On the Degree of the Canonical Map of a Surface of General Type

  • Chapter
  • First Online:
The Art of Doing Algebraic Geometry

Part of the book series: Trends in Mathematics ((TM))

Abstract

Let X be a minimal complex surface of general type such that its image \(\Sigma \) via the canonical map \({\varphi }\) is a surface; we denote by d the degree of \({\varphi }\). In this expository work, first of all we recall the known possibilities for \(\Sigma \) and d when \({\varphi }\) is not birational, which are quite a few, and then we consider the question of producing concrete examples for all of them. We present the two main methods of construction of such examples and we give several instances of their application. We end the paper by outlining the state of the art on this topic and raising several questions.

A Ciro, maestro e amico.

Research partially supported by FCT/Portugal through UID/MAT/04459/2020 and by project PRIN 2017SSNZAW\(\_\)004 “Moduli Theory and Birational Classification” of Italian MIUR. The first author is a member of Centro de Análise Matemática, Geometria e Sistemas Dinâmicos of Técnico/ Universidade de Lisboa. The second author is a member of GNSAGA of INDAM

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Beauville, L’application canonique pour les surfaces de type général. Inv. Math. 55, 121–140 (1979)

    Article  MATH  Google Scholar 

  2. Ch. Birkenhake, H. Lange, A family of abelian surfaces and curves of genus four. Manuscr. Math. 85, 393–407 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Catanese, Babbage’s conjecture, contact of surfaces, symmetric determinantal varieties and applications. Invent. Math. 63, 433–465 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Catanese, Canonical rings and “special” surfaces of general type. Proc. Symp. Pure Math. 46, 175–194 (1987)

    Google Scholar 

  5. F. Catanese, Singular bidouble covers and the construction of interesting algebraic surfaces. AMS Contemp. Math. 24(1), 97–120 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Catanese, C. Ciliberto, M. Mendes Lopes, On the classification of irregular surfaces of general type with non birational bicanonical map. Trans. Am. Math. Soc. 350(1), 275–308 (1998)

    Google Scholar 

  7. C. Ciliberto, R. Pardini, F. Tovena, Prym varieties and the canonical map of surfaces of general type (XXIX, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze, 2000), 905–938

    Google Scholar 

  8. C. Ciliberto, R. Pardini, F. Tovena, Regular canonical covers. Math. Nachrichten 251, 19–27 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. O. Debarre, Inégalités numériques pour les surfaces de type général, with an appendix by A. Beauville. Bull. Soc. Math. France 110(3), 319–346 (1982)

    Google Scholar 

  10. B. Fantechi, R. Pardini, Automorphisms and moduli spaces of varieties with ample canonical class via deformations of abelian covers. Commun. Algebra 25, 1413–1441 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Gleissner, R. Pignatelli, C. Rito, New surfaces with canonical map of high degree, Commun. Anal. Geom, to appear. ar**v:1807.11854 [math.AG]

  12. C. Hacon, R. Pardini, Surfaces with \(p_g=q=3\). Trans. Am. Math. Soc. 354(7), 2631–2638 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Horikawa, Algebraic surfaces of general type with small \(c_{1}^{2}\). I. Ann. Math. 104, 357–387 (1976)

    Article  MATH  Google Scholar 

  14. F. Jongmans, Sur l’étude des surfaces algébriques caractérisées par la condition \(p_{g}\ge 2(p_{a}+2)\). Acad. Roy. Belgique. Bull. Cl. Sci. (5) 36, 485–494 (1950)

    Google Scholar 

  15. C. Liedtke, Singular abelian covers of algebraic surfaces. Manuscr. Math. 112, 375–390 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Mendes Lopes, R. Pardini, Irregular canonical double surfaces. Nagoya J. Math. 152, 203–230 (1998)

    Google Scholar 

  17. M. Mendes Lopes, R. Pardini, Triple canonical surfaces of minimal degree. Int. J. Math. 152, 203–230 (1998)

    Google Scholar 

  18. Bin Nguyen, A new example of an algebraic surface with canonical map of degree 16. Arch. Math. 113, 385–390 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bin Nguyen, New examples of canonical covers of degree 3. Math. Nach. 295(3), 450–467 (2022)

    Google Scholar 

  20. B. Nguyen, Some unlimited families of minimal surfaces of general type with the canonical map of degree 8. Manuscr. Math. 163, 13–25 (2020)

    Google Scholar 

  21. Bin Nguyen, Some infinite sequences of canonical covers of degree 2. Adv. Geom. 21(1), 143–148 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Pardini, Abelian covers of algebraic varieties. J. Reine Angew. Math. 417, 191–213 (1991)

    MathSciNet  MATH  Google Scholar 

  23. R. Pardini, Canonical images of surfaces. J. Reine Angew. Math. 417, 215–219 (1991)

    MathSciNet  MATH  Google Scholar 

  24. U. Persson, Double coverings and surfaces of general type, Algebraic geometry (Proc. Sympos., Univ. Tromsø, Tromsø, vol. 687 of Lecture Notes in Mathematics, vol. 1978 (Springer, Berlin, 1977), 168–195

    Google Scholar 

  25. G.P. Pirola, Surfaces with \(p_g=q=3\). Manuscr. Math. 108, 163–170 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Rito, Cuspidal quintics and surfaces with \(p_g=0\), \( K^2=3\) and 5-torsion. LMS J. Comput. Math. 19(1), 42–53 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. C. Rito, A surface with q=2 and canonical map of degree 16. Mich. Math. J. 66(1), 99–105 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. C. Rito, A surface with canonical map of degree 24. Int. J. Math. 284(6), 75–84 (2017)

    MathSciNet  MATH  Google Scholar 

  29. C. Rito, Surfaces with canonical map of maximum degree. J. Algebr. Geom. 31, 127–135 (2022)

    Google Scholar 

  30. S. Tan, Surfaces whose canonical maps are of odd degrees. Math. Ann. 292, 13—29 (1992)

    Google Scholar 

  31. G. **ao, L’irrégularité des surfaces de type général dont le système canonique est composé d’un pinceau. Compositio Math. 56(2), 251–257 (1985)

    Google Scholar 

  32. G. **ao, Algebraic surfaces with high canonical degree. Math. Ann. 274, 473–483 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  33. F. Zucconi, Surfaces with canonical map of degree 3 and \(K^{2}=3p_{g}-5\). Osaka J. Math. 34(2), 411–428 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarida Mendes Lopes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mendes Lopes, M., Pardini, R. (2023). On the Degree of the Canonical Map of a Surface of General Type. In: Dedieu, T., Flamini, F., Fontanari, C., Galati, C., Pardini, R. (eds) The Art of Doing Algebraic Geometry. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-11938-5_13

Download citation

Publish with us

Policies and ethics

Navigation