The Use of Micro–computed Tomography for Forensic Applications

  • Chapter
  • First Online:
Essentials of Autopsy Practice

Abstract

Micro X-ray computed tomography (µCT) is a non-destructive imaging technique that can be used to reveal the internal details of objects. This chapter covers the development and history of µCT and a review of a number of ways in which CT can be used. The basic principles of µCT using X-ray tubes to generate 2D radiographs is explained and the way in which these are computationally reconstructed to generate 3D images is discussed. The chapter also covers issues such as radiation damage, common imaging artefacts, resolution and metrology issues of accuracy and reproducibility. µCT is also compared to other computed tomography approaches to allow forensic practitioners to understand the full range of tomography tools available to aid forensic investigations. Finally, the way in which µCT can be applied in forensic science and engineering to provide detailed information on the objects being studied is then illustrated through a number of examples from pathology, entomology and engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mould RF. The early history of X-ray diagnosis with emphasis on the contributions of physics 1895–1915. Phys Med Biol. 1995;40(11):1741–87. https://doi.org/10.1088/0031-9155/40/11/001.

    Article  CAS  PubMed  Google Scholar 

  2. DenOtter TD, Schubert J. Hounsfield unit. Treasure Island (FL): StatPearls Publishing; 2022.

    Google Scholar 

  3. Glide-Hurst C, Chen D, Zhong H, Chetty IJ. Changes realized from extended bit-depth and metal artifact reduction in CT. Med Phys. 2013;40(6):61711. https://doi.org/10.1118/1.4805102.

  4. Eckert WG, Garland N. The history of the forensic application in radiology. Amer J Forensic Med Pathol. 1984;5(1).

    Google Scholar 

  5. Blakeley C, Hogg P. Manchester medical society (imaging section) presidential address 2008. Radiography; 2009. https://doi.org/10.1016/j.radi.2009.10.001.

  6. Di Chiro G, Brooks RA. The 1979 nobel prize in physiology or medicine. J Comput Assist Tomogr. 1980;4(2):241–5. https://doi.org/10.1097/00004728-198004000-00023.

    Article  PubMed  Google Scholar 

  7. Tempany CMC, McNeil BJ. Advances in biomedical imaging. J Am Med Assoc. 2001;285(5):562–7. https://doi.org/10.1001/jama.285.5.562.

    Article  CAS  Google Scholar 

  8. Kalender WA. X-ray computed tomography. Phys Med Biol. 2006;51(13):R29–43. https://doi.org/10.1088/0031-9155/51/13/r03.

    Article  PubMed  Google Scholar 

  9. Saunders SL, Morgan B, Raj V, Rutty GN. Post-mortem computed tomography angiography: past, present and future. Forensic Sci Med Pathol. 2011;7(3):271–7. https://doi.org/10.1007/s12024-010-9208-3.

    Article  PubMed  Google Scholar 

  10. Leth P. The use of CT scanning in forensic autopsy. Forensic Sci Med Pathol. 2007;3:65–9. https://doi.org/10.1385/FSMP:3:1:65.

    Article  PubMed  Google Scholar 

  11. Flohr TG, Schaller S, Stierstorfer K, Bruder H, Ohnesorge BM, Schoepf UJ. Multi–detector row CT systems and image-reconstruction techniques. Radiology. 2005;235(3):756–73. https://doi.org/10.1148/radiol.2353040037.

    Article  PubMed  Google Scholar 

  12. Rutty GN, Morgan B. Virtual autopsy. Forensic Sci Med Pathol. 2013;9(3):433–4. https://doi.org/10.1007/s12024-013-9450-6.

    Article  PubMed  Google Scholar 

  13. Brüllmann D, Schulze RKW. Spatial resolution in CBCT machines for dental/maxillofacial applications-what do we know today? Dentomaxillofac Radiol. 2015;44(1):20140204. https://doi.org/10.1259/dmfr.20140204.

    Article  PubMed  Google Scholar 

  14. Pauwels R, Araki K, Siewerdsen JH, Thongvigitmanee SS. Technical aspects of dental CBCT: state of the art. Dentomaxillofac Radiol. 2015;44(1):20140224. https://doi.org/10.1259/dmfr.20140224.

    Article  CAS  PubMed  Google Scholar 

  15. Dawood A, Patel S, Brown J. Cone beam CT in dental practice. Br Dent J. 2009;207(1):23–8. https://doi.org/10.1038/sj.bdj.2009.560.

    Article  CAS  PubMed  Google Scholar 

  16. O’Connell A, et al. Cone-beam CT for breast imaging: radiation dose, breast coverage, and image quality. Am J Roentgenol. 2010;195(2):496–509. https://doi.org/10.2214/AJR.08.1017.

    Article  Google Scholar 

  17. Ritman EL. Current status of developments and applications of Micro-CT. Annu Rev Biomed Eng. 2011;13(1):531–52. https://doi.org/10.1146/annurev-bioeng-071910-124717.

    Article  CAS  PubMed  Google Scholar 

  18. Withers PJ, et al. X-ray computed tomography. Nature Rev Methods Primers. 2021;1(1):18. https://doi.org/10.1038/s43586-021-00015-4.

    Article  CAS  Google Scholar 

  19. Rutty GN, Brough A, Biggs MJP, Robinson C, Lawes SDA, Hainsworth SV. The role of micro-computed tomography in forensic investigations. Forensic Sci Int; 2013. https://doi.org/10.1016/j.forsciint.2012.10.030.

  20. Sun W, Brown S, Leach R. An overview of industrial X-ray computed tomography; 2011.

    Google Scholar 

  21. Carmignato S, Dewulf W, Leach R. Industrial X-ray computed tomography. Springer International Publishing; 2018.

    Google Scholar 

  22. du Plessis A, le Roux SG, Guelpa A. Comparison of medical and industrial X-ray computed tomography for non-destructive testing. Case Stud Nondestruct Testing Eval. 2016;6:17–25. https://doi.org/10.1016/j.csndt.2016.07.001.

    Article  Google Scholar 

  23. Christensen A, Smith M, Gleiber D, Cunningham D, Wescott D. The Use of X-ray computed tomography technologies in forensic anthropology. Forensic Anthropol. 2018;1:124–40. https://doi.org/10.5744/fa.2018.0013.

    Article  Google Scholar 

  24. Bolliger SA, Oesterhelweg L, Spendlove D, Ross S, Thali MJ. Is differentiation of frequently encountered foreign bodies in corpses possible by hounsfield density measurement? J Forensic Sci. 2009;54(5):1119–22. https://doi.org/10.1111/j.1556-4029.2009.01100.x.

    Article  PubMed  Google Scholar 

  25. McCullough EC, et al. Performance evaluation and quality assurance of computed tomography scanners, with illustrations from the EMI, ACTA, and delta scanners. Radiology. 1976;120(1):173–88. https://doi.org/10.1148/120.1.173.

    Article  CAS  PubMed  Google Scholar 

  26. Rueckel J, Stockmar M, Pfeiffer F, Herzen J. Spatial resolution characterization of a X-ray microCT system. Appl Radiat Isot. 2014;94:230–4. https://doi.org/10.1016/j.apradiso.2014.08.014.

    Article  CAS  PubMed  Google Scholar 

  27. Schladitz K. Quantitative micro-CT. J Microsc. 2011;243(2):111–7. https://doi.org/10.1111/j.1365-2818.2011.03513.x.

    Article  CAS  PubMed  Google Scholar 

  28. Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. J Opt Soc Am A. 1984;1(6):612–9. https://doi.org/10.1364/JOSAA.1.000612.

    Article  Google Scholar 

  29. Limaye A. Drishti: a volume exploration and presentation tool. In: Proceedings SPIE, 2012, vol. 8506, pp. 85060X–8506–9. https://doi.org/10.1117/12.935640.

  30. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5. https://doi.org/10.1038/nmeth.2089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cherry SR, Sorenson JA, Phelps MEBT. Physics in nuclear medicine, 4th Editio. Philadelphia: Elsevier, 2012. https://doi.org/10.1016/B978-1-4160-5198-5.00033-2.

  32. Kamiyama H, et al. Unusual false-positive mesenteric lymph nodes detected by PET/CT in a metastatic survey of lung cancer. Case Rep Gastroenterol. 2016;10(2):275–82. https://doi.org/10.1159/000446579.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fuchs P, Kröger T, Garbe CS. Defect detection in CT scans of cast aluminum parts: a machine vision perspective. Neurocomputing. 2021;453:85–96. https://doi.org/10.1016/j.neucom.2021.04.094.

    Article  Google Scholar 

  34. Sutton M, Rahman I, Garwood R. Techniques for virtual. Palaeontology. 2014. https://doi.org/10.1002/9781118591192.

    Article  Google Scholar 

  35. Immel A, et al. Effect of X-ray irradiation on ancient DNA in sub-fossil bones—Guidelines for safe X-ray imaging. Sci Rep. 2016;6:32969. https://doi.org/10.1038/srep32969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McCollough CH, Bushberg JT, Fletcher JG, Eckel LJ. Answers to common questions about the use and safety of CT scans. Mayo Clin Proc. 2015;90(10):1380–92. https://doi.org/10.1016/j.mayocp.2015.07.011.

    Article  PubMed  Google Scholar 

  37. Meganck JA, Liu B. Dosimetry in micro-computed tomography: a review of the measurement methods, impacts, and characterization of the quantum GX imaging system. Mol Imag Biol. 2017;19(4):499–511. https://doi.org/10.1007/s11307-016-1026-x.

    Article  CAS  Google Scholar 

  38. Thali M, et al. Forensic microradiology: micro-computed tomography (Micro-CT) and analysis of patterned injuries inside of bone. J Forensic Sci. 2003;48:1336–42. https://doi.org/10.1520/JFS2002220.

    Article  PubMed  Google Scholar 

  39. Pounder DJ, Sim LJ. Virtual casting of stab wounds in cartilage using micro-computed tomography. Amer J Forensic Med Pathol. 2011;32(2). [Online]. Available: https://journals.lww.com/amjforensicmedicine/Fulltext/2011/06000/Virtual_Casting_of_Stab_Wounds_in_Cartilage_Using.1.aspx.

  40. Norman DG, Baier W, Watson DG, Burnett B, Painter M, Williams MA. Micro-CT for saw mark analysis on human bone. Forensic Sci Int. 2018;293:91–100. https://doi.org/10.1016/j.forsciint.2018.10.027.

    Article  CAS  PubMed  Google Scholar 

  41. Norman DG, Watson DG, Burnett B, Fenne PM, Williams MA. The cutting edge—Micro-CT for quantitative toolmark analysis of sharp force trauma to bone. Forensic Sci Int. 2018;283:156–72. https://doi.org/10.1016/j.forsciint.2017.12.039.

    Article  CAS  PubMed  Google Scholar 

  42. Appleby J, et al. Perimortem trauma in King Richard III: a skeletal analysis. The Lancet. 2015;385(9964):253–9. https://doi.org/10.1016/S0140-6736(14)60804-7.

    Article  Google Scholar 

  43. Biggs M. 3D printing applied to forensic investigations. In: Essentials of autopsy practice 2019, pp. 19–49. https://doi.org/10.1007/978-3-030-24330-2_2.

  44. Fais P, et al. Micro computed tomography features of laryngeal fractures in a case of fatal manual strangulation. Leg Med. 2016;18:85–9. https://doi.org/10.1016/j.legalmed.2016.01.001.

    Article  Google Scholar 

  45. Baier W, Mangham C, Warnett JM, Payne M, Painter M, Williams MA. Using histology to evaluate micro-CT findings of trauma in three post-mortem samples—First steps towards method validation. Forensic Sci Int. 2019;297:27–34. https://doi.org/10.1016/j.forsciint.2019.01.027.

    Article  CAS  PubMed  Google Scholar 

  46. Cecchetto G, et al. MicroCT detection of gunshot residue in fresh and decomposed firearm wounds. Int J Legal Med. 2012;126(3):377–83. https://doi.org/10.1007/s00414-011-0648-4.

    Article  PubMed  Google Scholar 

  47. Cecchetto G, et al. Estimation of the firing distance through micro-CT analysis of gunshot wounds. Int J Legal Med. 2011;125(2):245–51. https://doi.org/10.1007/s00414-010-0533-6.

    Article  PubMed  Google Scholar 

  48. Giraudo C, et al. Micro-CT features of intermediate gunshot wounds covered by textiles. Int J Legal Med. 2016;130(5):1257–64. https://doi.org/10.1007/s00414-016-1403-7.

    Article  PubMed  Google Scholar 

  49. Benecke M. A brief history of forensic entomology. Forensic Sci Int. 2001;120(1):2–14. https://doi.org/10.1016/S0379-0738(01)00409-1.

    Article  CAS  PubMed  Google Scholar 

  50. Gennard DE. Forensic entomology: an introduction. Chichester, England: Wiley; 2012.

    Google Scholar 

  51. Anderson GS. The use of insects in death investigations: an analysis of cases in British Columbia over a five year period. Canadian Soc Forensic Sci J. 1995;28(4):277–92. https://doi.org/10.1080/00085030.1995.10757488.

    Article  Google Scholar 

  52. Greenberg B. Flies as forensic indicators. J Med Entomol. 1991;28(5):565–77. https://doi.org/10.1093/jmedent/28.5.565.

    Article  CAS  PubMed  Google Scholar 

  53. Sukontason KL, et al. Morphological observation of puparia of Chrysomya nigripes (Diptera: Calliphoridae) from human corpse. Forensic Sci Int. 2006;161(1):15–9. https://doi.org/10.1016/j.forsciint.2005.10.013.

    Article  PubMed  Google Scholar 

  54. Sert O, Ergil C. An examination of the intrapuparial development of Chrysomya albiceps (Wiedemann, 1819) (Calliphoridae: Diptera) at three different temperatures. Forensic Sci Med Pathol. 2021;17(4):585–95. https://doi.org/10.1007/s12024-021-00411-y.

    Article  PubMed  Google Scholar 

  55. Richards CS, Simonsen TJ, Abel RL, Hall MJR, Schwyn DA, Wicklein M. Virtual forensic entomology: improving estimates of minimum post-mortem interval with 3D micro-computed tomography. Forensic Sci Int. 2012;220(1):251–64. https://doi.org/10.1016/j.forsciint.2012.03.012.

    Article  PubMed  Google Scholar 

  56. Martín-Vega D, Simonsen TJ, Hall MJR. Looking into the puparium: Micro-CT visualization of the internal morphological changes during metamorphosis of the blow fly, Calliphora vicina, with the first quantitative analysis of organ development in cyclorrhaphous dipterans. J Morphol. 2017;278(5):629–51. https://doi.org/10.1002/jmor.20660.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chyb S, Gompel N. Atlas of drosophila morphology : wild-type and classical mutants. Amsterdam: Academic Press; 2013.

    Google Scholar 

  58. Thomas DB, Hallman GJ. Developmental Arrest in Mexican Fruit Fly (Diptera: Tephritidae) Irradiated in Grapefruit. Ann Entomol Soc Am. 2011;104(6):1367–72. https://doi.org/10.1603/AN11035.

    Article  Google Scholar 

  59. Metscher BD. MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol. 2009;9:11. https://doi.org/10.1186/1472-6793-9-11.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kang V, Johnston R, van de Kamp T, Faragó T, Federle W. Morphology of powerful suction organs from blepharicerid larvae living in raging torrents. BMC Zoology. 2019;4(1):10. https://doi.org/10.1186/s40850-019-0049-6.

    Article  Google Scholar 

  61. Swart P, Wicklein M, Sykes D, Ahmed F, Krapp HG. A quantitative comparison of micro-CT preparations in Dipteran flies. Sci Rep. 2016;6(1):39380. https://doi.org/10.1038/srep39380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pauwels E, van Loo D, Cornillie P, Brabant L, van Hoorebeke L. An exploratory study of contrast agents for soft tissue visualization by means of high resolution X-ray computed tomography imaging. J Microsc. 2013;250(1):21–31. https://doi.org/10.1111/jmi.12013.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Professor Mark Williams and Dr Waltrud Baier of Warwick Manufacturing Group, from the University of Warwick are thanked for the provision of Fig. 3.6. Jessica Lam of the University of Leicester is thanked for the provision of Fig. 3.4. Dayang Liyana Hj Awang Lamat and Graham Clark, also from the Department of Engineering at the University of Leicester, are acknowledged for the work that led to various other of the case studies and images referred to within this Chapter. Professor Michael Fitzpatrick of Coventry University is thanked for his constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah V. Hainsworth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hainsworth, S.V. (2022). The Use of Micro–computed Tomography for Forensic Applications. In: Rutty, G.N. (eds) Essentials of Autopsy Practice. Springer, Cham. https://doi.org/10.1007/978-3-031-11541-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11541-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11540-0

  • Online ISBN: 978-3-031-11541-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation