Traditional Plants in Controlling and Treatment of Fever, Joint Pain, and Pogosta Diseases Caused by Viruses

  • Reference work entry
  • First Online:
Anti-Viral Metabolites from Medicinal Plants

Abstract

A mosquito-borne disease, pogosta, is clinically manifested by arthritis, rash, and fever. Its outbreak occur in 7-year intervals. Sindbis virus (SINV) is considered as causative agent for this disease. Its suspected pathology and general mechanism are described in this chapter. Symptoms, molecular mechanisms, and its extensive investigation with plant species are broadly described here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 374.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 369.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BBB:

Blood-brain barrier

CAMP:

Cyclic adenosine monophosphate

COX:

Cyclooxygenase

DMH:

Dorsomedial hypothalamus

IL:

Interleukins

LBP:

Lipopolysaccharide-binding proteins

LPS:

Lipopolysaccharides

PGE2:

Prostaglandin E2

POA:

Preoptic area

PVN:

Paraventricular nucleus

rRPa:

Medulla oblongata with rostral raphe pallidus nucleus

SINV:

Sindbis virus

TNF:

Tumor necrosis factor-α

References

  1. Kurkela S, Manni T, Vaheri A, Vapalahti O (2004) Causative agent of Pogosta disease isolated from blood and skin lesions. Emerg Infect Dis 10(5):889–894

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bergqvist J, Forsman O, Larsson P, Naslund J, Lilja T, Engdahl C, Lindstrom A, Gylfe A, Ahlm C, Evander M, Bucht G (2013) Detection and isolation of Sindbis virus from mosquitoes captured during an outbreak in Sweden. Vector Borne Zoonotic Dis 15(2):133–140

    Article  Google Scholar 

  3. Turunen M, Kuusisto P, Uggeldahl PE, Toivanen A (1998) Pogosta disease: clinical observations during an outbreak in the province of North Karelia Finland. Br J Rheumatol 37(11):1177–1180

    Article  CAS  PubMed  Google Scholar 

  4. Sulochana K, Samander K, Sharma V, Yadav JP (2018) Antiviral and therapeutic uses of medicinal plants and their derivatives against dengue viruses. Pharmacogn Rev 12(24):177–185

    Article  Google Scholar 

  5. Taylor RM, Hurlbut HS, Work TH, Kingston JR, Frothingham TE (1955) Sindbis virus: a newly recognized arthropod-transmitted virus. Am J Trop Med Hygiene 4(5):844–852

    Article  CAS  Google Scholar 

  6. Atkins E (1960) Pathogenesis of fever. Physiological Rev 40(3):580–646

    Article  CAS  Google Scholar 

  7. Fabian IE (2019) Phytochemical, anti-inflammatory and anti-trypanosomal properties of Anthocleista vogelii Planch (Loganiaceae) stem bark. J Ethnopharmacol 238:111851

    Article  Google Scholar 

  8. Hossain S, Urbi Z, Sule A, Rahman KMH (2014) Andrographis paniculata (Burm. f.) Wall. ex Nees: a review of ethnobotany, phytochemistry, and pharmacology. Sci World J. https://doi.org/10.1155/2014/274905

  9. Krettli AU, Adebayo JO (2010) Potential antimalarials from Nigerian plants: a review. J Ethnopharmacol 33(2):289–302

    Google Scholar 

  10. Mokea NA (2018) Alchornea cordifolia (Schumach. &Thonn.) Mull.Arg: a potential plant for phytoremediation of manganese polluted soils. Int J Adv Res 6(1):328–337

    Article  Google Scholar 

  11. Agbonlahor O (2014) Harnessing the medicinal properties of Andrographis paniculata for diseases and beyond: a review of its phytochemistry and pharmacology. Asia Pacific J Trop Dis 4(3):213–222

    Article  Google Scholar 

  12. Francis O (2021) Tourism potential of plants species used for the treatment of Malaria and Typhoid in Omo Forest Reverse Southwest Nigeria. J Tourism Hospitality Educ 11:64–92

    Article  Google Scholar 

  13. Emelia OB (2017) Herbal medicines used in the treatment of typhoid in the Ga east municipality of Ghana. Int J Trop Dis Health 23(4):1–13

    Article  Google Scholar 

  14. Sani AA (2011) Structure determination of betulinic acid from the leaves of Lophira lanceolata Van Tiegh. Ex Keay (Ochnaceae). J Appl Pharmaceut Sci 1(08):244–245

    Google Scholar 

  15. Sani AA (2011) Acute toxicity studies of Lophira lanceolata leaf extract. Res J Pharmaceut Biol Chem Sci 2(1):629

    Google Scholar 

  16. Regina NN (2021) Effect of methanol leaf extract of Lophira lanceolata (Ochnaceae) on blood glucose and serum proteins concentration in doxorubicin induced rats. Merit Res J Med Medical Sci 9(10):383–388

    Google Scholar 

  17. Maroyl A (2018) Lannea acida: a review of its medicinal uses and phytochemistry and pharmacological properties. Asian J Pharm Clin Res 11(11):69–74

    Article  Google Scholar 

  18. Karthikeyan (2013) Pharmacognostical and phytochemical studies on Anacardium occidentale Linn. leaves. World J Pharmaceut Sci 2(1):41–48

    Google Scholar 

  19. Hasen M (2013) Chemical constituents from the bark of Lannea acida (Anacardiaceae) Chemical constituents from the bark of Lannea acida Rich (Anacardiaceae). Der Pharma Chemica 5(5):88–96

    Google Scholar 

  20. John OO (2017) Comparative study of the phytochemistry and antioxidant activity of Anacardium occidentale (L.) leaf and stem bark extracts. Am J Food Nutr 5(4):115–120

    Article  Google Scholar 

  21. Maroyi A (2018) Lannea acida: a review of its medicinal uses and phytochemistry and pharmacological properties. Asian J Pharmaceut Clin Res 11:69–74

    Article  CAS  Google Scholar 

  22. Consolacion R (2014) Chemical constituents of Annona muricata. Der Pharma Chemica 6(6):382–387

    Google Scholar 

  23. Antoniana UK (2001) The search for new antimalarial drugs from plants used to treat fever and malaria or plants randomly selected: a review. Mem Inst Oswaldo Cruz 96(8)

    Google Scholar 

  24. Tellez AVC, Gonzalez EM, Yahia EM, Vazquez ENO (2018) Annona muricata: a comprehensive review of its traditional medicinal uses, phytochemicals, pharmacological activities, mechanisms of action and toxicity. Arab J Chem 11(5):662–691

    Article  Google Scholar 

  25. Lebari BG (2014) Antiplasmodial effect of Anthocleista vogelii on Albino mice experimentally infected with Plasmodium bergheiberghei. J Parasitol Res. https://doi.org/10.1155/2014/731906

  26. Mary AA (2019) Medicinal uses of Cassia Sieberiana; a review. Int J Sci: Basic Appl Res 48(2):161–180

    Google Scholar 

  27. Ouattara L (2011) Antioxidant and antibacterial activities of three species of Lannea from Burkina Faso. J Appl Sci 11(1):157–162

    Article  CAS  Google Scholar 

  28. Siti M, Abdul W (2018) Exploring the leaves of Annona muricata L. as a source of potential anti-inflammatory and anticancer agent. Front Pharmacol 9:1–21

    Google Scholar 

  29. Salehi B, Gultekin OM, Kirkin C, Ozçelik B, Braga MF, Carneiro JN, Bezerra CF, Silva TG, Coutinho HD, Amina B, Armstrong L (2020) Antioxidant, antimicrobial, and anticancer effects of anacardium plants: an ethnopharmacological perspective. Front Endocrinol 11:295

    Article  Google Scholar 

  30. Anyanwu GO, Rehman NU, Onyeneke CE, Rauf K (2015) Medicinal plants of the genus Anthocleista – a review of their ethnobotany, phytochemistry and pharmacology. J Ethnopharmacol 175:648–667

    Article  CAS  PubMed  Google Scholar 

  31. Kim JH (2019) A systemic review of thyroid fever occurrence in Africa. Clin Infect Dis 69(Suppl 6):S492–S498

    Article  PubMed  PubMed Central  Google Scholar 

  32. Abdelwaha SI, Abdul AB, Elhassan MM, Mohan S, Ibrahim MY, Mariod AA, AlHaj NA, Abdullah R (2009) GC/MS determination of bioactive components and antibacterial components of Goniothalamus umbrosus extract. African J Biotechnol 8(14):3336–3340

    Google Scholar 

  33. Saha S, Ghosh S (2012) Tinospora cordifolia: one plant, many roles. Ancient Sci Life 31(4):151–159

    Article  Google Scholar 

  34. Togola I (2020) Comparative study of the phytochemistry and antioxidant activity of Anacardium occidentale (L.) leaf and stem Bark extracts. J Dis Med Plant 6(3):72–76

    Google Scholar 

  35. Dharamveer (2013) Pharmacognostical and phytochemical studies on Anacardium occidentale Linn. leaves. Res J Pharm Tech 6(1):75–79

    Google Scholar 

  36. Das AK, Dutta BK, Sharma GD (2008) Medicinal plants used by different tribes of Cachar district, Assam. Indian J Tradit Knowledge 7(3):446–454

    Google Scholar 

  37. Monika YS (2020) Medicinal uses of traditionally used plants in Bhatwari block, District Uttarkashi, Uttarakhand. India J Scientific Res 64(1):119–126

    Article  Google Scholar 

  38. Pierre S, Vroumsia T, Tchobsala, Tchuenguem FFN, Njan NAM, Messi J (2011) Medicinal plants used in traditional treatment of Malaria in Cameroon. J Ecol Nat Environ 3(3):104–117

    Google Scholar 

  39. Ighere DA, Ajiboye TO, Edagbo DE, Borokini TI, Alowonle AA, Michael C, Giwa A, Adeyemo A (2011) Ethno- botanical survey of local herbs used to treat Malaria Fever among the Urhobo people in Delta state, Nigeria. Int J Curr Res 3(11):336–339

    Google Scholar 

  40. Salve NR, Mishra D (2019) Ethnomedicinal list of plants treating fever in Ahmednagar district of Maharashtra. India Adv Zool Bot 7(3):35–46

    Article  Google Scholar 

  41. Tsobou R, Pierre MM, Patrick VD (2013) Medicinal plants used against Typhoid fever in Bamboutos division, Western Cameroon. Ethnobot Res Appl 11:163–174

    Google Scholar 

  42. Mohamed SM, Yusof K (2020) Potential medicinal plants for the treatment of Dengue Fever and severe acute respiratory syndrome – Corona virus. Biomol Ther 11(1):42

    Google Scholar 

  43. Emelia OB, Christian A, Joseph S, Dorothy D (2017) Herbal medicines used in the treatment of typhoid in the Ga East Municipality of Ghana. Int J Trop Dis 23(4):1–13

    Google Scholar 

  44. Lebari BG (2014) Antiplasmodial effect of Anthocleista vogelii on Albino mice experimentally infected with Plasmodium berghei berghei. J Parasitol Res 2014. https://doi.org/10.1155/2014/731906

  45. Rinku R, Surajpal V, Ravi K, Anzarul H, Anshul A (2019) Herbal remedies, vaccines and drugs for Dengue fever: emerging prevention and treatment strategies. Asian Pacific J Trop Med 12(4):147–152

    Article  Google Scholar 

  46. Zarko S, Nikolina P, Milenko B, Kristina G (2017) The historical use of medicinal plants in traditional and scientific medicine. Psychiatr Danub Suppl 4(Suppl 4):787–792

    Google Scholar 

  47. Samvatsar S, Diwanji VB (2004) Plants used for the treatment of different types of fevers by Bhils and its subtribes in India. Indian J Tradit Knowl 3(1):96–100

    Google Scholar 

  48. Simeon PFC, Didiane YM, Benjamin TT, Jean BS, Serge TM, Gabriel TK, Donatien G (2020) Contribution to the ethnobotanical inventory of medicinal plants used for the treatment of Typhoid fever in Adamaoua region, Cameroon. Int J Chem Biol Sci 9(10):3078–3096

    Google Scholar 

  49. Claeson UP, Malmfors T, Wikman G, Bruhn JG (2000) Adhatoda vasica: a critical review of ethnopharmacological and toxicological data. J Ethnopharmacol 72(1–2):1–20

    Article  CAS  PubMed  Google Scholar 

  50. Obisesan A, Owoseni O (2017) Preference of medicinal plants in the treatment of malaria fever in Akure South local government area, Ondo State Nigeria. https://mpra.ub.uni-muenchen.de/81641/

  51. Wlliarn M (1997) Plants for Malaria, plants for fever. Medicinal species in Latin America – a bibliographic survey

    Google Scholar 

  52. Turunen M, Kuusisto P, Uggeldahl PE, Toivanen A (1998) Pogosta disease: clinical observations during an outbreak in the province of North Karella. Finland Br J Rheumatol 37(11):1177–1180

    Article  CAS  PubMed  Google Scholar 

  53. Kumar S, Kamboj J (2011) Overview for various aspects of the health benefits of Piper Longum Linn. Fruit. J Acupuncture Meridian Stud 4(2):134–140

    Article  Google Scholar 

  54. Musa DA (2010) Screening of eight plants used in Folkloric medicine for the treatment of Typhoid Fever. J Chem Pharm Res 2(4):7–15

    Google Scholar 

  55. Mahmoud DA (2021) Therapeutic plants used for Typhoid fever treatment in Kaduna State. Nigeria. Al – Qadisiyah J Pure Sci 26(3):9–21

    Article  Google Scholar 

  56. Mohammed SM (2020) Potential medicinal plants for the treatment of Dengue fever and severe acute respiratory syndrome-Coronavirus. Biomol Ther 11(1):42

    Google Scholar 

  57. Sahib NG (2013) Coriander (Coriandrum sativum L.): a potential source of high-value components for functional foods and nutraceuticals – a review. Phytother Res 27(10):1439–1456

    Article  CAS  PubMed  Google Scholar 

  58. Roger T, Pierre MM, Patrick VD (2013) Medicinal plants used against Typhoid fever in Bamnoutos Division, Western Cameroon. Ethnobot Res Appl 11:163–174

    Google Scholar 

  59. Garcia S (2020) Pandemics and traditional plant-based remedies. A historical, botanical review in the era of Covid19. Front Plant Sci 11:1–9

    Article  Google Scholar 

  60. Bhardwaj M, Alia A (2019) Commiphora wightii (Arn.) Bhandari. review of its botany, medicinal uses, pharmacological activities and phytochemistry. J Drug Deliv Therapeutic 9(4):613–621

    Article  CAS  Google Scholar 

  61. Maciel MA, Pinto AC, Arruda AC, Pamplona SG, Vanderlinde FA, Lapa AJ, Echevarria A, Grynberg NF, Colus IM, Farias RA, Costa AML, Rao VS (2000) Ethnopharmacology, phytochemistry and pharmacology: a successful combination in the study of Croton cajucara. J Ethnopharmacol 70(1):41–55

    Article  CAS  PubMed  Google Scholar 

  62. Randrianarivelojosia M (2003) Plants traditionally prescribed to treat tazo (Malaria) in the eastern region of Madagascar. Malar J 2(1):1–9

    Article  Google Scholar 

  63. Mohapatra SP, Okosodo EF (2021) Plants traditionally used in treating malaria, typhoid fever and related complications in south-western Nigeria. Eur Scholar J 2(5):29–37

    Google Scholar 

  64. Amit K (2010) Chemistry and pharmacology of Piper Longum. Int J Pharmaceut Sci Review Res 5(1):67–76

    Google Scholar 

  65. Saxena RS (1984) Study of anti-inflammatory activity in the leaves of Nyctanthes arbor tristis Linn. – an Indian medicinal plant. J Ethnopharmacol 11(3):319–330

    Article  CAS  PubMed  Google Scholar 

  66. Singh N (2011) An overview on Ashwagandha: A Rasayana (Rejuvenator) of Ayurveda. Afr J Tradit Complement Alternat Med 8(5):208–213

    Google Scholar 

  67. Usmani A (2016) Pharmacognostical and phytopharmacology study of Anacyclus pyrethrum: an insight. J Appl Pharmaceut Sci 6(3):144–150

    Article  CAS  Google Scholar 

  68. Tandon VR (2005) Medicinal uses and biological activities of Vitex negundo. Nat Product Radiance 4(3):162–165

    Google Scholar 

  69. Duralpandiyan V (2015) Antimicrobial, antioxidant, and cytotoxic properties of vasicine acetate synthesized from Vasicine isolated from Adhatodavasica L. Biomed Res Int 2015. https://doi.org/10.1155/2015/727304

  70. Kumar S (2011) Overview for various aspects of the health benefits of Piper Longum Linn. Fruit J Acupunct Meridian Stud 4(2):134–140

    Article  PubMed  Google Scholar 

  71. Khandhar A (2010) Chemistry and pharmacology of Piper Longum L. Int J Pharmaceut Sci Review Res 5(1):67–76

    Google Scholar 

  72. Campbell I (2008) Body temperature and its regulation. Anaesthesia Intensive Care Med 9(6):259–263

    Article  Google Scholar 

  73. Launey Y, Nesseler N, Mallédant Y, Seguin P (2011) Clinical review: fever in septic ICU patients-friend or foe. Crit Care 15(3):1–7

    Article  Google Scholar 

  74. Bell TA, Velappan N, Gleasner CD, **e G, Starkenburg SR, Waldo G, Banerjee S, Micheva-Viteva SN (2022) Non-classical autophagy activation pathways are essential for production of infectious Influenza A virus in vitro. Mol Microbiol 117(2):508–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vezzani A, Granata T (2005) Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 46(11):1724–1743

    Article  CAS  PubMed  Google Scholar 

  76. Muylle L, Joos M, Wouters E, De Bock R, Peetermans ME (1993) Increased tumor necrosis factor alpha (TNF alpha), interleukin 1, and interleukin 6 (IL-6) levels in the plasma of stored platelet concentrates: relationship between TNF alpha and IL-6 levels and febrile transfusion reactions. Transfusion 33(3):195–199

    Article  CAS  PubMed  Google Scholar 

  77. Harden LM, du Plessis I, Poole S, Laburn HP (2008) Interleukin (IL)-6 and IL-1β act synergistically within the brain to induce sickness behavior and fever in rats. Brain Behav Immun 22(6):838–849

    Article  CAS  PubMed  Google Scholar 

  78. Mohsenzadeh A, Ahmadipour S, Ahmadipour S, Asadi-Samani M (2016) Iran’s medicinal plants effective on fever in children: a review. Der Pharmacia Lett 8(1):129–134

    Google Scholar 

  79. Conti B, Tabarean I, Andrei C, Bartfai T (2004) Cytokines and fever. Front Biosci 9(12):1433–1449

    Article  CAS  PubMed  Google Scholar 

  80. Caroff M, Karibian D (2003) Structure of bacterial lipopolysaccharides. Carbohydr Res 14(23):2431–2447

    Article  Google Scholar 

  81. Elass RE, Legrand D, Salmon V, Roseanu A, Trif M, Tobias PS, Mazurier J, Spik G (1998) Lactoferrin inhibits the endotoxin interaction with CD14 by competition with the lipopolysaccharide-binding protein. Infect Immun 66(2):486–491

    Article  Google Scholar 

  82. Cavaillon JM (1994) Cytokines and macrophages. Biomed Pharmacotherapy 48(10):445–453

    Article  CAS  Google Scholar 

  83. Brock TG, McNish RW, Peters-Golden M (1999) Arachidonic acid is preferentially metabolized by cyclooxygenase-2 to prostacyclin and prostaglandin E2. J Biol Chem 274(17):11660–11666

    Article  CAS  PubMed  Google Scholar 

  84. Eccles R (2005) Understanding the symptoms of the common cold and influenza. Lancet Infect Dis 5(11):718–725

    Article  PubMed  PubMed Central  Google Scholar 

  85. Yoshida K, Nakamura K, Matsumura K, Kanosue K, König M, Thiel HJ, Boldogköi Z, Toth I, Roth J, Gerstberger R, Hubschle T (2003) Neurons of the rat preoptic area and the raphe pallidus nucleus innervating the brown adipose tissue express the prostaglandin E receptor subtype EP3. Eur J Neurosci 18(7):1848–1860

    Article  PubMed  Google Scholar 

  86. Mota RD, Wang D, Titto CG, Gomez-Prado J, Carvajal-de la Fuente V, Ghezzi M, Boscato-Funes L, Barrios-García H, Torres-Bernal F, Casas-Alvarado A, Martínez-Burnes J (2021) Pathophysiology of fever and application of infrared thermography (IRT) in the detection of sick domestic animals: recent advances. Animals 11(8):2316

    Article  Google Scholar 

  87. Fashner J, Ericson K, Werner S (2012) Treatment of the common cold in children and adults. Am Fam Physician 86(2):153–159

    PubMed  Google Scholar 

  88. Wagh V (2016) Preliminary study on ethno-medicinal plants used for treating malarial fever in Pilibhit Tiger Reserve, Uttar Pradesh, India. Int J Bioassay 5(7):4672

    Article  Google Scholar 

  89. Martinon F (2010) Mechanisms of uric acid crystal-mediated autoinflammation. Immunol Rev 233(1):218–232

    Article  CAS  PubMed  Google Scholar 

  90. Fashner J, Ericson K, Werner S (2012) Treatment of the common cold in children and adults. American family physician 86(2):153–9

    Google Scholar 

  91. Chatra PS (2012) Bursae around the knee joints. Indian J Radiol Imag 22(1):27

    Article  Google Scholar 

  92. Teitz CC, Garrett WE Jr, Miniaci A, Lee MH, Mann RA (1997) Instructional course lectures, The American Academy of Orthopaedic Surgeons-Tendon problems in athletic individuals. JBJS 79(1):138–152

    Article  Google Scholar 

  93. Loaiza LA, Yamaguchi S, Ito M, Ohshima N (2002) Electro-acupuncture stimulation to muscle afferents in anesthetized rats modulates the blood flow to the knee joint through autonomic reflexes and nitric oxide. Auton Neurosci 97(2):103–109

    Article  CAS  PubMed  Google Scholar 

  94. King JS, Gallant P, Myerson V, Perl ER (1976) The effects of anti-inflammatory agents on the responses and the sensitization of unmyelinated (C) fiber polymodal nociceptors. In: Sensory functions of the skin in primates, pp 441–461

    Google Scholar 

  95. Szadek KM, Hoogland PV, Zuurmond WW, De Lange JJ, Perez RS (2010) Possible nociceptive structures in the sacroiliac joint cartilage: an immunohistochemical study. Clin Anatomy 23(2):192–198

    Article  Google Scholar 

  96. Watkins LR, Maier SF (2002) Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiological Rev 82(4):981–1011

    Article  CAS  Google Scholar 

  97. Schmitt BD (1980) Fever phobia: misconceptions of parents about fevers. Am J Dis Children 134(2):176–181

    Article  CAS  Google Scholar 

  98. Zheng X, Takatsu S, Ishikawa R, Hasegawa H (2018) Moderate intensity, exercise induced catecholamine release in the preoptic area and anterior hypothalamus in rats is enhanced in a warm environment. J Thermal Biol 71:123–127

    Article  CAS  Google Scholar 

  99. Bingham B, Ajit SK, Blake DR, Samad TA (2009) The molecular basis of pain and its clinical implications in rheumatology. Nat Clin Pract Rheumatol 5(1):28–37

    Article  CAS  PubMed  Google Scholar 

  100. Ogunsina OI (2020) Evaluation of antiplasmodial and Immunomodulatory effect of methanolic stem bark extract of Lannea acida. Doctoral dissertation, PhD Thesis

    Google Scholar 

  101. Harouna S (2020) Plasmodium stage–selective antimalarials from Lophira lanceolata stem bark. Photochemistry 174:112336

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korean National Research Foundation (NRF-NRF, NRF – 2021R1F1A1048388, 2021R1F1A1063636).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Kee Yi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mohapatra, T.K., Basuri, T.S., Kee Yi, D., Saha, S., Pal, D., Nanda, S.S. (2024). Traditional Plants in Controlling and Treatment of Fever, Joint Pain, and Pogosta Diseases Caused by Viruses. In: Pal, D. (eds) Anti-Viral Metabolites from Medicinal Plants. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-12199-9_25

Download citation

Publish with us

Policies and ethics

Navigation