Graphene Oxide-Based Advanced Nanomaterials for Environmental Remediation Applications

  • Chapter
  • First Online:
Advanced Nanomaterials

Abstract

Graphene oxide (GO) nanomaterial over few decades has attracted researchers due to its various surface functional groups and its superior properties over other carbon-based nanomaterials. Graphene oxide has been intensively utilized for different environmental remediation applications, out of which wastewater treatment has been one of the main focuses. This chapter deals with the preparation of graphene oxide-based nanomaterials along with their different advanced functionalized nanocomposites. The present chapter also focuses on various applications of GO and its modified nanocomposites as adsorbents and membrane modifiers toward wastewater treatment and the removal of harmful water pollutants. Various industrial and agricultural wastewaters containing heavy metals, dyes, pesticides, and radionuclides that were treated with such advanced GO-modified nanomaterials are discussed in detail in this chapter, along with their future scope of modification and advancements for better efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Pendolino, N. Armata, Graphene Oxide in Environmental Remediation Process, (Springer, Cham, 2017). https://doi.org/10.1007/978-3-319-60429-9

  2. P.P. Das, A. Anweshan, P. Mondal, A. Sinha, P. Biswas, S. Sarkar, M.K. Purkait, Integrated ozonation assisted electrocoagulation process for the removal of cyanide from steel industry wastewater. Chemosphere 263, 128370 (2021). https://doi.org/10.1016/j.chemosphere.2020.128370

    Article  CAS  Google Scholar 

  3. P.P. Das, P. Mondal, Anweshan, A. Sinha, P. Biswas, S. Sarkar, M.K. Purkait, Treatment of steel plant generated biological oxidation treated (BOT) wastewater by hybrid process, Sep. Purif. Technol. 258, 118013 (2021). https://doi.org/10.1016/j.seppur.2020.118013

  4. Deepti, A. Sinha, P. Biswas, S. Sarkar, U. Bora, M.K. Purkait, Separation of chloride and sulphate ions from nanofiltration rejected wastewater of steel industry J. Water Process Eng. 33 (2020). 10110810.1016/j.jwpe.2019.101108

    Google Scholar 

  5. A. Deepti, P. Sinha, S. Biswas, U. Sarkar, M.K. Bora, Purkait, Utilization of LD slag from steel industry for the preparation of MF membrane. J. Environ. Manage. 259, 110060 (2020). https://doi.org/10.1016/j.jenvman.2019.110060

    Article  CAS  Google Scholar 

  6. N.A. Yaranal, S. Subbiah, K. Mohanty, Environmental Technology & Innovation Identification, extraction of microplastics from edible salts and its removal from contaminated seawater. Environ. Technol. Innov. 21, 101253 (2021). https://doi.org/10.1016/j.eti.2020.101253

    Article  CAS  Google Scholar 

  7. P. Mondal, N.S. Samanta, A. Kumar, M.K. Purkait, Recovery of H2SO4 from wastewater in the presence of NaCl and KHCO3 through pH responsive polysulfone membrane: optimization approach. Polym. Test. 86, 106463 (2020). https://doi.org/10.1016/j.polymertesting.2020.106463

    Article  CAS  Google Scholar 

  8. M. Baláž, Eggshell membrane biomaterial as a platform for applications in materials science. Acta Biomater. 10(9), 3827–3843 (2014). https://doi.org/10.1016/j.actbio.2014.03.020

    Article  CAS  Google Scholar 

  9. S.C. Smith, D.F. Rodrigues, Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon 91, 122–143 (2015). https://doi.org/10.1016/j.carbon.2015.04.043

    Article  CAS  Google Scholar 

  10. A.D. Sontakke, P.P. Das, P. Mondal, M.K. Purkait, Thin-film composite nanofiltration hollow fiber membranes toward textile industry effluent treatment and environmental remediation applications: review. Emergent Mater. (2021). https://doi.org/10.1007/s42247-021-00261-y

    Article  Google Scholar 

  11. X. Liu, R. Ma, X. Wang, Y. Ma, Y. Yang, L. Zhuang, S. Zhang, R. Jehan, J. Chen, X. Wang, Graphene oxide-based materials for ef fi cient removal of heavy metal ions from aqueous solution: a review. Environ. Pollut. 252, 62–73 (2019). https://doi.org/10.1016/j.envpol.2019.05.050

    Article  CAS  Google Scholar 

  12. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010). https://doi.org/10.1002/adma.201001068

    Article  CAS  Google Scholar 

  13. W. Ren, H.-M. Cheng, The global growth of graphene. Nat. Nanotechnol. 9, 726–730 (2014). https://doi.org/10.1038/nnano.2014.229

    Article  CAS  Google Scholar 

  14. P. Dhar, S.S. Gaur, A. Kumar, V. Katiyar, Cellulose nanocrystal templated graphene nanoscrolls for high performance supercapacitors and hydrogen storage: an experimental and molecular simulation study. Sci. Rep. 8, 1–15 (2018). https://doi.org/10.1038/s41598-018-22123-0

    Article  CAS  Google Scholar 

  15. S.B. Singh, M. De, Scope of doped mesoporous (<10 nm) surfactant-modified alumina templated carbons for hydrogen storage applications. Int. J. Energy Res. 43, 4264–4280 (2019). https://doi.org/10.1002/er.4552

    Article  CAS  Google Scholar 

  16. P. Jha, A. Sontakke, Application of crop-residue biomass as a catalyst for bio-diesel production from waste cooking oil, in Proceedings of the International Conference on Advances in Chemical Engineering (AdChE) 2020. University of Petroleum and Energy Studies, the Engineering Research Network (EngRN), February 5, 2020. Available at SSRN: https://ssrn.com/abstract=3705099 or http://dx.doi.org/https://doi.org/10.2139/ssrn.3705099

  17. H.M. Hegab, L. Zou, Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification. J. Memb. Sci. 484, 95–106 (2015). https://doi.org/10.1016/j.memsci.2015.03.011

    Article  CAS  Google Scholar 

  18. S.I. Siddiqui, S.A. Chaudhry, A review on graphene oxide and its composites preparation and their use for the removal of As3+and As5+ from water under the effect of various parameters: application of isotherm, kinetic and thermodynamics. Process Saf. Environ. Prot. 119, 138–163 (2018). https://doi.org/10.1016/j.psep.2018.07.020

    Article  CAS  Google Scholar 

  19. A.D. Sontakke, M.K. Purkait, Fabrication of ultrasound-mediated tunable graphene oxide nanoscrolls. Ultrason. Sonochem. 63, 104976 (2020). https://doi.org/10.1016/j.ultsonch.2020.104976

    Article  CAS  Google Scholar 

  20. B.C. Brodie, On the atomic weight of graphite. Philos. Trans. R. Soc. Lond. 149, 249–259 (1859). https://doi.org/10.1098/rstl.1859.0013

    Article  Google Scholar 

  21. L. Staudenmaier, Verfahren zur Darstellung der Graphitsäure. Ber. Der Dtsch. Chem. Gesellschaft. 31(2), 1481–1487 (1898). https://doi.org/10.1002/cber.18980310237

    Article  CAS  Google Scholar 

  22. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958). https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  23. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010). https://doi.org/10.1021/nn1006368

    Article  CAS  Google Scholar 

  24. L. Sun, B. Fugetsu, Mass production of graphene oxide from expanded graphite. Mater. Lett. 109, 207–210 (2013). https://doi.org/10.1016/j.matlet.2013.07.072

    Article  CAS  Google Scholar 

  25. L. Peng, Z. Xu, Z. Liu, Y. Wei, H. Sun, Z. Li, X. Zhao, C. Gao, An iron-based green approach to 1-h production of single-layer graphene oxide. Nat. Commun. 6, 5716 (2015). https://doi.org/10.1038/ncomms6716

    Article  CAS  Google Scholar 

  26. X. Pan, J. Ji, N. Zhang, M. **ng, Research progress of graphene-based nanomaterials for the environmental remediation. Chin. Chem. Lett. 31, 1462–1473 (2020). https://doi.org/10.1016/j.cclet.2019.10.002

    Article  CAS  Google Scholar 

  27. F. Perreault, A.F. De Faria, M. Elimelech, Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 44, 5861–5896 (2015). https://doi.org/10.1039/c5cs00021a

    Article  CAS  Google Scholar 

  28. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  29. K. Mohanapriya, N. Jha, Fabrication of one dimensional graphene nanoscrolls for high performance supercapacitor application. Appl. Surf. Sci. 449, 461–467 (2018). https://doi.org/10.1016/j.apsusc.2017.12.186

    Article  CAS  Google Scholar 

  30. A.D. Sontakke, M.K. Purkait, A brief review on graphene oxide nanoscrolls: structure, synthesis, characterization and scope of applications. Chem. Eng. J. 420, 129914 (2021). https://doi.org/10.1016/j.cej.2021.129914

    Article  CAS  Google Scholar 

  31. P.D.P. Swetha, H. Manisha, K. Sudhakaraprasad, Graphene and graphene-based materials in biomedical science. Part. Syst. Charact. 35(8), 1–29 (2018). https://doi.org/10.1002/ppsc.201800105

    Article  Google Scholar 

  32. V.B. Mohan, K-tak Lau, D. Hui, D. Bhattacharyya, Graphene-based materials and their composites: A review on production, applications and product limitations. Compos. B. Eng. 142, 200–220 (2018). https://doi.org/10.1016/j.compositesb.2018.01.013

  33. Q. Wang, L. Lei, X. Kang, X. Su, F. Wang, C. Wang, J. Zhao, Z. Chen, Preparation of the crosslinked GO/PAA aerogel and its adsorption properties for Pb(II) ions. Mater. Res. Express 7(2), 025514 (2020). https://doi.org/10.1088/2053-1591/ab726a

    Article  CAS  Google Scholar 

  34. N. Gupta, S. Bhagat, M. Singh, A.K. Jangid, V. Bansal, S. Singh, D. Pooja, H. Kulhari, Site-specific delivery of a natural chemotherapeutic agent to human lung cancer cells using biotinylated 2D rGO nanocarriers. Mater. Sci. Eng. C. 112, 110884 (2020). https://doi.org/10.1016/j.msec.2020.110884

    Article  CAS  Google Scholar 

  35. M. Kumar, Z. Gholamvand, A. Morrissey, K. Nolan, M. Ulbricht, J. Lawler, Preparation and characterization of low fouling novel hybrid ultrafiltration membranes based on the blends of GO-TiO2 nanocomposite and polysulfone for humic acid removal. J. Memb. Sci. 506, 38–49 (2016). https://doi.org/10.1016/j.memsci.2016.02.005

    Article  CAS  Google Scholar 

  36. E. Perim, L.D. Machado, D.S. Galvao, A brief review on syntheses, structures, and applications of nanoscrolls. Front. Mater. 1, 31 (2014). https://doi.org/10.3389/fmats.2014.00031

    Article  Google Scholar 

  37. Y.E. Shin, Y.J. Sa, S. Park, J. Lee, K.H. Shin, S.H. Joo, H. Ko, An ice-templated, pH-tunable self-assembly route to hierarchically porous graphene nanoscroll networks. Nanoscale 6(16), 9734–9741 (2014). https://doi.org/10.1039/c4nr01988a

    Article  CAS  Google Scholar 

  38. C. Zhao, X. Song, Y. Liu, Y. Fu, L. Ye, N. Wang, F. Wang, L. Li, M. Mohammadniaei, M. Zhang, Q. Zhang, J. Liu, Synthesis of graphene quantum dots and their applications in drug delivery. J. Nanobiotechnol. 18, 142 (2020). https://doi.org/10.1186/s12951-020-00698-z

    Article  CAS  Google Scholar 

  39. S. Chung, R.A. Revia, M. Zhang, Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Adv. Mater. 33(22), 1904362 (2021). https://doi.org/10.1002/adma.201904362

    Article  CAS  Google Scholar 

  40. A. Boretti, S. Al-Zubaidy, M. Vaclavikova, M. Al-Abri, S. Castelletto, S. Mikhalovsky, Outlook for graphene-based desalination membranes. Npj Clean Water. 1, 5 (2018). https://doi.org/10.1038/s41545-018-0004-z

    Article  CAS  Google Scholar 

  41. J. Song, X. Wang, C-T. Chang, Preparation and characterization of graphene oxide. J. Nanomater. 276143 (2014). https://doi.org/10.1155/2014/276143

  42. E. Starodub, N.C. Bartelt, K.F. Mccarty, Oxidation of graphene on metals. J. Phys. Chem. C 114(11), 5134–5140 (2010). https://doi.org/10.1021/jp912139e

    Article  CAS  Google Scholar 

  43. C. Bosch-Navarro, F. Busolo, E. Coronado, Y. Duan, C. Martí-Gastaldo, H. Prima-Garcia, Influence of the covalent grafting of organic radicals to graphene on its magnetoresistance. J. Mater. Chem. C. 1, 4590–4598 (2013). https://doi.org/10.1039/c3tc30799a

    Article  CAS  Google Scholar 

  44. V. Panwar, A. Kumar, R. Singh, P. Gupta, S.S. Ray, S.L. Jain, Nickel-decorated graphene oxide/polyaniline hybrid: a robust and highly efficient heterogeneous catalyst for hydrogenation of terminal alkynes. Ind. Eng. Chem. Res. 54(45), 11493–11499 (2015). https://doi.org/10.1021/acs.iecr.5b02888

    Article  CAS  Google Scholar 

  45. A.T. Smith, A. Marie, S. Zeng, B. Liu, L. Sun, Nano materials science synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci. 1, 31–47 (2019). https://doi.org/10.1016/j.nanoms.2019.02.004

    Article  Google Scholar 

  46. K.K.H. De Silva, H. Huang, R.K. Joshi, M. Yoshimura, Chemical reduction of graphene oxide using green reductants. Carbon 119, 190–199 (2017). https://doi.org/10.1016/j.carbon.2017.04.025

    Article  CAS  Google Scholar 

  47. R.K. Singh, R. Kumar, D.P. Singh, Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Adv. 6, 64993–65011 (2016). https://doi.org/10.1039/c6ra07626b

    Article  CAS  Google Scholar 

  48. B.H. Shin, K.K. Kim, A. Benayad, S.-M. Yoon, H.K. Park, I.-S. Jung, M.H. **, H.-K. Jeong, J.M. Kim, J.-Y. Choi, Y.H. Lee, Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19(12), 1987–1992 (2009). https://doi.org/10.1002/adfm.200900167

    Article  CAS  Google Scholar 

  49. W. Yu, Li Sisi, Y. Haiyan, L. Jie, Progress in the functional modification of graphene/graphene oxide: a review. RSC Adv. 10, 15328–15345 (2020). https://doi.org/10.1039/d0ra01068e

  50. C.-I. Wang, A.P. Periasamy, H.-T. Chang, Photoluminescent C-dots@RGO probe for sensitive and selective detection of acetylcholine. Anal. Chem. 85(6), 3263–3270 (2013). https://doi.org/10.1021/ac303613d

    Article  CAS  Google Scholar 

  51. E.N. Zare, A. Mudhoo, M.A. Khan, M. Otero, Z.M.A. Bundhoo, C. Navarathna, M. Patel, A. Srivastava, C.U. Pittman, T. Mlsna, D. Mohan, P. Makvandi, M. Sillanpää, Water decontamination using bio-based, chemically functionalized, doped, and ionic liquid-enhanced adsorbents: review. Environ. Chem. Lett. 19(4), 3075–3114 (2021). https://doi.org/10.1007/s10311-021-01207-w

    Article  CAS  Google Scholar 

  52. Y. Cao, Z., J. Feng, P. Wu, Graphene oxide sheets covalently functionalized with block copolymersvia click chemistry as reinforcing fillers. J. Mater. Chem. 21(25), 9271–9278 (2011). https://doi.org/10.1039/C1JM10420A

  53. C. Meng, Q. Chen, X. Li, H. Liu, Controlling covalent functionalization of graphene oxide membranes to improve enantioseparation performances. J. Memb. Sci. 582, 83–90 (2019). https://doi.org/10.1016/j.memsci.2019.03.087

    Article  CAS  Google Scholar 

  54. I.A. Vacchi, Jésus Raya, A. Bianco, C. Ménard-Moyon, Controlled derivatization of hydroxyl groups of graphene oxide in mild conditions. 2D Mater. 5, 035037 (2018)

    Google Scholar 

  55. M. Namvari, C.S. Biswas, Q. Wang, W. Liang, F.J. Stadler, Journal of colloid and interface science crosslinking hydroxylated reduced graphene oxide with RAFT-CTA: a nano-initiator for preparation of well-defined amino acid-based polymer nanohybrids. J. Colloid Interface Sci. 504, 731–740 (2017). https://doi.org/10.1016/j.jcis.2017.06.007

    Article  CAS  Google Scholar 

  56. Z. **, T.P. Mcnicholas, C. Shih, Q.H. Wang, G.L.C. Paulus, A.J. Hilmer, S. Shimizu, M.S. Strano, Click chemistry on solution-dispersed graphene and monolayer CVD graphene. Chem. Mater. 23(14), 3362–3370 (2011). https://doi.org/10.1021/cm201131v

    Article  CAS  Google Scholar 

  57. B. Zhao, P. Liu, D. Liu, T.J. Kolibaba, C. Zhang, Functionalized graphene oxide based on hydrogen- bonding interaction in water : preparation and flame-retardation on epoxy resin. Macromol. Mater. Eng. 304(8), 1900164 (2019) 1–10. https://doi.org/10.1002/mame.201900164

  58. M. Sahli, A. Kamari, S. Abu, S. Najiah, M. Yusoff, I. Fatimah, E. Phillip, S. Mohammad, Chitosan-graphene oxide nanocomposites as water-solubilising agents for rotenone pesticide. J. Mol. Liq. 318(114066), 114066 (2020). https://doi.org/10.1016/j.molliq.2020.114066

    Article  CAS  Google Scholar 

  59. M. He, R. Zhang, K. Zhang, Y. Liu, Y. Su, Z. Jiang, Reduced graphene oxide aerogel membranes fabricated through hydrogen bond mediation for highly efficient oil/water separation. J. Mater. Chem. A 7(18), 11468–11477 (2019). https://doi.org/10.1039/c9ta01700c

    Article  CAS  Google Scholar 

  60. B.A.J. Patil, J.L. Vickery, T.B. Scott, S. Mann, Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Adv. Mater. 21(31), 3159–3164 (2009). https://doi.org/10.1002/adma.200803633

    Article  CAS  Google Scholar 

  61. G. Liu, H. Ye, A. Li, C. Zhu, H. Jiang, Y. Liu, Graphene oxide for high-efficiency separation membranes: role of electrostatic interactions. Carbon 110, 56–61 (2016). https://doi.org/10.1016/j.carbon.2016.09.005

    Article  CAS  Google Scholar 

  62. X. Ge, H. Li, L. Wu, P. Li, X. Mu, Y. Jiang, Improved mechanical and barrier properties of starch film with reduced graphene oxide modified by SDBS. Appl. Polym. 134(22), 44910 (2017). https://doi.org/10.1002/app.44910

    Article  CAS  Google Scholar 

  63. D. Zhao, Construction of a different polymer chain structure to study π - π interaction between polymer and reduced graphene oxide. Polymers 10(7), 716 (2018). https://doi.org/10.3390/polym10070716

    Article  CAS  Google Scholar 

  64. Y. Shudo, M.R. Karim, R. Ohtani, M. Nakamura, S. Hayami, Hybrids from the π-π stacking of graphene oxide and aromatic sulfonic compounds for improved proton conductivity. ChemElectroChem, 5(2), 238–241 (2018). https://doi.org/10.1002/celc.201701026

  65. J. Zhang, Y. Xu, L. Cui, A. Fu, W. Yang, C. Barrow, J. Liu, Mechanical properties of graphene films enhanced by homo-telechelic functionalized polymer fillers via π – π stacking interactions. Compos. Part A Appl. Sci. 71, 1–8 (2015). https://doi.org/10.1016/j.compositesa.2014.12.013

  66. X. Liu, R. Ma, X. Wang, Y. Ma, Y. Yang, L. Zhuang, S. Zhang, R. Jehan, J. Chen, X. Wang, Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: a review. Environ. Pollut. 252, 62–73 (2019). https://doi.org/10.1016/j.envpol.2019.05.050

    Article  CAS  Google Scholar 

  67. E.N. Zare, M.M. Lakouraj, N. Kasirian, Development of effective nano-biosorbent based on poly m-phenylenediamine grafted dextrin for removal of Pb(II) and methylene blue from water. Carbohydr. Polym. 201, 539–548 (2018). https://doi.org/10.1016/j.carbpol.2018.08.091

    Article  CAS  Google Scholar 

  68. G.Z. Kyzas, E.A. Deliyanni, K.A. Matis, Graphene oxide and its application as an adsorbent for wastewater treatment. J. Chem. Technol. Biotechnol. 89(2), 196–205 (2014). https://doi.org/10.1002/jctb.4220

    Article  CAS  Google Scholar 

  69. F. Li, X. Jiang, J. Zhao, S. Zhang, Graphene oxide: a promising nanomaterial for energy and environmental applications. Nano Energy 16, 488–515 (2015). https://doi.org/10.1016/j.nanoen.2015.07.014

    Article  CAS  Google Scholar 

  70. M. Zarenezhad, M. Zarei, M. Ebratkhahan, M. Hosseinzadeh, Synthesis and study of functionalized magnetic graphene oxide for Pb2+ removal from wastewater. Environ. Technol. Innov. 22, 101384 (2021). https://doi.org/10.1016/j.eti.2021.101384

  71. M. Majdoub, A. Amedlous, Z. Anfar, A. Jada, N. El Alem, Engineering of amine-based binding chemistry on functionalized graphene oxide/alginate hybrids for simultaneous and efficient removal of trace heavy metals: towards drinking water. J. Colloid Interface Sci. 589, 511–524 (2021). https://doi.org/10.1016/j.jcis.2021.01.029

    Article  CAS  Google Scholar 

  72. J. Huo, G. Yu, J. Wang, Efficient removal of Co(II) and Sr(II) from aqueous solution using polyvinyl alcohol/graphene oxide/MnO2 composite as a novel adsorbent. J. Hazard. Mater. 411, 125117 (2021). https://doi.org/10.1016/j.jhazmat.2021.125117

    Article  CAS  Google Scholar 

  73. R. Mukherjee, P. Bhunia, S. De, Impact of graphene oxide on removal of heavy metals using mixed matrix membrane. Chem. Eng. J. 292, 284–297 (2016). https://doi.org/10.1016/j.cej.2016.02.015

    Article  CAS  Google Scholar 

  74. H. Ravishankar, J. Christy, V. Jegatheesan, Graphene oxide (GO) -blended polysulfone (PSf) ultrafiltration membranes for lead ion rejection. Membranes 8(3), 77 (2018). https://doi.org/10.3390/membranes8030077

    Article  CAS  Google Scholar 

  75. Y. Zhang, H. Chi, W. Zhang, Y. Sun, Q. Liang, Y. Gu, R. **g, Highly efficient adsorption of copper ions by a PVP-reduced graphene oxide based on a new adsorptions mechanism. Nano-Micro Lett. 6, 80–87 (2014). https://doi.org/10.1007/BF03353772

    Article  Google Scholar 

  76. C.J. Madadrang, H.Y. Kim, G. Gao, N. Wang, J. Zhu, H. Feng, M. Gorring, M.L. Kasner, S. Hou, Adsorption behavior of EDTA-graphene oxide for Pb(II) removal. ACS Appl. Mater. Interfaces. 4(3), 1186–1193 (2012). https://doi.org/10.1021/am201645g

    Article  CAS  Google Scholar 

  77. S. Kumar, R.R. Nair, P.B. Pillai, S.N. Gupta, M.A.R. Iyengar, A.K. Sood, Graphene oxide-MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl. Mater. Interfaces. 6(20), 17426–17436 (2014). https://doi.org/10.1021/am504826q

    Article  CAS  Google Scholar 

  78. X. Luo, C. Wang, S. Luo, R. Dong, X. Tu, G. Zeng, Adsorption of As(III) and As(V) from water using magnetite Fe3O4-reduced graphite oxide-MnO2 nanocomposites. Chem. Eng. J. 187, 45–52 (2012). https://doi.org/10.1016/j.cej.2012.01.073

    Article  CAS  Google Scholar 

  79. Y. Zhang, L. Yan, W. Xu, X. Guo, L. Cui, L. Gao, Q. Wei, B. Du, Adsorption of Pb(II) and Hg(II) from aqueous solution using magnetic CoFe2O4-reduced graphene oxide. J. Mol. Liq. 191, 177–182 (2014). https://doi.org/10.1016/j.molliq.2013.12.015

    Article  CAS  Google Scholar 

  80. I. Khurana, A. Saxena, Bharti, J.M. Khurana, P.K. Rai, Removal of dyes using graphene-based composites: a review. Water Air Soil Pollut. 228, 180 (2017). https://doi.org/10.1007/s11270-017-3361-1

  81. B. Mao, B. Sidhureddy, A.R. Thiruppathi, P.C. Wood, A. Chen, Efficient dye removal and separation based on graphene oxide nanomaterials. New J. Chem. 44(11), 4519–4528 (2020). https://doi.org/10.1039/c9nj05895h

    Article  CAS  Google Scholar 

  82. F. Hanke, C. Palma, P. Samori, M. Cecchini, J. Bj, G. Monge, Adsorption of aromatic and anti-aromatic systems on graphene through π–π stacking. J. Phys. Chem. Lett. 1(23), 3407–3412 (2010). https://doi.org/10.1021/jz101360k

    Article  CAS  Google Scholar 

  83. S. De Gisi, G. Lofrano, M. Grassi, M. Notarnicola, Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain. Mater. Technol. 9, 10–40 (2016). https://doi.org/10.1016/j.susmat.2016.06.002

    Article  CAS  Google Scholar 

  84. A. Rhay, B. Bayantong, Y. Shih, D.C. Ong, R. Ruffel, M. Abarca, C. Dong, M. Daniel, G. De Luna, Adsorptive removal of dye in wastewater by metal ferrite-enabled graphene oxide nanocomposites. Chemosphere 274, 129518 (2021). https://doi.org/10.1016/j.chemosphere.2020.129518

    Article  CAS  Google Scholar 

  85. M. Hong, Y. Wang, R. Wang, Y. Sun, R. Yang, L. Qu, Z. Li, Poly ( sodium styrene sulfonate) functionalized graphene as a highly efficient adsorbent for cationic dye removal with a green regeneration strategy. J. Phys. Chem. Solids. 152, 109973 (2021). https://doi.org/10.1016/j.jpcs.2021.109973

    Article  CAS  Google Scholar 

  86. Y. Gao, S. Yan, Y. He, Y. Fan, L. Zhang, J. Ma, A photo-Fenton self-cleaning membrane based on NH2-MIL-88B (Fe) and graphene oxide to improve dye removal performance. J. Membr. Sci. 626, 119192 (2021). https://doi.org/10.1016/j.memsci.2021.119192

    Article  CAS  Google Scholar 

  87. S. Pashaei-Fakhri, S. Jamaleddin, R. Foroutan, Crystal violet dye sorption over acrylamide/graphene oxide bonded sodium alginate nanocomposite hydrogel. Chemosphere 270, 129419 (2021). https://doi.org/10.1016/j.chemosphere.2020.129419

    Article  CAS  Google Scholar 

  88. J. Chen, S. Liu, H. Ge, Y. Zou, A hydrophobic bio-adsorbent synthesized by nanoparticle-modified graphene oxide coated corn straw pith for dye adsorption and photocatalytic degradation. Environ. Technol. 41(27), 3633–3645 (2020). https://doi.org/10.1080/09593330.2019.1616827

    Article  CAS  Google Scholar 

  89. N. Li, M. Zheng, X. Chang, G. Ji, H. Lu, L. Xue, L. Pan, J. Cao, Preparation of magnetic CoFe2O4-functionalized graphene sheets via a facile hydrothermal method and their adsorption properties. J. Solid State Chem. 184(2), 953–958 (2011). https://doi.org/10.1016/j.jssc.2011.01.014

    Article  CAS  Google Scholar 

  90. S.-T. Yang, S. Chen, Y. Chang, A. Cao, Y. Liu, H. Wang, Removal of methylene blue from aqueous solution by graphene oxide. J. Colloid Interface Sci. 359(1), 24–29 (2011). https://doi.org/10.1016/j.jcis.2011.02.064

    Article  CAS  Google Scholar 

  91. G.K. Ramesha, A.V. Kumara, H.B. Muralidhara, S. Sampath, Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J. Colloid Interface Sci. 361(1), 270–277 (2011). https://doi.org/10.1016/j.jcis.2011.05.050

    Article  CAS  Google Scholar 

  92. D. Robati, B. Mirza, M. Rajabi, O. Moradi, I. Tyagi, S. Agarwal, V.K. Gupta, Removal of hazardous dyes-BR 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase. Chem. Eng. J. 284, 687–697 (2016). https://doi.org/10.1016/j.cej.2015.08.131

    Article  CAS  Google Scholar 

  93. C. Hu, A.T. Le, S.Y. Pung, L. Stevens, N. Neate, X. Hou, D. Grant, F. Xu, Efficient dye-removal via Ni-decorated graphene oxide-carbon nanotube nanocomposites. Mater. Chem. Phys. 260, 124117 (2021). https://doi.org/10.1016/j.matchemphys.2020.124117

    Article  CAS  Google Scholar 

  94. P.K. Boruah, B. Sharma, N. Hussain, M.R. Das, Magnetically recoverable Fe3O4/graphene nanocomposite towards efficient removal of triazine pesticides from aqueous solution: investigation of the adsorption phenomenon and specific ion effect. Chemosphere 168, 1058–1067 (2017). https://doi.org/10.1016/j.chemosphere.2016.10.103

    Article  CAS  Google Scholar 

  95. K. Shrivas, A. Ghosale, N. Nirmalkar, A. Srivastava, S.K. Singh, S.S. Shinde, Removal of endrin and dieldrin isomeric pesticides through stereoselective adsorption behavior on the graphene oxide-magnetic nanoparticles. Environ. Sci. Pollut. Res. 24, 24980–24988 (2017). https://doi.org/10.1007/s11356-017-0159-z

    Article  CAS  Google Scholar 

  96. M. Cruz, C. Gomez, C.J. Duran-Valle, L.M. Pastrana-Martínez, J.L. Faria, A.M.T. Silva, M. Faraldos, A. Bahamonde, Bare TiO2 and graphene oxide TiO2 photocatalysts on the degradation of selected pesticides and influence of the water matrix. Appl. Surf. Sci. 416, 1013–1021 (2017). https://doi.org/10.1016/j.apsusc.2015.09.268

    Article  CAS  Google Scholar 

  97. Y. Tian, Y. Wang, Z. Sheng, T. Li, X. Li, A colorimetric detection method of pesticide acetamiprid by fine-tuning aptamer length. Anal. Biochem. 513, 87–92 (2016). https://doi.org/10.1016/j.ab.2016.09.004

    Article  CAS  Google Scholar 

  98. K.L. Klarich, N.C. Pflug, E.M. Dewald, M.L. Hladik, D.W. Kolpin, D.M. Cwiertny, G.H. Lefevre, Occurrence of neonicotinoid insecticides in finished drinking water and fate during drinking water treatment. Environ. Sci. Technol. Lett. 4(5), 168–173 (2017). https://doi.org/10.1021/acs.estlett.7b00081

    Article  CAS  Google Scholar 

  99. G. Liu, L. Li, D. Xu, X. Huang, X. Xu, S. Zheng, Y. Zhang, H. Lin, Metal-organic framework preparation using magnetic graphene oxide–β-cyclodextrin for neonicotinoid pesticide adsorption and removal. Carbohydr. Polym. 175, 584–591 (2017). https://doi.org/10.1016/j.carbpol.2017.06.074

    Article  CAS  Google Scholar 

  100. G. Liu, X. Yang, T. Li, Y. She, S. Wang, J. Wang, M. Zhang, F. **, M. **, H. Shao, M. Shi, Preparation of a magnetic molecularly imprinted polymer using g-C3N4–Fe3O4 for atrazine adsorption. Mater. Lett. 160, 472–475 (2015). https://doi.org/10.1016/j.matlet.2015.07.157

    Article  CAS  Google Scholar 

  101. L.P. Lingamdinne, J.R. Koduru, H. Roh, Y.-L. Choi, Y.-Y. Chang, J.-K. Yang, Adsorption removal of Co(II) from waste-water using graphene oxide. Hydrometallurgy 165, 90–96 (2016). https://doi.org/10.1016/j.hydromet.2015.10.021

    Article  CAS  Google Scholar 

  102. L.P. Lingamdinne, J.R. Koduru, R.R. Karri, A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification. J. Environ. Manage. 231, 622–634 (2019). https://doi.org/10.1016/j.jenvman.2018.10.063

    Article  CAS  Google Scholar 

  103. P. Misaelides, A. Godelitsas, A. Filippidis, D. Charistos, I. Anousis, Thorium and uranium uptake by natural zeolitic materials. Sci. Total Environ. 173–174, 237–246 (1995). https://doi.org/10.1016/0048-9697(95)04748-4

    Article  Google Scholar 

  104. G. Zhao, T. Wen, X. Yang, S. Yang, J. Liao, J. Hu, D. Shao, X. Wang, Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans. 41, 6182–6188 (2012). https://doi.org/10.1039/c2dt00054g

    Article  CAS  Google Scholar 

  105. P. Zong, S. Wang, Y. Zhao, H. Wang, H. Pan, C. He, Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions. Chem. Eng. J. 220, 45–52 (2013). https://doi.org/10.1016/j.cej.2013.01.038

    Article  CAS  Google Scholar 

  106. Y. Zhao, J. Li, S. Zhang, H. Chen, D. Shao, Efficient enrichment of uranium(vi) on amidoximated magnetite/graphene oxide composites. RSC Adv. 3(41), 18952–18959 (2013). https://doi.org/10.1039/c3ra42236d

    Article  CAS  Google Scholar 

  107. Y. Sun, C. Ding, W. Cheng, X. Wang, Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron. J. Hazard. Mater. 280, 399–408 (2014). https://doi.org/10.1016/j.jhazmat.2014.08.023

    Article  CAS  Google Scholar 

  108. Z. Fallah, E.N. Zare, M. Ghomi, F. Ahmadijokani, M. Amini, M. Tajbakhsh, M. Arjmand, G. Sharma, H. Ali, A. Ahmad, P. Makvandi, E. Lichtfouse, M. Sillanpää, R.S. Varma, Toxicity and remediation of pharmaceuticals and pesticides using metal oxides and carbon nanomaterials. Chemosphere 275, 130055 (2021). https://doi.org/10.1016/j.chemosphere.2021.130055

    Article  CAS  Google Scholar 

  109. V. Srivastava, E.N. Zare, P. Makvandi, X-qi Zheng, S. Iftekhar, A. Wu, V.V.T. Padil, B. Mokhtari, R.S. Varma, F.R. Tay, M. Sillanpaa, Cytotoxic aquatic pollutants and their removal by nanocomposite-based sorbents. Chemosphere. 258, 127324 (2020). https://doi.org/10.1016/j.chemosphere.2020.127324

  110. M. Sarker, J.Y. Song, S.H. Jhung, Adsorptive removal of anti-inflammatory drugs from water using graphene oxide/metal-organic framework composites. Chem. Eng. J. 335, 74–81 (2018). https://doi.org/10.1016/j.cej.2017.10.138

    Article  CAS  Google Scholar 

  111. S. Bhattacharyya, in Waste Management and Resource Efficiency: Proceedings of 6th IconSWM 2016, ed. by S. K. Ghosh (Springer, Singapore, 2019), p. 1253. https://doi.org/10.1007/978-981-10-7290-1_104

  112. S. Bhattacharya, P. Banerjee, P. Das, A. Bhowal, S.K. Majumder, P. Ghosh, Erratum: removal of aqueous carbamazepine using graphene oxide nanoplatelets: process modelling and optimization Sustain. Environ. Res. 30, 17 (2020). https://doi.org/10.1186/s42834-020-00062-8), Sustain. Environ. Res. 30, 25 (2020). https://doi.org/10.1186/s42834-020-00066-4

  113. C.M. El-Maraghy, O.M. El-Borady, O.A. El-Naem, Effective removal of levofloxacin from pharmaceutical wastewater using synthesized zinc oxid, graphen oxid nanoparticles compared with their combination. Sci. Rep. 10, 5914 (2020). https://doi.org/10.1038/s41598-020-61742-4

    Article  CAS  Google Scholar 

  114. P.T.L. Huong, N. Tu, H. Lan, L.H. Thang, N.V. Quy, P.A. Tuan, N.X. Dinh, V.N. Phan, A.-T. Le, Functional manganese ferrite/graphene oxide nanocomposites: effects of graphene oxide on the adsorption mechanisms of organic MB dye and inorganic As(v) ions from aqueous solution. RSC Adv. 8(22), 12376–12389 (2018). https://doi.org/10.1039/c8ra00270c

    Article  CAS  Google Scholar 

  115. A. Khan, J. Wang, J. Li, X. Wang, Z. Chen, A. Alsaedi, T. Hayat, Y. Chen, X. Wang, The role of graphene oxide and graphene oxide-based nanomaterials in the removal of pharmaceuticals from aqueous media: a review. Environ. Sci. Pollut. Res. 24, 7938–7958 (2017). https://doi.org/10.1007/s11356-017-8388-8

    Article  CAS  Google Scholar 

  116. L. Ou, B. Song, H. Liang, J. Liu, X. Feng, B. Deng, T. Sun, L. Shao, Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part. Fibre Toxicol. 13, 57 (2016). https://doi.org/10.1186/s12989-016-0168-y

    Article  CAS  Google Scholar 

  117. S.G. Han, J.K. Kim, J.H. Shin, J.H. Hwang, J.S. Lee, T.-G. Kim, J.H. Lee, G.H. Lee, K.S. Kim, H.S. Lee, N.W. Song, K. Ahn, I.J. Yu, Pulmonary responses of sprague-dawley rats in single inhalation exposure to graphene oxide nanomaterials. Biomed Res. Int. 2015, 376756 (2015). https://doi.org/10.1155/2015/376756

    Article  CAS  Google Scholar 

  118. Y. Chang, S.-T. Yang, J.-H. Liu, E. Dong, Y. Wang, A. Cao, Y. Liu, H. Wang, In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol. Lett. 200(3), 201–210 (2011). https://doi.org/10.1016/j.toxlet.2010.11.016

    Article  CAS  Google Scholar 

  119. F. Ahmed, D.F. Rodrigues, Investigation of acute effects of graphene oxide on wastewater microbial community: a case study. J. Hazard. Mater. 256–257, 33–39 (2013). https://doi.org/10.1016/j.jhazmat.2013.03.064

    Article  CAS  Google Scholar 

  120. E. Zanni, G.D. Bellis, M.P. Bracciale, A. Broggi, M.L. Santarelli, M.S. Sarto, C. Palleschi, D. Uccelletti, Graphite nanoplatelets and Caenorhabditis elegans: insights from an in vivo model. Nano Lett. 12(6), 2740–2744 (2012). https://doi.org/10.1021/nl204388p

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihir K. Purkait .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sontakke, A.D., Mondal, P., Purkait, M.K. (2022). Graphene Oxide-Based Advanced Nanomaterials for Environmental Remediation Applications. In: Ikhmayies, S.J. (eds) Advanced Nanomaterials. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-11996-5_6

Download citation

Publish with us

Policies and ethics

Navigation