Part of the book series: Springer Theses ((Springer Theses))

  • 168 Accesses

Abstract

Among thin films, superlattices are of particular scientific and technological importance. Their periodicity presents an additional control parameter, which allows modifications of their electronic and phononic behavior. Here, we present an accurate thin-film characterization tool in form of backfolded acoustic phonon modes, which are, to the best of our knowledge, observed for the first time in metal-oxide superlattices by means of Raman spectroscopy.

This chapter is an extended version of the paper: F. Lyzwa, A. Chan, J. Khmaladze, K. Fürsich, B. Keimer, C. Bernhard, M. Minola and B. P. P. Mallett “Backfolded acoustic phonons as ultrasonic probes in metal-oxide superlattices” Phys. Rev. Materials 4, 043606 (2020), [1] with Copyright permission (2020) by the American Physical Society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lyzwa F, Chan A, Khmaladze J, Fürsich K, Keimer B, Bernhard C, Minola M, Mallett BPP (2020) Backfolded acoustic phonons as ultrasonic probes in metal-oxide superlattices. Phys Rev Mater 4(4):043606

    Google Scholar 

  2. Hwang HY, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y (2012) Emergent phenomena at oxide interfaces. Nat Mater 11:103–113

    Google Scholar 

  3. Mallett BPP, Khmaladze J, Marsik P, Perret E, Cerreta A, Orlita M, Bišškup N, Varela M, Bernhard C (2016) Granular superconductivity and magnetic-field-driven recovery of macroscopic coherence in a cuprate/manganite multilayer. Phys Rev B 94(18):180503

    Google Scholar 

  4. Driza N, Blanco-Canosa S, Bakr M, Soltan S, Khalid M, Mustafa L, Kawashima K, Christiani G, Habermeier H-U, Khaliullin G, Ulrich C, Le Tacon M, Keimer B (2012) Long-range transfer of electron-phonon coupling in oxide superlattices. Nat Mater 11:675–681

    Google Scholar 

  5. Keunecke M, Lyzwa F, Schwarzbach D, Roddatis V, Gauquelin N, Müller-Caspary K, Verbeeck J, Callori SJ, Klose F, Jungbauer M, Moshnyaga V (2020) High-TC interfacial ferromagnetism in SrMnO3/LaMnO3 superlattices. Adv Func Mater 30:1808270

    Article  CAS  Google Scholar 

  6. Chakhalian J, Freeland JW, Habermeier H-U, Cristiani G, Khaliullin G, Veenendaal M, Keimer B (2007) Orbital reconstruction and covalent bonding at an oxide interface. Science 318:1114–1117

    Article  CAS  Google Scholar 

  7. Reyren N, Thiel S, Caviglia AD, Kourkoutis LF, Hammerl G, Richter C, Schneider CW, Kopp T, Rüetschi A-S, Jaccard D, Gabay M, Muller DA, Triscone J-M, Mannhart J (2007) Superconducting interfaces between insulating oxides. Science 317:1196–1199

    Article  CAS  Google Scholar 

  8. Bibes M, Villegas JE, Barthélémy A (2011) Ultrathin oxide films and interfaces for electronics and spintronics. Adv Phys 60:5–84

    Google Scholar 

  9. Rogdakis K, Seo JW, Viskadourakis Z, Wang Y, Ah Qune LFN, Choi E, Burton JD, Tsymbal EY, Lee J, Panagopoulos C (2012) Tunable ferroelectricity in artificial tri-layer superlattices comprised of non-ferroic components. Nat Commun 3:1064

    Google Scholar 

  10. Chakhalian J, Freeland JW, Millis AJ, Panagopoulos C, Rondinelli JM (2014) Colloquium: emergent properties in plane view: strong correlations at oxide interfaces. Rev Mod Phys 86(4):1189–1202

    Google Scholar 

  11. Lorenz Mea (2016) The 2016 oxide electronic materials and oxide interfaces roadmap. J Phys D Appl Phys 49:433001

    Google Scholar 

  12. Smith DL, Mailhiot C (1990) Theory of semiconductor superlattice electronic structure. Rev Modern Phys 62:173–234

    Google Scholar 

  13. Mannhart J, Schlom DG (2010) Oxide interfaces—an opportunity for electronics. Science 327:1607–1611

    Google Scholar 

  14. Keimer B, Kivelson SA, Norman MR, Uchida S, Zaanen J (2015) From quantum matter to high-temperature superconductivity in copper oxides. Nature 518:179–186

    Google Scholar 

  15. Tokura Y (2006) Critical features of colossal magnetoresistive manganites. Rep Prog Phys 69:797–851

    Google Scholar 

  16. Perret E, Monney C, Johnston S, Khmaladze J, Lyzwa F, Gaina R, Dantz M, Pelliciari J, Piamonteze C, Mallett BPP, Minola M, Keimer B, Schmitt T, Bernhard C (2018) Coupled Cu and Mn charge and orbital orders in YBa2Cu3O7/Nd0.65(Ca1-ySry)0.35MnO3 multilayers. Commun Phys 1:45

    Google Scholar 

  17. Ravichandran J, Yadav AK, Cheaito R, Rossen PB, Soukiassian A, Suresha SJ, Duda JC, Foley BM, Lee C-H, Zhu Y, Lichtenberger AW, Moore JE, Muller DA, Schlom DG, Hopkins PE, Majumdar A, Ramesh R, Zurbuchen MA (2014) Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat Mater 13:168

    Google Scholar 

  18. Maldovan M (2012) Phonon wave interference and thermal bandgap materials. Nat Mater 14:667–674

    Google Scholar 

  19. Dijkkamp D, Venkatesan T, Wu XD, Shaheen SA, Jisrawi N, Min-Lee YH, McLean WL, Croft M (1987) Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material. Appl Phys Lett 51:619–621

    Article  CAS  Google Scholar 

  20. Schlom DG, Eckstein JN, Hellman ES, Streiffer SK, Harris JS, Beasley MR, Bravman JC, Geballe TH, Webb C, Dessonneck KE, Turner F (1988) Molecular beam epitaxy of layered Dy‐Ba‐Cu‐O compounds. Appl Phys Lett 53:1660–1662

    Google Scholar 

  21. Moshnyaga V, Khoroshun I, Sidorenko A, Petrenko P, Weidinger A, Zeitler M, Rauschenbach B, Tidecks R, Samwer K (1999) Preparation of rare-earth manganite-oxide thin films by metalorganic aerosol deposition technique. Appl Phys Lett 74:2842–2844

    Article  CAS  Google Scholar 

  22. Rao RA, Gan Q, Eom CB, Suzuki Y, McDaniel AA, Hsu JWP (1996) Uniform deposition of YBa2Cu3O7 thin films over an 8 inch diameter area by a 90° off‐axis sputtering technique. Appl Phys Lett 69:3911–3913

    Google Scholar 

  23. Norton DP (2004) Synthesis and properties of epitaxial electronic oxide thin-film materials. Mater Sci Eng R Rep 43:139–247

    Google Scholar 

  24. Colvard C, Merlin R, Klein MV, Gossard AC (1980) Observation of folded acoustic phonons in a semiconductor superlattice. Phys Rev Lett 45(4):298–301

    Google Scholar 

  25. Jusserand B, Paquet D, Mollot F (1989) Dispersive character of optical phonons in GaAlAs alloys from Raman scattering in superlattices. Phys Rev Lett 63(21):2397–2400

    Google Scholar 

  26. Cardona M (1989) Folded, confined, interface, surface, and slab vibrational modes in semiconductor superlattices. Superlattices Microstruct 5:27–42

    Article  CAS  Google Scholar 

  27. Rouhani BD, Khoudifi E (1991) Localised and extended acoustic waves in superlattices light scattering by longitudinal phonons. Light scattering in semiconductors structures and superlattices. Springer US, pp 139–158, vol 89, p 023705

    Google Scholar 

  28. Sapriel J, He J (1991) Interaction of light with acoustic waves in superlattices and related devices. Light scattering in semiconductors structures and superlattices. Springer, pp 123–138, vol 107, p 207202

    Google Scholar 

  29. Colvard C, Gant TA, Klein MV, Merlin R, Fischer R, Morkoc H, Gossard AC (1985) Folded acoustic and quantized optic phonons in (GaAl)As superlattices. Phys Rev B 31(4):2080–2091

    Google Scholar 

  30. Jusserand B, Cardona M (1989) In: VM, Güntherodt G (eds) Light scattering in solids Cardona. Springer

    Google Scholar 

  31. Dharma-wardana MWC, Zhang PX, Lockwood DJ (1953) Finite-size effects on superlattice acoustic phonons. Phys Rev B 48:11960–11964

    Google Scholar 

  32. Malik VK, Marozau I, Das S, Doggett B, Satapathy DK, Uribe-Laverde MA, Biskup N, Varela M, Schneider CW, Marcelot C, Stahn J, Bernhard C (2012) Pulsed laser deposition growth of heteroepitaxial YBa2Cu3O7/La_(0.67)Ca_(0.33)MnO3 superlattices on NdGaO3 and Sr_(0.7)La_(0.3)Al_(0.65)Ta_(0.35)O3 substrates. Phys Rev B 85(5):054514

    Google Scholar 

  33. Hepting M, Minola M, Frano A, Cristiani G, Logvenov G, Schierle E, Wu M, Bluschke M, Weschke E, Habermeier H-U, Benckiser E, Le Tacon M, Keimer B (2014) Tunable charge and spin order in PrNiO3 thin films and superlattices. Phys Rev Lett 113(22):227206

    Google Scholar 

  34. Abrashev MV, Bäckström J, Börjesson L, Pissas M, Kolev N, Iliev MN (2001) Raman spectroscopy of the charge- and orbital-ordered state in La_(0.5)Ca_(0.5)MnO3. Phys Rev B 64(14):144429

    Google Scholar 

  35. Iliev MN, Abrashev MV, Popov VN, Hadjiev VG (2003) Role of Jahn-Teller disorder in Raman scattering of mixed-valence manganites. Phys Rev B 67(21):212301

    Google Scholar 

  36. Bakr M, Souliou SM, Blanco-Canosa S, Zegkinoglou I, Gretarsson H, Strempfer J, Loew T, Lin CT, Liang R, Bonn DA, Hardy WN, Keimer B, Le Tacon M (2013) Lattice dynamical signature of charge density wave formation in underdoped YBa2Cu3O6+x,. Phys Rev B 88(21):214517

    Google Scholar 

  37. Murugavel P, Narayana C, Sood AK, Parashar S, Raju AR, Rao CNR (2000) Magnetic excitations in charge-ordered: a Brillouin scattering study. Europhys Lett 52:461–467

    Google Scholar 

  38. Khmaladze J, Sarkar S, Soulier M, Lyzwa F, Andres Prada R, Perret E, Mallett BPP, Minola M, Keimer B, Bernhard C (2019) Granular superconductivity and charge/orbital order in YBa2Cu3O7/manganite trilayers. Phys Rev Mater 3(8):084801

    Google Scholar 

  39. Rytov S (1956) Sov Phys Acoust 2:68

    Google Scholar 

  40. Hazama H, Nemoto Y, Goto T, Asamitsu A, Tokura Y (2000) Ultrasonic study of perovskite manganites La1−xSrxMnO3. Phys B 281–282:487–488

    Article  Google Scholar 

  41. Jorgensen JD, Pei S, Lightfoot P, Hinks DG, Veal BW, Dabrowski B, Paulikas AP, Kleb R, Brown ID (1990) Pressure-induced charge transfer and dTc/dP in YBa2Cu3O7−x. Phys C 171:93–102

    Article  CAS  Google Scholar 

  42. Seikh MM, Narayana C, Parashar S, Sood AK (2003) Temperature-dependent Brillouin scattering studies of surface acoustic modes in Nd0.5Sr0.5MnO3. Solid State Commun 127:209–214

    Article  CAS  Google Scholar 

  43. Li W, He B, Zhang C, Liu S, Liu X, Middey S, Chakhalian J, Wang X, **ao M (2016) Coherent acoustic phonons in YBa2Cu3O7/La1/3Ca2/3MnO3 superlattices. Appl Phys Lett 108:132601

    Article  Google Scholar 

  44. Pintschovius L, Reichardt W (1998) Phonon dispersions and phonon density-of-states in copper-oxide superconductors. Furrer A (ed) Neutron scattering in layered copper-oxide superconductors. Springer, Dordrecht, vol 29, p 495601

    Google Scholar 

  45. Weber F, Rosenkranz S, Castellan J-P, Osborn R, Zheng H, Mitchell JF, Chen Y, Chi S, Lynn JW, Reznik D (2011) Response of acoustic phonons to charge and orbital order in the 50% doped bilayer manganite LaSr 2 Mn 2 O 7. Phys Rev Lett 107:207202

    Google Scholar 

  46. Shekhter A, Ramshaw BJ, Liang R, Hardy WN, Bonn DA, Balakirev FF, McDonald RD, Betts JB, Riggs SC, Migliori A (2013) Bounding the pseudogap with a line of phase transitions in YBa2Cu3O6+δ. Nature 498:75–77

    Google Scholar 

  47. Carpenter MA, Howard CJ, McKnight REA, Migliori A, Betts JB, Fanelli VR (2010) Elastic and anelastic relaxations associated with the incommensurate structure of Pr_(0.48)Ca_(0.52)MnO3. Phys Rev B 82(13):134123

    Google Scholar 

  48. Jusserand B, Alexandre Fçç, Dubard J, Paquet D (1986) Raman scattering study of acoustical zone-center gaps in GaAs/AlAs superlattices. Phys Rev B 33(4):2897–2899

    Google Scholar 

  49. Jusserand B, Paquet D, Mollot F, Alexandre F, Le Roux G (1987) Influence of the supercell structure on the folded acoustical Raman line intensities in superlattices. Phys Rev B 35(6):2808–2817

    Google Scholar 

  50. Gorshunov B, Zhukova E, Torgashev VI, Kadyrov LS, Motovilova EA, Fischgrabe F, Moshnyaga V, Zhang T, Kremer R, Pracht U, Zapf S, Dressel M (2013) Boson peak in overdoped manganites La1-xCaxMnO3. Phys Rev B 87(24):245124

    Google Scholar 

  51. Perret E, Sen K, Khmaladze J, Mallett BPP, Yazdi-Rizi M, Marsik P, Das S, Marozau I, Uribe-Laverde MA, Andrés Prada R, Strempfer J, Döbeli M, Biškup N, Varela M, Mathis Y-L, Bernhard C (2017) Structural, magnetic and electronic properties of pulsed-laser-deposition grown SrFeO3-thin films and SrFeO3-/La2/3Ca1/3MnO3multilayers. J Phys Condens Matter 29:495601

    Google Scholar 

  52. Golod T, Rydh A, Krasnov VM, Marozau I, Uribe-Laverde MA, Satapathy DK, Wagner T, Bernhard C (2013) High bias anomaly in YBa2Cu3O7-x/LaMnO_(3+δ)/YBa2Cu3O7-x superconductor/ferromagnetic insulator/superconductor junctions: evidence for a long-range superconducting proximity effect through the conduction band of a ferromagnetic insulator. Phys Rev B 87(13):134520

    Google Scholar 

  53. Sen K, Perret E, Alberca A, Uribe-Laverde MA, Marozau I, Yazdi-Rizi M, Mallett BPP, Marsik P, Piamonteze C, Khaydukov Y, Döbeli M, Keller T, Bišškup N, Varela M, Vaššátko J, Munzar D, Bernhard C (2016) X-ray absorption study of the ferromagnetic Cu moment at the YBa2Cu3O7/La_(2/3)Ca_(1/3)MnO3 interface and variation of its exchange interaction with the Mn moment. Phys Rev B 93(20):205131

    Google Scholar 

  54. Herman IP (2011) Peak temperatures from Raman Stokes/anti-Stokes ratios during laser heating by a Gaussian beam. J Appl Phys 109:016103

    Article  Google Scholar 

  55. Jeong SG, Seo A, Choi WS (2022) Atomistic engineering of phonons in functional oxide heterostructures. Adv Sci 9:2103403

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fryderyk Lyzwa .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lyzwa, F. (2022). Observation of Backfolded Acoustic Phonons in Metal-Oxide Heterostructures. In: Phononic and Electronic Excitations in Complex Oxides Studied with Advanced Infrared and Raman Spectroscopy Techniques. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-031-11866-1_5

Download citation

Publish with us

Policies and ethics

Navigation