Part of the book series: Springer Theses ((Springer Theses))

  • 170 Accesses

Abstract

Optical spectroscopy has a long history of being used to study diverse systems, ranging from liquids, to solid state materials, even to stars. In materials science, it is used to study, for instance, the free charge carrier response, the superconducting condensate, phonons, magnons and bandgaps. Revealing the electronic and phononic excitations can yield clues for understanding the macroscopic properties and the role of competing degrees of freedom in several materials. In this thesis, advanced Raman and infrared spectroscopy techniques, which present complementary methods,will be used to investigate several types of material systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that \({\omega }_{pl}\) is in units of \({s}^{-1}\) in Eq. (3.17), and of cm−1 in Eq. (3.18).

  2. 2.

    There are certain types of superconducting systems, where the application of an external magnetic field can recover the macroscopic coherence [22, 23].

  3. 3.

    The spectrometer in Grenoble is the new version (VERTEX 80v) of the one at Fribourg University (VERTEX 70v) and similar, so that the principles mentioned above still hold.

  4. 4.

    Note, that in the same year G. Landsberg and L. Mandelstam discovered independently the same effect, which is nowadays known as Raman scattering. They published their findings even one week before Raman and Krishnan in a preliminary report. Later in that year, their results appeared in the journal Naturwissenschaften [35].

References

  1. Ament LJP, Veenendaal M, Devereaux TP, Hill JP, Brink J (2011) Resonant inelastic x-ray scattering studies of elementary excitations. Rev Mod Phys 83(2):705–767

    Google Scholar 

  2. Cardona M (1975) Light scattering in solids. In: Cardona M (ed) Springer, Berlin, Heidelberg

    Google Scholar 

  3. Lyzwa F, Marsik P, Roddatis V, Bernhard C, Jungbauer M, Moshnyaga V (2018) In situ monitoring of atomic layer epitaxy via optical ellipsometry. J Phys D Appl Phys 51:125306

    Google Scholar 

  4. Jungbauer M, Hühn S, Egoavil R, Tan H, Verbeeck J, Van Tendeloo G, Moshnyaga V (2014) Atomic layer epitaxy of Ruddlesden-Popper SrO(SrTiO3)n films by means of metalorganic aerosol deposition. Appl Phys Lett 105:251603

    Article  Google Scholar 

  5. Keunecke M, Lyzwa F, Schwarzbach D, Roddatis V, Gauquelin N, Müller-Caspary K, Verbeeck J, Callori SJ, Klose F, Jungbauer M, Moshnyaga V (2020) High-TC interfacial ferromagnetism in SrMnO3/LaMnO3 superlattices. Adv Func Mater 30:1808270

    Article  CAS  Google Scholar 

  6. Demtröder W (2019) Electrodynamics and optics. Springer

    Google Scholar 

  7. Wooten F (1972) Optical properties of solids. Elsevier

    Google Scholar 

  8. Hunklinger S (2011) Festkörperphysik. Oldenbourg

    Google Scholar 

  9. Marsik P (2009) Advanced ellipsometry techniques and studies of low-k dielectric films

    Google Scholar 

  10. Lyddane RH, Sachs RG, Teller E (1941) On the polar vibrations of alkali halides. Phys Rev 59(8):673–676

    Google Scholar 

  11. Hepting M (2017) Ordering phenomena in rare-earth nickelate heterostructures

    Google Scholar 

  12. Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124(6):1866–1878

    Google Scholar 

  13. Xu B, Dai YM, Zhao LX, Wang K, Yang R, Zhang W, Liu JY, **ao H, Chen GF, Trugman SA, Zhu J-X, Taylor AJ, Yarotski DA, Prasankumar RP, Qiu XG (2017) Temperature-tunable Fano resonance induced by strong coupling between Weyl fermions and phonons in TaAs. Nat Commun 8:14933

    Google Scholar 

  14. Xu B, Cappelluti E, Benfatto L, Mallett BPP, Marsik P, Sheveleva E, Lyzwa F, Wolf T, Yang R, Qiu XG, Dai YM, Wen HH, Lobo RPSM, Bernhard C (2019) Scaling of the Fano effect of the in-plane Fe-As phonon and the superconducting critical temperature in Ba1−xKxFe2As2. Phys Rev Lett 122(21):217002

    Google Scholar 

  15. Grüner G (1988) The dynamics of charge-density waves. Rev Mod Phys 60(4):1129–1181

    Google Scholar 

  16. https://www.bruker.com/de/products/infrared-near-infrared-and-raman-spectroscopy/ft-ir-research-spectrometers/vertex-series/vertex-70v.html

  17. Subramanian A, Rodriguez-Saona L (2009) Chapter 7—Fourier transform infrared (FTIR) spectroscopy. In: Sun D (ed) Infrared spectroscopy for food quality analysis and control. Academic Press, San Diego, pp 145–178

    Chapter  Google Scholar 

  18. https://www.jawoollam.com/products/vase-ellipsometer

  19. Rössle M (2012) Infrared ellipsometry study of the lattice and charge dynamics in bulk SrTiO3, thin SrTiO3 films, and LaAlO3/SrTiO3 heterostructures. University of Fribourg

    Google Scholar 

  20. Homes CC, Reedyk M, Cradles DA, Timusk T (1993) Technique for measuring the reflectance of irregular, submillimeter-sized samples. Appl Opt 32:2976–2983

    Google Scholar 

  21. Wang C (2014) Infrared spectroscopy and Muon spin rotation study of superconductivity and magnetism in iron-based superconductors

    Google Scholar 

  22. Mallett BPP, Khmaladze J, Marsik P, Perret E, Cerreta A, Orlita M, Bi š škup N, Varela M, Bernhard C (2016) Granular superconductivity and magnetic-field-driven recovery of macroscopic coherence in a cuprate/manganite multilayer. Phys Rev B 94(18):180503

    Google Scholar 

  23. Khmaladze J, Sarkar S, Soulier M, Lyzwa F, Andres Prada R, Perret E, Mallett BPP, Minola M, Keimer B, Bernhard C (2019) Granular superconductivity and charge/orbital order in YBa2Cu3O7/manganite trilayers. Phys Rev Mater 3(8):084801

    Google Scholar 

  24. Levallois J, Nedoliuk IO, Crassee I, Kuzmenko AB (2015) Magneto-optical Kramers-Kronig analysis. Rev Sci Instrum 86:033906

    Article  Google Scholar 

  25. Padilla WJ, Lee YS, Dumm M, Blumberg G, Ono S, Segawa K, Komiya S, Ando Y, Basov DN (2005) Constant effective mass across the phase diagram of high-T_(c) cuprates. Phys Rev B 72(6):060511

    Google Scholar 

  26. Liang R, Dosanjh P, Bonn DA, Hardy WN, Berlinsky AJ (1994) Lower critical fields in an ellipsoid-shaped YBa2Cu3O_(6.95) single crystal. Phys Rev B 50(6):4212–4215

    Google Scholar 

  27. Liang R, Bonn DA, Hardy WN, Broun D (2005) Lower critical field and superfluid density of highly underdoped YBa2Cu3O6+x single crystals. Phys Rev Lett 94(11):117001

    Google Scholar 

  28. Grissonnanche G, Cyr-Choinière O, Laliberté F, René de Cotret S, Juneau-Fecteau A, Dufour-Beauséjour S, Delage MÈ, LeBoeuf D, Chang J, Ramshaw BJ, Bonn DA, Hardy WN, Liang R, Adachi S, Hussey NE, Vignolle B, Proust C, Sutherland M, Krämer S, Park JH, Graf D, Doiron-Leyraud N, Taillefer L (2014) Direct measurement of the upper critical field in cuprate superconductors. Nat Commun 5:3280

    Google Scholar 

  29. https://reffit.ch/

  30. Fujiwara H (2003) Spectroscopic ellipsometry: principles and applications. Wiley

    Google Scholar 

  31. Schubert M (2004) Infrared ellipsometry on semiconductor layer structures. In: Höhler G (ed) Springer

    Google Scholar 

  32. Humlíek J, Bernhard C (2004) Diffraction effects in infrared ellipsometry of conducting samples. Thin Solid Films 455:177–182

    Article  Google Scholar 

  33. Bernhard C, Humlı́cek J, Keimer B (2004) Far-infrared ellipsometry using a synchrotron light source—the dielectric response of the cuprate high Tc superconductors. Thin Solid Films 455–456:143–149

    Google Scholar 

  34. Yazdi-Rizi M (2017) Infrared ellipsometry study of the photo-generated and intrinsic charge carriers at the surface of SrTiO3 crystals and the interfaces of LaAlO3/SrTiO3 and γ-Al2O3/SrTiO3 heterostructures

    Google Scholar 

  35. Landsberg G, Mandelstam L (1928) Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen. Naturwissenschaften 16:557–558

    Google Scholar 

  36. Raman CV, Krishnan KS (1982) A new type of secondary radiation. Nature 121:501–502

    Google Scholar 

  37. Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187:493–494

    Google Scholar 

  38. Devereaux TP, Hackl R (2007) Inelastic light scattering from correlated electrons. Rev Mod Phys 79(1):175–233

    Google Scholar 

  39. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer

    Google Scholar 

  40. Herman IP (2011) Peak temperatures from Raman Stokes/anti-Stokes ratios during laser heating by a Gaussian beam. J Appl Phys 109:016103

    Article  Google Scholar 

  41. Fürsich K, Bertinshaw J, Butler P, Krautloher M, Minola M, Keimer B (2019) Raman scattering from current-stabilized nonequilibrium phases in Ca2RuO4. Phys Rev B 100(8):081101

    Google Scholar 

  42. Fürsich K (2020) X-ray and Raman scattering studies of novel phases in 3d and 4d transition metal oxides

    Google Scholar 

  43. New G (2011) Introduction to nonlinear optics. Cambridge University Press

    Google Scholar 

  44. HORIBA Jobin Yvon LabRAM HR800 user manual. Technical report

    Google Scholar 

  45. Hepting M, Minola M, Frano A, Cristiani G, Logvenov G, Schierle E, Wu M, Bluschke M, Weschke E, Habermeier H-U, Benckiser E, Le Tacon M, Keimer B (2014) Tunable charge and spin order in PrNiO3 thin films and superlattices. Phys Rev Lett 113(22):227206

    Google Scholar 

  46. Yeo B-S, Stadler J, Schmid T, Zenobi R, Zhang W (2009) Tip-enhanced Raman spectroscopy—its status, challenges and future directions. Chem Phys Lett 472:1–13

    Article  CAS  Google Scholar 

  47. Merten S (2019) Polaronic behaviour at manganite interfaces studied by advanced Raman scattering techniques

    Google Scholar 

  48. Meyer C (2018) Ordnungs-/Unordnungsphänomene in korrelierten Perowskitschichten anhand von fortgeschrittener Raman-Spektroskopie

    Google Scholar 

  49. Hallen HD, Paesler MA, Jahncke CL (1998) Raman spectroscopy: probing the border between near-field and far-field spectroscopy. In: Far- and near-field optics: physics and information processing

    Google Scholar 

  50. Merten S, Roddatis V, Moshnyaga V (2019) Metalorganic-aerosol-deposited Au nanoparticles for the characterization of ultrathin films by surface-enhanced Raman spectroscopy. Appl Phys Lett 115:151902

    Article  Google Scholar 

  51. Merten S, Bruchmann-Bamberg V, Damaschke B, Samwer K, Moshnyaga V (2019) Jahn-Teller reconstructed surface of the doped manganites shown by means of surface-enhanced Raman spectroscopy. Phys Rev Mater 3(6):060401

    Google Scholar 

  52. Hertz H (1887) Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung. Ann Phys 267:983–1000

    Article  Google Scholar 

  53. Einstein A (1905) Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann Phys 322:132–148

    Article  Google Scholar 

  54. Lv B, Qian T, Ding H (2019) Angle-resolved photoemission spectroscopy and its application to topological materials. Nat Rev Phys 1:609–626

    Google Scholar 

  55. Lu D, Vishik IM, Yi M, Chen Y, Moore RG, Shen Z-X (2012) Angle-resolved photoemission studies of quantum materials. Annu Rev Condens Matter Phys 3:129–167

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fryderyk Lyzwa .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lyzwa, F. (2022). Experimental Techniques. In: Phononic and Electronic Excitations in Complex Oxides Studied with Advanced Infrared and Raman Spectroscopy Techniques. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-031-11866-1_3

Download citation

Publish with us

Policies and ethics

Navigation