Modelling the 3D Electromagnetic Wave Equation: Negative Apparent Conductivities and Phase Changes

  • Chapter
  • First Online:
Mathematical and Computational Models of Flows and Waves in Geophysics

Abstract

We often use electromagnetic methods in exploration geophysics to map the resistive structure of the subsurface using instruments that work at low induction numbers. These instruments are usually very portable and versatile, they can be used at the surface, mounted on an airplane or placed inside a wellbore. To process the data acquired with these methods, we need to be able to compute the electric and magnetic fields by numerically solving Maxwell’s equations in the low induction-number domain. Previous studies have used the integral form of Maxwell’s equations, however, these approaches only calculate an approximation of the apparent conductivity. In this chapter, we solved Maxwell’s equations on the frequency domain using the finite-difference method with a staggered grid for the electric field and compute the apparent conductivities with post-processing. We show the results of four different examples, and consider sources on the ground, on the air, and in a wellbore. Negative apparent conductivities and phase changes are observed whenever there is a high conductivity contrasts, the induction-number is low and the source is a vertical magnetic dipole. With these conditions, there is a polarity reversal on the imaginary component of the magnetic field. Furthermore, the results indicate that it is crucial to consider the real component on the measurements, which has previously been ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 126.59
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 126.59
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://software.intel.com/content/www/us/en/develop/articles/pardiso-parameter-table.html.

References

  1. W. Anderson, Numerical integration of related Hankel transforms of order 0 and 1 by adaptive digital filtering. Geophysics 44(7), 1287–1305 (1979). https://doi.org/10.1190/1.1441007

    Article  Google Scholar 

  2. D. Avdeev, A. Kuvshinov, O. Pankratov, G. Newman, Three-dimensional induction logging problems, Part I: An integral equation solution and model comparisons. Geophysics 67(2), 413–426 (2002). https://doi.org/10.1190/1.1468601

    Google Scholar 

  3. E. Boateng, V. Sarpong, S. Danuour, Detection and delineation of contaminant migration using the terrain conductivity technique outside the perimeters of the Dompoase Landfill Facility in Kumasi-Ghana. J. Environ. Earth Sci. 3(2), 13–24 (2013)

    Google Scholar 

  4. J. Callegary, T. Ferré, R. Groom, Vertical spatial sensitivity and exploration depth of low-induction-number electromagnetic-induction instruments. Vadose Zone J. 6, 158–167 (2007). https://doi.org/10.2136/vzj2006.0120

    Article  Google Scholar 

  5. P. Gauzellino, F. Zyserman, J. Santos, Nonconforming finite element methods for the three-dimensional Helmholtz equation: Iterative domain decomposition or global solution? J. Comput. Acoust. 17(2), 159–173 (2009). https://doi.org/10.1142/S0218396X09003902

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Haber, U. Ascher, Fast finite volume simulation of 3D Electromagnetic problems with highly discontinuous coefficients. SIAM J. Sci. Comput. 22(6), 1943–1961 (2001). https://doi.org/10.1137/S1064827599360741

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Jahandari, S. MacLachlan, R. Haynes, N. Madden, Finite element modelling of geophysical electromagnetic data with goal-oriented hr-adaptivity. Comput. Geosci. 24, 1257–1283 (2020). https://doi.org/10.1007/s10596-020-09944-7

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Jaysaval, D. Shantsev, S. de la Kethulle de Ryhove, Efficient 3-D controlled-source electromagnetic modelling using an exponential finite-difference method. Geophys. J. Int. 203(3), 1541–1574 (2015). https://doi.org/10.1093/gji/ggv377

    Article  Google Scholar 

  9. D. McNeill, Electromagnetic Terrain Conductivity Measurements at Low Induction Numbers. GEONICS LIMITED NT-6 (1980)

    Google Scholar 

  10. D. McNeill, EM34-3 Survey Interpretation Techniques. GEONICS LIMITED NT-8 (1983)

    Google Scholar 

  11. S. Méndez-Delgado, E. Gómez-Treviño, M. Pérez-Flores, Forward modelling of direct current and low-frequency electromagnetic fields using integral equations. Geophys. J. Int. 137(2), 336–352 (1999). https://doi.org/10.1046/j.1365-246X.1999.00826.x

    Article  Google Scholar 

  12. Y. Mitsuhata, 2-D electromagnetic modeling by finite-element method with a dipole source and topography. Geophysics 65(2), 465–475 (2000). https://doi.org/10.1190/1.1444740

    Article  Google Scholar 

  13. G. Newman, D. Alumbaugh, Frequency-domain modelling of airborne electromagnetic responses using staggered finite differences. Geophys. Prospect. 43, 1021–1042 (1995). https://doi.org/10.1111/j.1365-2478.1995.tb00294.x

    Article  Google Scholar 

  14. M. Pérez-Flores, R. Antonio-Carpio, E. Gómez-Treviño, I. Ferguson, S. Méndez-Delgado, Imaging of 3D electromagnetic data at low-induction numbers. Geophysics 77(4), 47–57 (2012). https://doi.org/10.1190/geo2011-0368.1

    Article  Google Scholar 

  15. M. Pérez-Flores, L. Ochoa-Tinajero, A. Villela, Three-dimensional inverse modeling of EM-LIN data for the exploration of coastal sinkholes in Quintana Roo, Mexico. Nat. Hazards Earth Syst. Sci. 19, 1779–1787 (2019). https://doi.org/10.5194/nhess-19-1779-2019

    Article  Google Scholar 

  16. A. Sarris, T. Kalayci, I. Moffat, M. Manataki, An introduction to geophysical and geochemical methods in digital geoarchaeology, in Digital Geoarchaeology: New Techniques for Interdisciplinary Human-Environmental Research, ed. by C. Siart, M. Forbriger, O. Bubenzer (Springer International Publishing, Berlin, 2018), pp. 215–236. https://doi.org/10.1007/978-3-319-25316-914

    Chapter  Google Scholar 

  17. Y. Sasaki, Full 3-D inversion of electromagnetic data on PC. J. Appl. Geophys. 46, 45–54 (2001). https://doi.org/10.1016/S0926-9851(00)00038-0

    Article  Google Scholar 

  18. Y. Sasaki, M.A. Meju, A multidimensional horizontal-loop controlled source electromagnetic inversion method and its use to characterize heterogeneity in aquiferous fractured crystalline rocks. Geophys. J. Int. 166, 59–66 (2006). https://doi.org/10.1111/j.1365-246X.2006.02957.x

    Article  Google Scholar 

  19. B. Scanlon, J. Paine, R. Goldsmith, Evaluation of electromagnetic induction as a reconnaissance technique to characterize unsaturated flow in a arid setting. Archaeometry 12(1), 97–104 (1970). https://doi.org/10.1111/j.1475-4754.1970.tb00010.x

    Google Scholar 

  20. A. Selepeng, S. Sakanaka, T. Nishitani, 3D numerical modelling of negative apparent conductivity anomalies in loop-loop electromagnetic measurements: a case study at a dacite intrusion in Sugisawa, Akita Prefecture, Japan. Exp. Geophys. 48(3), 177–191 (2018). https://doi.org/10.1071/EG16027

    Article  Google Scholar 

  21. R. Streich, 3D finite-difference frequency-domain modeling of controlled-source electromagnetic data: direct solution and optimization for high accuracy. Geophysics 74(5), F95–F105 (2009). https://doi.org/10.1190/1.3196241

    Article  Google Scholar 

  22. K. Sudduth, N. Kitchen, B. Myers, S. Drummond, Map** depth to argillic soil horizons using apparent electrical conductivity. J. Environ. Eng. Geophys. 13(3), 135–146 (2010). https://doi.org/10.2113/JEEG15.3.135

    Article  Google Scholar 

  23. A. Tabbagh, Applications and advantages of the Slingram electromagnetic method for archaeological prospecting. Geophysics 51(3), 576–584 (1986). https://doi.org/10.1190/1.1442112

    Article  Google Scholar 

  24. J. Wait, A note on the electromagnetic response of a stratified earth. Geophysics 27(3), 382–385 (1962). https://doi.org/10.1190/1.1439028

    Article  MathSciNet  Google Scholar 

  25. S. Ward, G. Hohmann, in Electromagnetic Theory for Geophysical Applications, ed. by M. Nabighian. Electromagnetic Methods in Applied Geophysics, vol. I (Society of Exploration Geophysicists, Houston, 1987), pp. 113–312. https://doi.org/10.1190/1.9781560802631.ch4

  26. C. Weiss, S. Constable, Map** thin resistors and hydrocarbons with marine EM methods, Part II-Modeling and analysis in 3D. Geophysics 71(6), G321–G332 (2006). https://doi.org/10.1190/1.2356908

    Article  Google Scholar 

  27. K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 302–307 (1966). https://doi.org/10.1109/TAP.1966.1138693

Download references

Acknowledgements

We want to thank CONACYT for the scholarship and CeMIEGeo for their financial support. The numerical computations were performed using the cluster Lamb of the supercomputing lab at the Specialized Labs System of the Earth Sciences Division of CICESE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonás D. De Basabe .

Editor information

Editors and Affiliations

Appendices

Appendix 1

Equation (10) was discretized using an scheme of central finite differences into a regular grid. The secondary electric field is computed using the following finite difference equations

$$\displaystyle \begin{aligned} &\frac{1}{\Delta x \Delta y}(E^{sy}_{i+1,j+\frac{1}{2},k}-E^{sy}_{i+1,j-\frac{1}{2},k}-E^{sy}_{i,j+\frac{1}{2},k}+E^{sy}_{i,j-\frac{1}{2},k}) \\ &- \frac{1}{\Delta y^{2}} (E^{sx}_{i+\frac{1}{2},j+1,k}-2E^{sx}_{i+\frac{1}{2},j,k}+E^{sx}_{i+\frac{1}{2},j-1,k}) \\ &-\frac{1}{\Delta z^{2}}(E^{sx}_{i+\frac{1}{2},j,k+1}-2E^{sx}_{i+\frac{1}{2},j,k}+E^{sx}_{i+\frac{1}{2},j,k-1}) \\ &+\frac{1}{\Delta x \Delta z}(E^{sz}_{i+1,j,k+\frac{1}{2}}-E^{sz}_{i+1,j,k-\frac{1}{2}}-E^{sz}_{i,j,k+\frac{1}{2}}+E^{sz}_{i,j,k-\frac{1}{2}}) \\ &+i\omega\mu\sigma_{i+\frac{1}{2},j,k} E^{sx}_{i+\frac{1}{2},j,k}=-i\omega\mu(\sigma_{i+\frac{1}{2},j,k}-\sigma^{p}_{i+\frac{1}{2},j,k})E^{px}_{i+\frac{1}{2},j,k},{} \end{aligned} $$
(20)
$$\displaystyle \begin{aligned} &\frac{1}{\Delta y \Delta z}(E^{sz}_{i,j+1,k+\frac{1}{2}}-E^{sz}_{i,j+1,k-\frac{1}{2}}-E^{sz}_{i,j,k+\frac{1}{2}}+E^{sz}_{i,j,k-\frac{1}{2}}) \\ & - \frac{1}{\Delta z^{2}} (E^{sy}_{i,j+\frac{1}{2},k+1}-2E^{sy}_{i,j+\frac{1}{2},k}+E^{sy}_{i,j+\frac{1}{2},k-1}) \\ &-\frac{1}{\Delta x^{2}}(E^{sy}_{i+1,j+\frac{1}{2},k}-2E^{sy}_{i,j+\frac{1}{2},k}+E^{sy}_{i-1,j+\frac{1}{2},k}) \\ &+\frac{1}{\Delta x \Delta y}(E^{sx}_{i+\frac{1}{2},j+1,k}-E^{sx}_{i+\frac{1}{2},j,k}-E^{sx}_{i-\frac{1}{2},j+1,k}+E^{sx}_{i-\frac{1}{2},j,k}) \\ &+i\omega\mu\sigma_{i,j+\frac{1}{2},k} E^{sy}_{i,j+\frac{1}{2},k}=-i\omega\mu(\sigma_{i,j+\frac{1}{2},k}-\sigma^{p}_{i,j+\frac{1}{2},k})E^{py}_{i,j+\frac{1}{2},k}{} \end{aligned} $$
(21)

and

$$\displaystyle \begin{aligned} &\frac{1}{\Delta x \Delta z}(E^{sx}_{i+\frac{1}{2},j,k+1}-E^{sx}_{i+\frac{1}{2},j,k}-E^{sx}_{i-\frac{1}{2},j,k+1}+E^{sx}_{i-\frac{1}{2},j,k}) \\ &-\frac{1}{\Delta x^{2}} (E^{sz}_{i+1,j,k+\frac{1}{2}}-2E^{sz}_{i,j,k+\frac{1}{2}}+E^{sz}_{i-1,j,k+\frac{1}{2}}) \\ &-\frac{1}{\Delta y^{2}}(E^{sz}_{i,j+1,k+\frac{1}{2}}-2E^{sz}_{i,j,k+\frac{1}{2}}+E^{sz}_{i,j-1,k+\frac{1}{2}}) \\ &+\frac{1}{\Delta y \Delta z}(E^{sy}_{i,j+\frac{1}{2},k+1}-E^{sy}_{i,j+\frac{1}{2},k}-E^{sy}_{i,j-\frac{1}{2},k+1}+E^{sy}_{i,j-\frac{1}{2},k}) \\ &+i\omega\mu\sigma_{i,j,k+\frac{1}{2}} E^{sz}_{i,j,k+\frac{1}{2}}=-i\omega\mu(\sigma_{i,j,k+\frac{1}{2}}-\sigma^{p}_{i,j,k+\frac{1}{2}})E^{pz}_{i,j,k+\frac{1}{2}}.{} \end{aligned} $$
(22)

To compute conductivities at the edge of each cell, we use a conductivity average with four adjacent cells (see Fig. 17). In our approach, for a regular grid, the conductivity in \(\sigma _{i+\frac {1}{2},j,k}\) is defined by

$$\displaystyle \begin{aligned} \sigma_{i+\frac{1}{2},j,k}=\frac{\sigma_{i,j,k} + \sigma_{i,j-1,k} + \sigma_{i,j,k-1} + \sigma_{i,j-1,k-1}}{4}, \end{aligned} $$
(23)

in \(\sigma _{i,j+\frac {1}{2},k}\) we have

$$\displaystyle \begin{aligned} \sigma_{i,j+\frac{1}{2},k}=\frac{\sigma_{i,j,k} + \sigma_{i-1,j,k} + \sigma_{i,j,k-1} + \sigma_{i-1,j,k-1}}{4}, \end{aligned} $$
(24)
Fig. 17
figure 17

Conductivity cells. (a) Conductivity associated to \(E_{i+\frac {1}{2},j,k}^{sx}\), (b) Conductivity associated to \(E_{i,j+\frac {1}{2},k}^{sy}\), and (c) Conductivity associated to \(E_{i,j,k+\frac {1}{2}}^{sz}\)

and \(\sigma _{i,j,k+\frac {1}{2}}\) is defined as

$$\displaystyle \begin{aligned} \sigma_{i,j,k+\frac{1}{2}}=\frac{\sigma_{i,j,k} + \sigma_{i-1,j,k} + \sigma_{i,j-1,k} + \sigma_{i-1,j-1,k}}{4}. \end{aligned} $$
(25)

In this approach we have used homogeneous Dirichlet boundary conditions [13, 21], where the electric field is equal to zero at the boundaries (Eq. (10)). Other authors have used Neumann boundary conditions [21], where the first derivative of the tangential electric field is equal to zero at the boundaries, then on the boundaries we could use a backward scheme.

Appendix 2

Faraday’s law in differential form is given by

$$\displaystyle \begin{aligned} H_{sx}=-\frac{1}{i\omega\mu}\left( \frac{\partial E_{sz}}{\partial y}-\frac{\partial E_{sy}}{\partial z}\right), \end{aligned} $$
(26)
$$\displaystyle \begin{aligned} H_{sy}=-\frac{1}{i\omega\mu}\left( \frac{\partial E_{sx}}{\partial z}-\frac{\partial E_{sz}}{\partial x}\right) \end{aligned} $$
(27)

and

$$\displaystyle \begin{aligned} H_{sz}=-\frac{1}{i\omega\mu}\left( \frac{\partial E_{sy}}{\partial x}-\frac{\partial E_{sx}}{\partial y}\right). \end{aligned} $$
(28)

These equations are discretized with a staggered grid central finite differences. The magnetic field is located at face’s cells (see Fig. 1) so, we obtain:

$$\displaystyle \begin{aligned} H^{sx}_{i,j+\frac{1}{2},k+\frac{1}{2}}=-\frac{1}{i\omega\mu}\left(\frac{E^{sz}_{i,j+1,k+\frac{1}{2}}-E^{sz}_{i,j,k+\frac{1}{2}}}{\Delta x}-\frac{E^{sy}_{i,j+\frac{1}{2},k+1}-E^{sy}_{i,j+\frac{1}{2},k}}{\Delta z}\right), \end{aligned} $$
(29)
$$\displaystyle \begin{aligned} H^{sy}_{i+\frac{1}{2},j,k+\frac{1}{2}}=-\frac{1}{i\omega\mu}\left(\frac{E^{sx}_{i+\frac{1}{2},j,k+1}-E^{sx}_{i+\frac{1}{2},j,k}}{\Delta z}-\frac{E^{sz}_{i+1,j,k+\frac{1}{2}}-E^{sz}_{i,j,k+\frac{1}{2}}}{\Delta x}\right) \end{aligned} $$
(30)

and

$$\displaystyle \begin{aligned} H^{sz}_{i+\frac{1}{2},j+\frac{1}{2},k}=-\frac{1}{i\omega\mu}\left(\frac{E^{sy}_{i+1,j+\frac{1}{2},k}-E^{sy}_{i,j+\frac{1}{2},k}}{\Delta x}-\frac{E^{sx}_{i+\frac{1}{2},j+1,k}-E^{sx}_{i+\frac{1}{2},j,k}}{\Delta y}\right). \end{aligned} $$
(31)

With this formulation we obtain a second-order accuracy scheme as a consequence of the centered finite-differences stencil used to compute the magnetic field.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valdés-Moreno, B., Pérez-Flores, M.A., De Basabe, J.D. (2022). Modelling the 3D Electromagnetic Wave Equation: Negative Apparent Conductivities and Phase Changes. In: Hernández-Dueñas, G., Moreles, M.A. (eds) Mathematical and Computational Models of Flows and Waves in Geophysics. CIMAT Lectures in Mathematical Sciences. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-12007-7_6

Download citation

Publish with us

Policies and ethics

Navigation