus type 2: an in vitro study. African J Biotechnol 6:1770–1773

    Article  Google Scholar 

  41. Nakama S, Tamaki K, Ishikawa C, Tadano M, Mori N (2012) Efficacy of Bidens pilosa extract against herpes simplex virus infection in vitro and in vivo. Evidence-Based Complem Alternat Med 2012:413–453

    Article  Google Scholar 

  42. Behbahani M, Zadeh MS, Mohabatkar H (2013) Evaluation of antiherpetic activity of crude extract and fractions of Avicenna marina, in vitro. Antiviral Res 97:376–380

    Article  CAS  PubMed  Google Scholar 

  43. Yoosook C, Panpisutchai Y, Chaichana S, Santisuk T, Reutrakul V (1999) Evaluation of anti-HSV-2 activities of Barleria lupulina and Clinacanthus nutans. J Ethnopharmacol 67:179–187

    Article  CAS  PubMed  Google Scholar 

  44. Mukherjee H, Ojha D, Bag P et al (2013) Anti-herpes virus activities of Achyranthes aspera: an Indian ethnomedicine, and its triterpene acid. Microbiol Res 168:238–244

    Article  CAS  PubMed  Google Scholar 

  45. Yoosook C, Bunyapraphatsara N, Boonyakiat Y, Kantasuk C (2000) Anti-herpes simplex virus activities of crude water extracts of Thai medicinal plants. Phytomed 6:411–419

    Article  CAS  Google Scholar 

  46. Pacheco P, Sierra J, Schmeda-Hirschmann G, Potter CW, Jones BM, Moshref M (1993) Antiviral activity of Chilean medicinal plant extracts. Phytother Res 7:415–418

    Article  Google Scholar 

  47. Bonvicini F, Lianza M, Mandrone M, Poli F, Gentilomi GA, Antognoni F (2018) Hemidesmus indicus (L.) R. Br. extract inhibits the early step of herpes simplex type 1 and type 2 replication. New Microbiol 41:187–194

    CAS  PubMed  Google Scholar 

  48. Ritta M, Marengo A, Civra A et al (2020) Antiviral activity of a Arisaema tortuosum leaf extract and some of its constituents against herpes simplex virus type 2. Planta Med 86:267–725

    Article  CAS  PubMed  Google Scholar 

  49. Jaeger Greer MR, Cates RG, Johnson FB, Lamnaouer D, Ohai L (2010) Activity of acetone and methanol extracts from thirty-one medicinal plant species against herpes simplex virus types 1 and 2. Pharm Biol 48:1031–1037

    Article  PubMed  Google Scholar 

  50. Silva-Mares D, Rivas-Galindo VM, Salazar-Aranda R et al (2019) Screening of north-east Mexico medicinal plants with activities against herpes simplex virus and human cancer cell line. Nat Prod Res 33:1531–1534

    Article  CAS  PubMed  Google Scholar 

  51. Schneider S, Reichling J, Stintzing FC, Messerschmidt S, Meyer U, Schnitzler P (2010) Anti-herpetic properties of hydroalcoholic extracts and pressed juice from Echinacea pallida. Planta Med 76:265–272

    Article  CAS  PubMed  Google Scholar 

  52. Chiang LC, Cheng HY, Liu MC, Chiang W, Lin CC (2003) In vitro anti-herpes simplex viruses and anti-adenoviruses activity of twelve traditionally used medicinal plants in Taiwan. Biol Pharm Bull 26:1600–1604

    Article  CAS  PubMed  Google Scholar 

  53. Ahmad A, Davies J, Randall S, Skinner GR (1996) Antiviral properties of extract of Opuntia streptacantha. Antivir Res 30:75–85

    Article  CAS  PubMed  Google Scholar 

  54. Serkedjieva J (2004) Antiviral activity of the red marine alga Ceramium rubrum. Phytother Res 18:480–483

    Article  PubMed  Google Scholar 

  55. Ferrea G, Canessa A, Sampietro F, Cruciani M, Romussi G, Bassetti D (1993) In vitro activity of a Combretum micranthum extract against herpes simplex virus types 1 and 2. Antiviral Res 21:317–325

    Article  CAS  PubMed  Google Scholar 

  56. Kesharwani A, Polachira SK, Nair R, Agarwal A, Mishra NN, Gupta SK (2017) Anti-HSV-2 activity of Terminalia chebula Retz extract and its constituents, chebulagic and chebulinic acids. BMC Complement Altern Med 17:110

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chiang LC, Cheng HY, Chen CC, Lin CC (2004) In vitro anti-leukemic and antiviral activities of traditionally used medicinal plants in Taiwan. Am J Chin Med 32:695–704

    Article  PubMed  Google Scholar 

  58. Zaharieva MM, Genova-Kalju P, Dincheva I et al (2019) Anti-herpes simplex virus and antibacterial activities of Graptopetalum paraguayense E. Walther leaf extract: a pilot study. Biotechnol Biotechnol Equip 33:1251–1259

    Article  CAS  Google Scholar 

  59. Churqui MP, Lind L, Thorn K et al (2018) Extracts of Equisetum giganteum L. and Copaifera reticulate Ducke show strong antiviral activity against the sexually transmitted pathogen herpes simplex virus type 2. J Ethnopharmacol 210:192–197

    Article  PubMed  Google Scholar 

  60. Betancur-Galvis LA, Morales GE, Forero JE, Roldan J (2002) Cytotoxic and antiviral activities of Colombian medicinal plant extracts of the Euphorbia genus. Mem Inst Oswaldo Cruz 97:541–546

    Article  CAS  PubMed  Google Scholar 

  61. Yang CM, Cheng HY, Lin TC, Chiang LC, Lin CC (2005) Euphorbia thymifolia suppresses herpes simplex virus-2 infection by directly inactivating virus infectivity. Clin Exp Pharmacol Physiol 32:346–349

    Article  CAS  PubMed  Google Scholar 

  62. Ojha D, Das R, Sobia P et al (2015) Pedilanthus tithymaloides inhibits HSV infection by modulating NF-kappaB signaling. PLoS One 10:e0139338

    Article  PubMed  PubMed Central  Google Scholar 

  63. del Barrio G, Parra F (2000) Evaluation of the antiviral activity of an aqueous extract from Phyllanthus orbicularis. J Ethnopharmacol 72:317–322

    Article  PubMed  Google Scholar 

  64. Chiang LC, Cheng HY, Liu MC, Chiang W, Lin CC (2003) Antiviral activity of eight commonly used medicinal plants in Taiwan. Am J Chin Med 31:897–905

    Article  PubMed  Google Scholar 

  65. Chiang LC, Chiang W, Liu MC, Lin CC (2003) In vitro antiviral activities of Caesalpinia pulcherrima and its related flavonoids. J Antimicrob Chemother 52:194–198

    Article  CAS  PubMed  Google Scholar 

  66. Zu Y, Fu Y, Wang W et al (2010) Comparative study on the antiherpetic activity of aqueous and ethanolic extracts derived from Cajanus cajan (L.) Millsp. Forsch Komplementmed 17:15–20

    Article  PubMed  Google Scholar 

  67. Kaushik NK, Guha R, Saravanabalaji S et al (2015) Antiviral activity of Indigofera heterantha Wall. ex Brandis against Herpes Simplex Virus—type 2 (HSV-2). Int J Adv Res 3:1365–1376

    Google Scholar 

  68. Serkedjieva J, Ivancheva S (1999) Antiherpes virus activity of extracts from the medicinal plant Geranium sanguineum L. J Ethnopharmacol 64:59–68

    Article  CAS  PubMed  Google Scholar 

  69. Suzutani T, Ogasawara M, Yoshida I, Azuma M, Knox YM (2003) Anti-herpes virus activity of an extract of Ribes nigrum L. Phytother Res 17:609–613

    Article  PubMed  Google Scholar 

  70. Mazzanti G, Battinelli L, Pompeo C et al (2008) Inhibitory activity of Melissa officinalis L. extract on Herpes simplex virus type 2replication. Nat Prod Res 22:1433–1440

    Article  CAS  PubMed  Google Scholar 

  71. Schuhmacher A, Reichling J, Schnitzler P (2003) Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro. Phytomedicine 10:504–510

    Article  CAS  PubMed  Google Scholar 

  72. Sayedipour SS, Behbahani M, Moshtaghian SJ (2012) Evaluation of anti-Herpes simplex virus type 2 (HSV-2) activity of methanol extract of Securigera securidaca by cell culture method. Genet 3rd Mill 10:2802–2809

    Google Scholar 

  73. Yarmolinsky L, Zaccai M, Ben-Shabat S, Mills D, Huleihel M (2009) Antiviral activity of ethanol extracts of Ficus benjamina and Lilium candidum in vitro. N Biotechnol 26:307–313

    Article  CAS  PubMed  Google Scholar 

  74. Ghosh M, Civra A, Ritta M et al (2016) Bark extracts inhibit infection by herpes simplex virus type 2 in vitro. Arch Virol 161:3509–3514

    Article  CAS  PubMed  Google Scholar 

  75. Schnitzler P, Schon K, Reichling J (2001) Antiviral activity of Australian tea tree oil and eucalyptus oil against herpes simplex virus in cell culture. Pharmazie 56:343–347

    CAS  PubMed  Google Scholar 

  76. Reichling J, Koch C, Stahl-Biskup E, Sojka C, Schnitzler P (2005) Virucidal activity of a beta-triketone-rich essential oil of Leptospermum scoparium (manuka oil) against HSV-1 and HSV-2 in cell culture. Planta Med 71:1123–1127

    Article  CAS  PubMed  Google Scholar 

  77. Sharifi-Rad J, Iriti M, Setzer WN, Sharifi-Rad M, Roointan A, Salehi B (2018) Antiviral activity of Veronica persica Poir. on herpes virus infection. Cell Mol Biol (Noisy-le-grand) 64:79–17

    Article  Google Scholar 

  78. He YC, Lu ZH, Shi P et al (2016) Anti-herpes simplex virus activities of bioactive extracts from Antrodia camphorata mycelia. Antivir Ther 21:377–383

    Article  CAS  PubMed  Google Scholar 

  79. Krupodorova T, Rybalko S, Barshteyn V (2014) Antiviral activity of Basidiomycete mycelia against influenza type A (serotype H1N1) and herpes simplex virus type 2 in cell culture. Virol Sin 29:284–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ruffa MJ, Wagner ML, Suriano M et al (2004) Inhibitory effect of medicinal herbs against RNA and DNA viruses. Antivir Chem Chemother 15:153–159

    Article  CAS  PubMed  Google Scholar 

  81. Donalisio M, Nana HM, Ngane RA et al (2013) In vitro anti-herpes simplex virus activity of crude extract of the roots of Nauclea latifolia Smith (Rubiaceae). BMC Complement Altern Med 13:266

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chattopadhyay D, Arunachalam G, Mandal AB, Bhattacharya SK (2006) Dose-dependent therapeutic antiinfectives from ethnomedicines of bay islands. Chemotherapy 52:151–157

    Article  CAS  PubMed  Google Scholar 

  83. Deethae A, Peerapornpisal Y, Pekkoh J, Sangthong P, Tragoolpua Y (2018) Inhibitory effect of Spirogyra spp. algal extracts against herpes simplex virus type 1 and 2 infection. J Appl Microbiol 124:1441–1453

    Article  CAS  PubMed  Google Scholar 

  84. Garber A, Barnard L, Pickrell C (2021) Review of whole plant extracts with activity against Herpes simplex viruses in vitro and in vivo. J Evidence-based Integrative Med 26:1–57

    Article  Google Scholar 

  85. Khan MT, Ather A, Thompson KD, Gambari R (2005) Extracts and molecules from medicinal plants against herpes simplex viruses. Antivir Res 67:107–119

    Article  CAS  PubMed  Google Scholar 

  86. Li GJ, Hu HY, Wang YX, Du YJ, Zhang YY, Chang CH, Lin YZ (2018) In vitro anti-HSV-1 activity of extracellular polysaccharides from Paecilomyces lilacinuson isolated from Mangrove. China J Modern Med (China) 28:19–23

    CAS  Google Scholar 

  87. Zheng M (1990) Experimental study of 472 herbs with antiviral action against the herpes simplex virus. Zhong ** Yi Jie He Za Zhi 10:39–41

    CAS  PubMed  Google Scholar 

  88. Xu HX, Lee SH, Lee SF, White RL, Blay J (1999) Isolation and characterization of an anti-HSV polysaccharide from Prunella vulgaris. Antiviral Res 44:43–54

    Article  CAS  PubMed  Google Scholar 

  89. Zhang YW, But PP, Ooi VE, Xu HX, Delaney GD, Lee SH, Lee SF (2007) Chemical properties, mode of action, and in vivo anti-herpes activities of a lignin–carbohydrate complex from Prunella vulgaris. Antiviral Res 75:242–249

    Article  CAS  PubMed  Google Scholar 

  90. Cai SF, Yang Y, Wu R, Yang YF, Tan HS (2017) Pharmacodynamics of polysaccharide and gel from Prunella vulgaris against herpes simplex virus. Modern Tradit Chin Med Mater Med-World Sci Technol (China) 19:247–253

    Google Scholar 

  91. Chiu LC, Zhu W, Ooi VE (2004) A polysaccharide fraction from medicinal herb Prunella vulgaris downregulates the expression of herpes simplex virus antigen in Vero cells. J Ethnopharmacol 93:63–68

    Article  PubMed  Google Scholar 

  92. Amirul M, Juraimi AAS, Rafii MY, Hamid AA, Kamal M, Uddin MZA, Latif MA (2014) Genetic improvement of purslane (Portulaca oleracea L.) and its future prospects. Mol Biol Rep 41:7395–7411

    Article  Google Scholar 

  93. Dong CX, Hayashi K, Lee JB, Hayashi T (2010) Characterization of structures and antiviral effects of polysaccharides from Portulaca oleracea L. Chem Pharm Bull (Tokyo) 58:507–510

    Article  CAS  PubMed  Google Scholar 

  94. Dong CX, Hayashi K, Mizukoshi Y, Lee JB, Hayashi T (2012) Structures and anti-HSV-2 activities of neutral polysaccharides from an edible plant, Basella rubra L. Int J Biol Macromol 50:245–249

    Article  CAS  PubMed  Google Scholar 

  95. Lee JB, Tanikawa T, Hayashi K, Asagi M, Kasahara Y, Hayashi T (2015) Characterization and biological effects of two polysaccharides isolated from Acanthopanax sciadophylloides. Carbohydr Polym 116:159–166

    Article  CAS  PubMed  Google Scholar 

  96. Gu HM, Meng YW, Pu Q (2003) Polysaccharide from Polygonatum cyrtonema Hua against herpes simplex virus in vitro. Chin J Appl Environ Biol (China) 9:21–23

    CAS  Google Scholar 

  97. Craig MI, Benencia F, Coulombié FC (2001) Antiviral activity of acidic polysaccharides fraction extracted from Cedrela tubiflora leaves. Fitoterapia 72:113–119

    Article  CAS  PubMed  Google Scholar 

  98. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to2014. J Nat Prod 79:629–661

    Article  CAS  PubMed  Google Scholar 

  99. Lopes N, Faccin-Galhardi LC, Espada SF, Pacheco AC, Ricardo NM, Linhares RE, Nozawa C (2013) Sulfated polysaccharide of Caesalpinia ferrea inhibits herpes simplex virus and poliovirus. Int J Biol Macromol 60:93–99

    Article  CAS  PubMed  Google Scholar 

  100. Kumar N, Goel N (2019) Phenolic acids: natural versatile molecules with promising therapeutic applications. Biotechnol Rep 24:1–10

    Google Scholar 

  101. Jungmin Lee J, Scagel CF (2013) Chicoric acid: chemistry, distribution, and production. Front Chem 40:1–17

    Google Scholar 

  102. Langland J, Jacobs B, Wagner CE, Ruiz G, Cahill TM (2018) Antiviral activity of metal chelates of caffeic acid and similar compounds towards herpes simplex, VSV-Ebola pseudotyped and vaccinia viruses. Antivir Res 160:143–150

    Article  CAS  PubMed  Google Scholar 

  103. Espinodola KMM, Ferreira RG, Narvaez LEM, Rosario ACRS, Machado da Silva AH, Silva AGB, Vieira APO, Monteiro MC (2019) Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front Oncol 9:1–10

    Google Scholar 

  104. Haslam E, Cai Y (1994) Plant polyphenols (vegetable tannins): gallic acid metabolism. Nat Prod Rep 11:41–66

    Article  CAS  PubMed  Google Scholar 

  105. Eslami AC, Pasanphan W, Brett A, Wagner BA, Buettner GR (2010) Free radicals produced by the oxidation of gallic acid: an electron paramagnetic resonance study. Chem Cent J 4:15

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kratz JM, Andrighetti-Frohner CR, Leal PC, Nunes RJ, Yunes RA, Trybala E, Bergstrom T, Barardi CRM, Simoes CMO (2008) Evaluation of anti-HSV-2 activity of gallic acid and pentyl gallate. Biol Pharm Bull 31:903–907

    Article  CAS  PubMed  Google Scholar 

  107. Marchev AS, Vasileva LV, Amirova KM, Savova MS, Koycheva IK, Balcheva-Sivenova ZP, Vasileva SM, Georgiev MI (2021) Rosmarinic acid – from bench to valuable applications in food industry. Trends Food Sci Technol 10:1–12

    Google Scholar 

  108. Mazzanti G, Battinelli L, Pompeo C, Serrilli AM, Rossi R, Sauzullo I (2008) Inhibitory activity of Melissa officinalis L. extract on Herpes simplex virus type 2 replication. Nat Prod Res 22:1433–1440

    Article  CAS  PubMed  Google Scholar 

  109. Hashida K, Ohara S (2002) Formation of a novel catechinic acid stereoisomer from base-catalyzed reactions of (+)-catechin. J Wood Chem Technol 22:11–23

    Article  CAS  Google Scholar 

  110. Ferrea G, Canessa A, Sampietro F, Cruciani M, Romussi G, Bassetti D (1993) In vitro activity of a Combretum micranthum extract against herpes simplex virus types 1 and 2. Antivir Res 21:317–325

    Article  CAS  PubMed  Google Scholar 

  111. Gálvez MC, Barroso CG, Pérez-Bustamante JA (1994) Analysis of polyphenolic compounds of different vinegar samples. Zeitschrift für Lebensmittel-Untersuchung und-Forschung 199:29–31

    Article  Google Scholar 

  112. Stankova I, Chuchkov K, Shishkov S, Kostova K, Mukova L, Galabov AS (2009) Synthesis, antioxidative and antiviral activity of hydroxycinnamic acid amides of thiazole containing amino acid. Amino Acids 37:383–388

    Article  CAS  PubMed  Google Scholar 

  113. Sakai S, Kawamata H, Kogure T, Mantani N, Terasawa K, Umatake M, Ochiai H (1999) Inhibitory effect of ferulic acid and isoferulic acid on the production of macrophase inflammatory protein-2 in response to respiratory syncytial virus infection in RAW264.7 cells. Med Inflamm 8:173–175

    Article  CAS  Google Scholar 

  114. Valentão P, Fernandes E, Carvalho F, Andrade PB, Seabra RM, Bastos ML (2001) Antioxidant activity of Centaurium erythraea infusion evidenced by its superoxide radical scavenging and xanthine oxidase inhibitory activity. J Agric Food Chem 49:3476–3479

    Article  PubMed  Google Scholar 

  115. Schneider S, Reichling J, Stintzing FC, Messerschmidt S, Meyer U, Schnitzler P (2010) Anti-herpetic properties of hydroalcoholic extracts and pressed juice from Echinacea pallid. Planta Med 76:265–272

    Article  CAS  PubMed  Google Scholar 

  116. Birtic S, Dussort P, Pierre FX, Bily AC, Roller M (2015) Carnosic acid. Phytochem 115:9–19

    Article  CAS  Google Scholar 

  117. AL-Megrin WA, AlSadhan NA, Metwally DM, Al-Talhi RA, El-Khadragy MF, Abdel-Hafez LJM (2020) Potential antiviral agents of Rosmarinus officinalis extract against herpes viruses 1 and 2. Biosci Report 40:1–8

    Article  Google Scholar 

  118. Weng CJ, Yen GC (2012) Flavonoids, a ubiquitous dietary phenolic subclass, exert extensive in vitro anti-invasive and in vivo anti-metastatic activities. Cancer Metastasis Rev 31:323–351

    Article  CAS  PubMed  Google Scholar 

  119. Ojha D, Das R, Sobia P, Dwivedi V, Ghosh S, Samanta A et al (2015) Pedilanthus tithymaloides inhibits HSV Infection by modulating NF-κB Signaling. PLoS One 10:1–13

    Article  Google Scholar 

  120. Bentz AB (2017) A review of quercetin: chemistry, antioxidant properties and bioavailability. J Young Invest Corpus. ID: 105849707

    Google Scholar 

  121. Lyu SY, Rhim JY, Park WB (2005) Antiherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro. Arch Pharm Res 28:1293–1301

    Article  CAS  PubMed  Google Scholar 

  122. Venigalla M, Gyengesi E, Münch G (2015) Curcumin and apigenin – novel and promising therapeutics against chronic neuroinflammation in Alzheimer’s disease. Neural Regen Res 10:1181–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ritta M, Marengo A, Civra A, Lembo D, Cagliero C, Kanta K, Lal UR, Rubiolo P, Ghosh M, Donalisio M (2020) Antiviral activity of a Arisaema Tortuosum leaf extract and some of its constituents against herpes simplex virus type 2. Planta Med 86:267–275

    Article  CAS  PubMed  Google Scholar 

  124. Ross JA, Kasum CM (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. AnnualRev Nut 22:19–34

    Article  CAS  Google Scholar 

  125. Lia W, Xua C, Haob C, Zhanga Y, Wanga Z, Wanga S, Wang W (2020) Inhibition of herpes simplex virus by myricetin through targeting viral gD protein and cellular EGFR/PI3K/Akt pathway. Antivir Res 177:104714

    Article  Google Scholar 

  126. Alam W, Khan H, Shah MA, Cauli O, Saso L (2020) Kaempferol as a dietary anti-inflammatory agent: current therapeutic standing. Molecules 25:4073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Urmenyi FGG, Saraiva G, Casanova LM, Costa SS (2016) Anti-HSV-1 and HSV-2 flavonoids and a new kaempferol triglyceride from the medicinal plant Kalanchoe daigremontiana. Chem Biodiversity 13:1707–1714

    Article  Google Scholar 

  128. Ti H, Zhuang Z, Yu Q, Wang S Progress of plant medicine derived extracts and alkaloids on modulating viral infections and inflammation. Drug Design Dev Therapy 15:1385–1408

    Google Scholar 

  129. Cheng HY, Lin CC, Lin TC (2002) Antiherpes simplex virus type 2 activity of casuarinin from the bark of Terminalia arjuna Linn. Antivir Res 55:447–455

    Article  CAS  PubMed  Google Scholar 

  130. Cheng HY, Lin TC, Yang CM, Wang KC, Lin LT, Lin CC (2004) Putranjivain a from Euphorbia jolkini inhibits both virus entry and late stage replication of herpes simplex virus type 2 in vitro. J Antimicrob Chemother 53:577–583

    Article  CAS  PubMed  Google Scholar 

  131. Vilhelmova N, Jacquet R, Quideau S, Stoyanova A, Galabov AS (2011) Three-dimensional analysis of combination effect of ellagitannins and acyclovir on herpes simplex virus types 1 and 2. Antivir Res 89:174–181

    Article  CAS  PubMed  Google Scholar 

  132. Vilhelmova-Ilieva N, Jacquet R, Quideau S, Galabov AS (2014) Ellagitannins as synergists of ACV on the replication of ACV-resistant strains of HSV 1 and 2. Antivir Res 110:104–114

    Article  CAS  PubMed  Google Scholar 

  133. Du S, Liu H, Lei T, **e X, Wang H, He X, Tong R, Wang Y (2018) Mangiferin: an effective therapeutic agent against several disorders (Review). Mol Med Report 18:4775–4786

    CAS  Google Scholar 

  134. Kang HH, Zhang HB, Zhong MJ, Ma LY, Liu DS, Ren H (2018) Potential antiviral xanthones from a coastal saline soil fungus Aspergillus iizukae. Mar Drugs 16:449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Luckemeyer DD, Muller VDM, Moritz MIG, Stoco PH, Schenkel EP, Barardi CRM, Reginatto FH, Simoes CMO (2012) Effects of Ilex paraguariensis A. St. Hil. (yerba mate) on herpes simplex virus types 1 and 2 replication. Phytother Res 26:535–540

    Article  PubMed  Google Scholar 

  136. Pei Y, Du Q, Liao PY, Chen ZP, Wang D, Yang CR, Kitazato K, Wang YF, Zhang YJ (2011) Notoginsenoside ST-4 inhibits virus penetration of herpes simplex virus in vitro. J Asian Nat Prod Res 13:498–504

    Article  CAS  PubMed  Google Scholar 

  137. Rattanathongkom A, Lee JB, Hayashi K, Sripanidkulchai BO, Kanchanapoom T, Hayashi T (2009) Evaluation of chikusetsu saponin IV a isolated from alternanthera philoxeroides for its potency against viral replication. Planta Med 75:829–835

    Article  CAS  PubMed  Google Scholar 

  138. Alvarez AL, Habtemariam S, Parra F (2015) Inhibitory effects of lupene-derived pentacyclic triterpenoids from Bursera simaruba on HSV-1 and HSV-2 in vitro replication. Nat Prod Res 29:2322–2327

    Article  CAS  PubMed  Google Scholar 

  139. Jesus JA, Lago JHG, Laurenti MD, Yamamoto ES, LFD P (2015) Antimicrobial activity of oleanolic and ursolic acids: an update. Evidence-Based Complement Alternat Med:1–14

    Google Scholar 

  140. Barquero AA, Michelini FM, Alche LE (2006) 1-Cinnamoyl-3, 11-dihydroxymeliacarpin is a natural bioactive compound with antiviral and nuclear factor-kB modulating properties. Biochem Biophys Res Commun 344:955–962

    Article  CAS  PubMed  Google Scholar 

  141. Schnitzler P, Schneider S, Stintzing FC, Carle R, Reichling J (2008) Efficacy of an aqueous Pelargonium sidoides extract against herpes virus. Phytomed 15:1108–1016

    Article  CAS  Google Scholar 

  142. Song QY, Zhang CJ, Li Y, Wen J, Zhao XW, Liu ZL, Gao K (2013) Lignans from the fruit of Schisandra sphenanthera, and their inhibition of HSV-2 and adenovirus. Phytochem Lett 6:174–178

    Article  CAS  Google Scholar 

  143. Tragoolpua Y, Jatisatienr A (2007) Anti-herpes simplex virus activities of Eugenia caryophyllus (Spreng.) Bullock & S. G. Harrison and essential oil, eugenol. Phytother Res 21:1153–1158

    Article  CAS  PubMed  Google Scholar 

  144. Schnitzler P, Schuhmacher SA, Astani A, Reichling J (2008) Melissa officinalis oil affects infectivity of enveloped herpes viruses. Phytomed 15:734–740

    Article  CAS  Google Scholar 

  145. Bourne KZ, Bourne N, Reising SF, Stanberry LR (1999) Plant products as topical microbicide candidates: assessment of in vitro and in vivo activity against herpes simplex virus type 2. Antivir Res 42:219–226

    Article  CAS  PubMed  Google Scholar 

  146. Johnston C, Koelle DM, Wald A (2011) HSV-2: in pursuit of a vaccine. J Clin Invest 121:4600–4609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Liu J, Tuli SS, Bloom DC et al (2006) Gene therapy targeting herpes simplex virus. Mol Ther 13:S310

    Article  Google Scholar 

  148. Potential new herpes therapy studied (2009) Available via http://news.ufl.edu/2009/02/03/herpes-2/. University Florida News.2009-02-03

  149. Kingsbury KA (2010) Cure for Cold Sores? Available via http://www.time.com/time/health/article/0,8599.1819739,00.htlm

  150. Mustafa M, Illzam EM, Muniandy RK, Sharifah AM, Nang MK, Ramesh B (2016) Herpes simplex virus infections, pathophysiology and management. IOSR J Dental Med Sci (IOSR-JDMS) 15:85–91

    Article  Google Scholar 

  151. Sherif TS, Hassana B, Ikovaa RM, Berchova K (2015) Bioactive natural products with anti-herpes simplex virus properties. J Pharm Pharmacol 67:1325–1336

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kandar, C.C. (2024). Medicinal Plants Against Herpes Simplex Virus (HSV) Type 2 Infections: Ethnopharmacology, Chemistry, and Clinical and Preclinical Studies. In: Pal, D. (eds) Anti-Viral Metabolites from Medicinal Plants. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-12199-9_5

Download citation

Publish with us

Policies and ethics

Navigation