Spatial Dynamics

  • Chapter
  • First Online:
Epidemics

Part of the book series: Use R! ((USE R))

  • 1212 Accesses

Abstract

Space adds an additional axis to the richness of infectious disease dynamics. For example, Gog et al. (2014) detailed the diffusive nature of the spread of influenza A/H1N1pdv and Lau et al. (2017) characterized the geographic spread of the West African 2014–2015 Ebola outbreak. Walsh et al. (2005) calculated that Ebola was spreading through gorilla and chimpanzee populations at 50 km/year. Moreover, Grenfell and Harwood (1997) and Keeling et al. (2004) outlined how spatial spread may permit long-term persistence through metapopulation dynamics.

This chapter uses the following R packages: ncf, animation and plotly.

A five minute epidemics MOOC on spatial spread is: https://www.youtube.com/watch?v=WPjsAdyD1Gg

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As discussed in Sect. 9.4 these two models are not nested in the sense that one model is a simpler version of the other so formal likelihood ratio test does not apply.

  2. 2.

    Just like the chain-binomial model in Sects. 3.4 and 3.5, the spatial logistic can be used both as a statistical method and as a stochastic simulator.

  3. 3.

    This is closely related to Tilman’s (1976) R theory of competitive dominance discussed in Sects. 3.1 and 3.12.

  4. 4.

    The name refers to how the most stylized of these models assumes a lattice (checker board) of locations at which local numbers change from one generation to the next according to some “map**” rule of onward local change such as the discrete logistic, the Nicholson-Baily model (see Chap. 16) or, in this case, a discrete-time seasonally forced SI model, followed by spatial redistribution via some spatial coupling rule.

  5. 5.

    The system() function in R passes the convert and rm calls to the command line. A web-optimized version of the animated GIF can be viewed on https://git.io/JMnHk. While not using base R syntax the plotly package is very effective for generating browser-rendered animations. An example can be found in the nbspat.app shinyApp in Chap. 16.

  6. 6.

    Seabloom et al. (2005) provide similar calculations for spatial plant competition models.

  7. 7.

    Note that this formulation assumes that spatial transmission does not dilute local transmission. Keeling and Rohani (2002) provide a discussion of this issue. Section 15.7 also considers a model for which spatial transmission dilutes local transmission.

  8. 8.

    Viboud et al. (2006) showed that the commuter flows has a fatter tailed kernel (Sect. 12.2) than predicted by this gravity model which we, for expedience, ignore.

References

  • Abbott, K. C., & Dwyer, G. (2008). Using mechanistic models to understand synchrony in forest insect populations: the North American gypsy moth as a case study. The American Naturalist, 172(5), 613–624.

    Article  Google Scholar 

  • Bascompte, J., & Solé, R. V. (1995). Rethinking complexity: Modelling spatiotemporal dynamics in ecology. Trends in Ecology and Evolution, 10(9), 361–366.

    Article  Google Scholar 

  • Bjørnstad, O. N., & Bascompte, J. (2001). Synchrony and second-order spatial correlation in host-parasitoid systems. Journal of Animal Ecology, 70(6), 924–933.

    Article  Google Scholar 

  • Bjørnstad, O. N., & Bolker, B. (2000). Canonical functions for dispersal-induced synchrony. Proceedings of the Royal Society of London B, 267(1454), 1787–1794.

    Article  Google Scholar 

  • Bjørnstad, O. N., Finkenstadt, B. F., & Grenfell, B. T. (2002a). Dynamics of measles epidemics: Estimating scaling of transmission rates using a time series sir model. Ecological Monographs, 72(2), 169–184.

    Article  Google Scholar 

  • Bjørnstad, O. N., Ims, R. A., & Lambin, X. (1999b). Spatial population dynamics: Analyzing patterns and processes of population synchrony. Trends in Ecology and Evolution, 14(11), 427–432.

    Article  Google Scholar 

  • Bjørnstad, O. N., Peltonen, M., Liebhold, A. M., & Baltensweiler, W. (2002b). Waves of larch budmoth outbreaks in the European Alps. Science, 298(5595), 1020–1023.

    Article  Google Scholar 

  • Bjørnstad, O. N., Robinet, C., & Liebhold, A. M. (2010). Geographic variation in North American gypsy moth cycles: Subharmonics, generalist predators, and spatial coupling. Ecology, 91(1), 106–118.

    Article  Google Scholar 

  • Broadbent, S., & Kendall, D. G. (1953). The random walk of Trichostrongylus retortaeformis. Biometrics, 9(4), 460–466.

    Article  Google Scholar 

  • Clark, D. A., & Clark, D. B. (1984). Spacing dynamics of a tropical rain forest tree: Evaluation of the Janzen-Connell model. The American Naturalist, 124(6), 769–788.

    Article  Google Scholar 

  • Clark, J. S. (1998). Why trees migrate so fast: Confronting theory with dispersal biology and the paleorecord. The American Naturalist, 152(2), 204–224.

    Article  Google Scholar 

  • Connell, J. H. (1971). On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In Boer, P. J. D., & Gradwell, G., editors, Dynamics of populations (pp. 298–312). Wageningen: Centre for Agricultural Publishing and Documentation.

    Google Scholar 

  • Cummings, D. A. T., Irizarry, R. A., Huang, N. E., Endy, T. P., Nisalak, A., Ungchusak, K., & Burke, D. S. (2004). Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand. Nature, 427(6972), 344–347.

    Article  Google Scholar 

  • Dwyer, G., Dushoff, J., Elkinton, J. S., & Levin, S. A. (2000). Pathogen-driven outbreaks in forest defoliators revisited: Building models from experimental data. The American Naturalist, 156(2), 105–120.

    Article  Google Scholar 

  • Dwyer, G., Dushoff, J., & Yee, S. H. (2004). The combined effects of pathogens and predators on insect outbreaks. Nature, 430(6997), 341–345.

    Article  Google Scholar 

  • Earn, D. J. D., Levin, S. A., & Rohani, P. (2000a). Coherence and conservation. Science, 290(5495), 1360–1364.

    Article  Google Scholar 

  • Elkinton, J. S., & Liebhold, A. M. (1990). Population dynamics of gypsy moth in North America. Annual review of Entomology, 35(1), 571–596.

    Article  Google Scholar 

  • Erlander, S., & Stewart, N. F. (1990). The gravity model in transportation analysis: Theory and extensions (vol. 3). VSP.

    Google Scholar 

  • Ferrari, M. J., Bjørnstad, O. N., Partain, J. L., & Antonovics, J. (2006b). A gravity model for the spread of a pollinator-borne plant pathogen. The American Naturalist, 168(3), 294–303.

    Article  Google Scholar 

  • Fotheringham, A. S. (1984). Spatial flows and spatial patterns. Environment and Planning A, 16(4), 529–543.

    Article  Google Scholar 

  • Gog, J. R., Ballesteros, S., Viboud, C., Simonsen, L., Bjornstad, O. N., Shaman, J., Chao, D. L., Khan, F., & Grenfell, B. T. (2014). Spatial transmission of 2009 pandemic influenza in the US. PLoS Computational Biology, 10(6), e1003635.

    Article  Google Scholar 

  • Grenfell, B., & Harwood, J. (1997). (meta)population dynamics of infectious diseases. Trends in Ecology and Evolution, 12(10), 395–399.

    Article  Google Scholar 

  • Grenfell, B. T., Bjørnstad, O. N., & Kappey, J. (2001). Travelling waves and spatial hierarchies in measles epidemics. Nature, 414(6865), 716–723.

    Article  Google Scholar 

  • Hanski, I. (1994). A practical model of metapopulation dynamics. Journal of Animal Ecology, 63(1), 151–162.

    Article  Google Scholar 

  • Hardin, G. (1960). The competitive exclusion principle. Science, 131(3409), 1292–1297.

    Article  Google Scholar 

  • Hassell, M. P., Comins, H. N., & May, R. M. (1991). Spatial structure and chaos in insect population dynamics. Nature, 353(6341), 255–258.

    Article  Google Scholar 

  • Janzen, D. H. (1970). Herbivores and the number of tree species in tropical forests. The American Naturalist, 104(940), 501–528.

    Article  Google Scholar 

  • Kaneko, K. (1993). Theory and applications of coupled map lattices. John Wiley and Son.

    Google Scholar 

  • Keeling, M. J., Bjørnstad, O. N., & Grenfell, B. T. (2004). Metapopulation dynamics of infectious diseases. In Hanski, I., & Gaggiotti, O., (Eds.), Ecology, Genetics, and Evolution of Metapopulations (pp. 415–445). Elsevier.

    Google Scholar 

  • Keeling, M. J., & Rohani, P. (2002). Estimating spatial coupling in epidemiological systems: A mechanistic approach. Ecology Letters, 5(1), 20–29.

    Article  Google Scholar 

  • Keeling, M. J., Wilson, H., & Pacala, S. W. (2002). Deterministic limits to stochastic spatial models of natural enemies. The American Naturalist, 159(1), 57–80.

    Article  Google Scholar 

  • Kot, M., Lewis, M. A., & van den Driessche, P. (1996). Dispersal data and the spread of invading organisms. Ecology, 77(7), 2027–2042.

    Article  Google Scholar 

  • Lau, M. S. Y., Dalziel, B. D., Funk, S., McClelland, A., Tiffany, A., Riley, S., Metcalf, C. J. E., & Grenfell, B. T. (2017). Spatial and temporal dynamics of superspreading events in the 2014–2015 West Africa Ebola epidemic. Proceedings of the National Academy of Sciences, 114(9), 2337–2342.

    Article  Google Scholar 

  • Mari, L., Bertuzzo, E., Righetto, L., Casagrandi, R., Gatto, M., Rodriguez-Iturbe, I., & Rinaldo, A. (2012). Modelling cholera epidemics: The role of waterways, human mobility and sanitation. Journal of the Royal Society Interface, 9(67), 376–388.

    Article  Google Scholar 

  • Mollison, D. (1991). Dependence of epidemic and population velocities on basic parameters. Mathematical Biosciences, 107(2), 255–287.

    Article  MATH  Google Scholar 

  • Petermann, J. S., Fergus, A. J., Turnbull, L. A., & Schmid, B. (2008). Janzen-Connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology, 89(9), 2399–2406.

    Article  Google Scholar 

  • Seabloom, E. W., Bjørnstad, O. N., Bolker, B. M., & Reichman, O. J. (2005). Spatial signature of environmental heterogeneity, dispersal, and competition in successional grasslands. Ecological Monographs, 75(2), 199–214.

    Article  Google Scholar 

  • Smith, D. L., Ericson, L., & Burdon, J. J. (2003). Epidemiological patterns at multiple spatial scales: an 11-year study of a Triphragmium ulmariaeFilipendula ulmaria metapopulation. Journal of Ecology, 91(5), 890–903.

    Article  Google Scholar 

  • Smith, D. L., Lucey, B., Waller, L. A., Childs, J. E., & Real, L. A. (2002a). Predicting the spatial dynamics of rabies epidemics on heterogeneous landscapes. Proceedings of the National Academy of Sciences, 99(6), 3668–3672.

    Article  Google Scholar 

  • Tilman, D. (1976). Ecological competition between algae: Experimental confirmation of resource-based competition theory. Science, 192, 463–465.

    Article  Google Scholar 

  • Truscott, J., & Ferguson, N. M. (2012). Evaluating the adequacy of gravity models as a description of human mobility for epidemic modelling. PLoS Computational Biology, 8(10), e1002699.

    Article  MathSciNet  Google Scholar 

  • Turing, A. M. (1990). The chemical basis of morphogenesis. Bulletin of Mathematical Biology, 52(1), 153–197.

    Article  Google Scholar 

  • Viboud, C., Bjørnstad, O. N., Smith, D. L., Simonsen, L., Miller, M. A., & Grenfell, B. T. (2006). Synchrony, waves, and spatial hierarchies in the spread of influenza. Science, 312(5772), 447–451.

    Article  Google Scholar 

  • Walsh, P. D., Biek, R., & Real, L. A. (2005). Wave-like spread of Ebola Zaire. PLoS Biology, 3(11), e371.

    Article  Google Scholar 

  • **a, Y., Bjørnstad, O. N., & Grenfell, B. T. (2004). Measles metapopulation dynamics: A gravity model for epidemiological coupling and dynamics. The American Naturalist, 164(2), 267–281.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bjørnstad, O. (2023). Spatial Dynamics. In: Epidemics. Use R!. Springer, Cham. https://doi.org/10.1007/978-3-031-12056-5_12

Download citation

Publish with us

Policies and ethics

Navigation