Convergent Evolution: Theory and Practice for Bioinspiration

  • Chapter
  • First Online:
Convergent Evolution

Part of the book series: Fascinating Life Sciences ((FLS))

  • 1165 Accesses

Abstract

For many biological systems different strategies, morphologies and/or behaviours have evolved in response to similar functional demands (a concept known as convergent evolution). The biodiversity on Earth thus holds a wealth of natural strategies that may provide tailored solutions to the social, economic and environmental challenges the world faces—a practice often referred to as biomimicry, biomimetics or bioinspiration. Despite the great potential and increasing popularity of bioinspiration as a research approach, deciding which biological systems to explore remains a challenging and complex task. Not only does the incompleteness of the knowledge about biodiversity inhibit the identification of suitable biological strategies, but also practitioners in the field of bioinspiration often rely on the assumption that natural structures are the result of evolutionary processes that strive for optimization, thereby failing to acknowledge the processes that might constrain adaptive evolution. The purpose of this chapter is threefold. First, we shed light on the evolutionary constraints and limitations that pose potential pitfalls for using biodiversity as a source of inspiration for innovation. Second, we highlight the central role that the study of convergent evolution could and should play in addressing the current challenges to approaches to bioinspiration. Finally, we provide valuable insights into methodological trends that might facilitate the identification and experimental analysis of biological systems and thereby advance our understanding of biological structures in novel ways. By engaging with these three lines of thought, we present a perspective on future directions for bioinspiration, drawing attention to the opportunities for improving the translation of biological knowledge into innovative solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abas, M. F. B., Rafie, A. S. B. M., Yusoff, H. B., & Ahmad, K. A. B. (2016). Flap** wing micro-aerial-vehicle: kinematics, membranes, and flap** mechanisms of ornithopter and insect flight. Chinese Journal of Aeronautics, 29(5), 1159–1177.

    Article  Google Scholar 

  • Adriaens, D. (2019). Evomimetics: The biomimetic design thinking 2.0. In R. J. Martín-Palma, M. Knez, & A. Lakhtakia (Eds.), Bioinspiration, biomimetics, and bioreplication IX (p. 1096509). International Society for Optics and Photonics.

    Google Scholar 

  • Arbour, V. M., & Zanno, L. E. (2020). Tail weaponry in ankylosaurs and glyptodonts: An example of a rare but strongly convergent phenotype. The Anatomical Record, 303(4), 988–998.

    Article  PubMed  Google Scholar 

  • Autumn, K., Sitti, M., Liang, Y. A., Peattie, A. M., Hansen, W. R., Sponberg, S., Kenny, T. W., Fearing, R., Israelachvili, J. N., & Full, R. J. (2002). Evidence for van der Waals adhesion in gecko setae. Proceedings of the National Academy of Sciences, 99(19), 12252–12256.

    Article  CAS  Google Scholar 

  • Baik, S., Park, Y., Lee, T. J., Bhang, S. H., & Pang, C. (2017). A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature, 546(7658), 396–400.

    Article  CAS  PubMed  Google Scholar 

  • Bars-Closel, M., Kohlsdorf, T., Moen, D. S., & Wiens, J. J. (2017). Diversification rates are more strongly related to microhabitat than climate in squamate reptiles (lizards and snakes). Evolution, 71(9), 2243–2261.

    Article  PubMed  Google Scholar 

  • Barthlott, W., & Neinhuis, C. (1997). Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202(1), 1–8.

    Article  CAS  Google Scholar 

  • Bartlett, M. D., Croll, A. B., King, D. R., Paret, B. M., Irschick, D. J., & Crosby, A. J. (2012). Looking beyond fibrillar features to scale gecko-like adhesion. Advanced Materials, 24(8), 1078–1083.

    Article  CAS  PubMed  Google Scholar 

  • Borda, E., Oceguera-Figueroa, A., & Siddall, M. E. (2008). On the classification, evolution and biogeography of terrestrial haemadipsoid leeches (Hirudinida: Arhynchobdellida: Hirudiniformes). Molecular Phylogenetics and Evolution, 46(1), 142–154.

    Article  PubMed  Google Scholar 

  • Boyer, S., Hérissant, L., & Sherlock, G. (2021). Adaptation is influenced by the complexity of environmental change during evolution in a dynamic environment. PLoS Genetics, 17(1), e1009314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broeckhoven, C., & du Plessis, A. (2017). Has snake fang evolution lost its bite? New insights from a structural mechanics viewpoint. Biology Letters, 13(8), 20170293.

    Article  PubMed  PubMed Central  Google Scholar 

  • Broeckhoven, C., & du Plessis, A. (2018). X-ray microtomography in herpetological research: A review. Amphibia-Reptilia, 39(4), 377–401.

    Article  Google Scholar 

  • Broeckhoven, C., & du Plessis, A. (2022). Esca** the labyrinth of bioinspiration: Biodiversity as key to successful product innovation. Advanced Functional Materials, 32(18), 2110235.

    Article  CAS  Google Scholar 

  • Broeckhoven, C., du Plessis, A., & Hui, C. (2017). Functional trade-off between strength and thermal capacity of dermal armor: insights from girdled lizards. Journal of the Mechanical Behavior of Biomedical Materials, 74, 189–194.

    Article  PubMed  Google Scholar 

  • Chatterjee, S., Lind, R., & Roberts, B. (2013). The novel characteristics of pterosaurs: Biological inspiration for robotic vehicles. International Journal of Design & Nature and Ecodynamics, 8(2), 113–143.

    Article  Google Scholar 

  • Cunningham, J. A., Rahman, I. A., Lautenschlager, S., Rayfield, E. J., & Donoghue, P. C. (2014). A virtual world of paleontology. Trends in Ecology & Evolution, 29(6), 347–357.

    Article  Google Scholar 

  • Deldin, J. M., & Schuknecht, M. (2014). The AskNature database: Enabling solutions in biomimetic design. In A. K. Goel, D. A. McAdams, & R. B. Stone (Eds.), Biologically inspired design (pp. 17–27). Springer.

    Chapter  Google Scholar 

  • Ditsche, P., & Summers, A. P. (2014). Aquatic versus terrestrial attachment: Water makes a difference. Beilstein Journal of Nanotechnology, 5(1), 2424–2439.

    Article  PubMed  PubMed Central  Google Scholar 

  • Domel, A. G., Domel, G., Weaver, J. C., Saadat, M., Bertoldi, K., & Lauder, G. V. (2018). Hydrodynamic properties of biomimetic shark skin: Effect of denticle size and swimming speed. Bioinspiration & Biomimetics, 13(5), 056014.

    Article  Google Scholar 

  • Drol, C. J., Kennedy, E. B., Hsiung, B. K., Swift, N. B., & Tan, K. T. (2019). Bioinspirational understanding of flexural performance in hedgehog spines. Acta Biomaterialia, 94, 553–564.

    Article  PubMed  Google Scholar 

  • du Plessis, A., & Broeckhoven, C. (2019). Looking deep into nature: A review of micro-computed tomography in biomimicry. Acta Biomaterialia, 85, 27–40.

    Article  PubMed  Google Scholar 

  • du Plessis, A., & Broeckhoven, C. (2022). Functional synergy of biomimicry and additive manufacturing: Toward a bio-enhanced engineering approach. In M. Eggermont, V. Shyam, & A. F. Hepp (Eds.), Biomimicry for materials, design and habitats (pp. 269–289). Elsevier.

    Chapter  Google Scholar 

  • du Plessis, A., Broeckhoven, C., Yadroitsev, I., Yadroitsava, I., & le Roux, S. G. (2018). Analyzing nature’s protective design: The glyptodont body armor. Journal of the Mechanical Behavior of Biomedical Materials, 82, 218–223.

    Article  PubMed  Google Scholar 

  • du Plessis, A., Broeckhoven, C., Yadroitsava, I., Yadroitsev, I., Hands, C. H., Kunju, R., & Bhate, D. (2019). Beautiful and functional: A review of biomimetic design in additive manufacturing. Additive Manufacturing, 27, 408–427.

    Article  Google Scholar 

  • Farnsworth, M. (2020). Biomimicry and business: How companies are using nature’s strategies to succeed. Routledge.

    Book  Google Scholar 

  • Faulwetter, S., Vasileiadou, A., Kouratoras, M., Dailianis, T., & Arvanitidis, C. (2013). Micro-computed tomography: Introducing new dimensions to taxonomy. ZooKeys, 263, 1–15.

    Article  Google Scholar 

  • Fayemi, P. E., Wanieck, K., Zollfrank, C., Maranzana, N., & Aoussat, A. (2017). Biomimetics: Process, tools and practice. Bioinspiration and Biomimetics, 12(1), 011002.

    Article  CAS  PubMed  Google Scholar 

  • Federle, W., Barnes, W. J. P., Baumgartner, W., Drechsler, P., & Smith, J. M. (2006). Wet but not slippery: Boundary friction in tree frog adhesive toe pads. Journal of the Royal Society Interface, 3(10), 689–697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fish, F. E., & Beneski, J. T. (2014). Evolution and bio-inspired design: Natural limitations. In A. K. Goel, D. A. McAdams, & R. B. Stone (Eds.), Biologically inspired design (pp. 287–312). Springer.

    Chapter  Google Scholar 

  • Flammang, B. E., & Kenaley, C. P. (2017). Remora cranial vein morphology and its functional implications for attachment. Scientific Reports, 7(1), 1–5.

    Article  CAS  Google Scholar 

  • Flammang, P., Demeuldre, M., Hennebert, E., & Santos, R. (2016). Adhesive secretions in echinoderms: A review. In A. M. Smith (Ed.), Biological adhesives (pp. 193–222). Springer.

    Chapter  Google Scholar 

  • Gamble, T., Greenbaum, E., Jackman, T. R., Russell, A. P., & Bauer, A. M. (2012). Repeated origin and loss of adhesive toepads in geckos. PLoS One, 7(6), e39429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garner, A. M., Wilson, M. C., Russell, A. P., Dhinojwala, A., & Niewiarowski, P. H. (2019). Going out on a limb: How investigation of the anoline adhesive system can enhance our understanding of fibrillar adhesion. Integrative and Comparative Biology, 59(1), 61–69.

    Article  PubMed  Google Scholar 

  • Garner, A. M., Wilson, M. C., Wright, C., Russell, A. P., Niewiarowski, P. H., & Dhinojwala, A. (2021). The same but different: The setal arrays of anoles and geckos indicate alternative approaches to achieving similar adhesive effectiveness. Journal of Anatomy, 238(5), 1143–1155.

    Article  PubMed  Google Scholar 

  • Gibson, I., Rosen, D., Stucker, B., & Khorasani, M. (2021). Materials for additive manufacturing. In I. Gibson, D. Rosen, B. Stucker, & M. Khorasani (Eds.), Additive manufacturing technologies (pp. 379–428). Springer.

    Chapter  Google Scholar 

  • Gleich, A., Pade, C., Petschow, U., & Pissarskoi, E. (2010). Potentials and trends in biomimetics. Springer.

    Book  Google Scholar 

  • Gould, S. J., & Lewontin, R. (1979). The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society London B Biological Sciences, 205, 581–598.

    Article  CAS  Google Scholar 

  • Graeff, E., Maranzana, N., & Aoussat, A. (2019). Biomimetics, where are the biologists? Journal of Engineering Design, 30(8-9), 289–310.

    Article  Google Scholar 

  • Graeff, E., Letard, A., Raskin, K., Maranzana, N., & Aoussat, A. (2021). Biomimetics from practical feedback to an interdisciplinary process. Research in Engineering Design, 32, 1–27.

    Article  Google Scholar 

  • Green, D. W., Watson, J. A., Jung, H. S., & Watson, G. S. (2019). Natural history collections as inspiration for technology. BioEssays, 41(2), 1700238.

    Article  Google Scholar 

  • Hedrick, B. P., Heberling, J. M., Meineke, E. K., Turner, K. G., Grassa, C. J., Park, D. S., Kennedy, J., Clarke, J. A., Cook, J. A., Blackburn, D. C., Edwards, S. V., & Davis, C. C. (2020). Digitization and the future of natural history collections. Bioscience, 70(3), 243–251.

    Article  Google Scholar 

  • Holmes, M. W., Hammond, T. T., Wogan, G. O., Walsh, R. E., LaBarbera, K., Wommack, E. A., Martins, F. M., Crawford, J. C., Mack, K. L., Bloch, L. M., & Nachman, M. W. (2016). Natural history collections as windows on evolutionary processes. Molecular Ecology, 25(4), 864–881.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holzman, R., Collar, D. C., Mehta, R. S., & Wainwright, P. C. (2011). Functional complexity can mitigate performance trade-offs. The American Naturalist, 177(3), E69–E83.

    Article  PubMed  Google Scholar 

  • Irschick, D. J., Austin, C. C., Petren, K., Fisher, R. N., Losos, J. B., & Ellers, O. (1996). A comparative analysis of clinging ability among pad-bearing lizards. Biological Journal of the Linnean Society London, 59(1), 21–35.

    Article  Google Scholar 

  • Islam, M. K., Hazell, P. J., Escobedo, J. P., & Wang, H. (2021). Biomimetic armour design strategies for additive manufacturing: A review. Materials and Design, 205, 109730.

    Article  Google Scholar 

  • ISO/TC266. (2015). Biomimetics – Terminology, concepts and methodology. Beuth. ISO 18458:2015.

    Google Scholar 

  • Johnson, E. H., & Carter, A. M. (2019). Defossilization: A review of 3D printing in experimental paleontology. Frontiers in Ecology and Evolution, 7, 430.

    Article  Google Scholar 

  • Kier, W. M., & Smith, A. M. (1990). The morphology and mechanics of octopus suckers. The Biological Bulletin, 178(2), 126–136.

    Article  CAS  PubMed  Google Scholar 

  • King, D. R., Bartlett, M. D., Gilman, C. A., Irschick, D. J., & Crosby, A. J. (2014). Creating gecko-like adhesives for “real world” surfaces. Advanced Materials, 26(25), 4345–4351.

    Article  CAS  PubMed  Google Scholar 

  • Kuolt, H., Kampowski, T., Pop**a, S., Speck, T., Tautenhahn, R., Moosavi, A., Weber, J., Gabriel, F., Pierri, E., & Dröder, K. (2021). Biomimetic suction cups for energy-efficient industrial applications. In K. Dröder & T. Vietor (Eds.), Technologies for economic and functional lightweight design: Zukunftstechnologien für den multifunktionalen Leichtbau (pp. 182–188). Springer.

    Chapter  Google Scholar 

  • Lee, H., Um, D. S., Lee, Y., Lim, S., Kim, H. J., & Ko, H. (2016). Octopus-inspired smart adhesive pads for transfer printing of semiconducting nanomembranes. Advanced Materials, 28(34), 7457–7465.

    Article  CAS  PubMed  Google Scholar 

  • Lepora, N. F., Verschure, P., & Prescott, T. J. (2013). The state of the art in biomimetics. Bioinspiration & Biomimetics, 8(1), 013001.

    Article  Google Scholar 

  • Ma, J., & Müller, R. (2011). A method for characterizing the biodiversity in bat pinnae as a basis for engineering analysis. Bioinspiration & Biomimetics, 6(2), 026008.

    Article  Google Scholar 

  • Martini, R., Balit, Y., & Barthelat, F. (2017). A comparative study of bio-inspired protective scales using 3D printing and mechanical testing. Acta Biomaterialia, 55, 360–372.

    Article  CAS  PubMed  Google Scholar 

  • McGhee, G. R. (2011). Convergent evolution: Limited forms most beautiful. MIT Press.

    Book  Google Scholar 

  • McKitrick, M. C. (1993). Phylogenetic constraint in evolutionary theory: Has it any explanatory power? Annual Review of Ecology and Systematics, 24(1), 307–330.

    Article  Google Scholar 

  • McMichael, J. M., & Francis, M. S. (1997). Micro air vehicles – Toward a new dimension in flight. Defense Advanced Research Projects Agency.

    Google Scholar 

  • Müller, R., Abaid, N., Boreyko, J. B., Fowlkes, C., Goel, A. K., Grimm, C., Jung, S., Kennedy, B., Murphy, C., Cushing, N. D., & Han, J. P. (2018). Biodiversifying bioinspiration. Bioinspiration & Biomimetics, 13(5), 053001.

    Article  Google Scholar 

  • Muñoz, M. M., & Price, S. A. (2019). The future is bright for evolutionary morphology and biomechanics in the era of big data. Integrative and Comparative Biology, 59(3), 599–603.

    Article  PubMed  Google Scholar 

  • Naylor, E. R., & Higham, T. E. (2019). Attachment beyond the adhesive system: The contribution of claws to gecko clinging and locomotion. Integrative and Comparative Biology, 59(1), 168–181.

    Article  PubMed  Google Scholar 

  • North, M. A., Del Grosso, C. A., & Wilker, J. J. (2017). High strength underwater bonding with polymer mimics of mussel adhesive proteins. ACS Applied Materials & Interfaces, 9(8), 7866–7872.

    Article  CAS  Google Scholar 

  • Patek, S. N. (2014). Biomimetics and evolution. Science, 345(6203), 1448–1449.

    Article  CAS  PubMed  Google Scholar 

  • Peattie, A. M., Dirks, J. H., Henriques, S., & Federle, W. (2011). Arachnids secrete a fluid over their adhesive pads. PLoS One, 6(5), e20485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persson, B. N. J., & Gorb, S. (2003). The effect of surface roughness on the adhesion of elastic plates with application to biological systems. The Journal of Chemical Physics, 119(21), 11437–11444.

    Article  CAS  Google Scholar 

  • Porter, M. M., & Ravikumar, N. (2017). 3D-printing a ‘family’ of biomimetic models to explain armored gras** in syngnathid fishes. Bioinspiration & Biomimetics, 12(6), 066007.

    Article  Google Scholar 

  • Porter, M. M., Adriaens, D., Hatton, R. L., Meyers, M. A., & McKittrick, J. (2015). Why the seahorse tail is square. Science, 349(6243), aaa6683.

    Article  PubMed  Google Scholar 

  • Rayfield, E. J. (2007). Finite element analysis and understanding the biomechanics and evolution of living and fossil organisms. Annual Review of Earth and Planetary Sciences, 35, 541–576.

    Article  CAS  Google Scholar 

  • Riskin, D. K., & Fenton, M. B. (2001). Sticking ability in Spix's disk-winged bat, Thyroptera tricolor (Microchiroptera: Thyropteridae). Canadian Journal of Zoology, 79(12), 2261–2267.

    Article  Google Scholar 

  • Rosenberg, H. I., & Rose, R. (1999). Volar adhesive pads of the feathertail glider, Acrobates pygmaeus (Marsupialia; Acrobatidae). Canadian Journal of Zoology, 77(2), 233–248.

    Article  Google Scholar 

  • Russell, A. P. (2002). Integrative functional morphology of the gekkotan adhesive system (Reptilia: Gekkota). Integrative and Comparative Biology, 42(6), 1154–1163.

    Article  PubMed  Google Scholar 

  • Russell, A. P., & Garner, A. M. (2021). Setal field transects, evolutionary transitions and gecko–anole convergence provide insights into the fundamentals of form and function of the digital adhesive system of lizards. Frontiers of Mechanical Engineering, 6, 1–17.

    Google Scholar 

  • Russell, A. P., Stark, A. Y., & Higham, T. E. (2019). The integrative biology of gecko adhesion: Historical review, current understanding, and grand challenges. Integrative and Comparative Biology, 59(1), 101–116.

    Article  CAS  PubMed  Google Scholar 

  • Scherge, M., Gorb, S. N., & Gorb, S. (2001). Biological micro-and nanotribology. Springer.

    Book  Google Scholar 

  • Shyy, W., Kang, C. K., Chirarattananon, P., Ravi, S., & Liu, H. (2016). Aerodynamics, sensing and control of insect-scale flap**-wing flight. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 472(2186), 20150712.

    Google Scholar 

  • Snell-Rood, E. (2016). Interdisciplinarity: Bring biologists into biomimetics. Nature News, 529(7586), 277.

    Article  CAS  Google Scholar 

  • Speck, T., & Speck, O. (2008). Process sequences in biomimetic research. In C. A. Brebbia (Ed.), Design & nature IV: Comparing design in nature with science and engineering (pp. 3–11). WITPress.

    Google Scholar 

  • Speck, O., Speck, D., Horn, R., Gantner, J., & Sedlbauer, K. P. (2017). Biomimetic bio-inspired biomorph sustainable? An attempt to classify and clarify biology-derived technical developments. Bioinspiration & Biomimetics, 12(1), 011004.

    Article  Google Scholar 

  • Stark, A. Y., Subarajan, S., Jain, D., Niewiarowski, P. H., & Dhinojwala, A. (2016). Superhydrophobicity of the gecko toe pad: Biological optimization versus laboratory maximization. Philosophical Transactions of the Royal Society A, 374, 20160184.

    Article  Google Scholar 

  • Taylor, G., Carruthers, A., Hubel, T., & Walker, S. (2012). Wing morphing in insects, birds and bats: Mechanism and function. In J. Valasek (Ed.), Morphing aerospace vehicles and structures (pp. 13–40). Wiley.

    Google Scholar 

  • Tramacere, F., Follador, M., Pugno, N. M., & Mazzolai, B. (2015). Octopus-like suction cups: from natural to artificial solutions. Bioinspiration and Biomimetics, 10(3), 035004.

    Article  CAS  PubMed  Google Scholar 

  • Vincent, J. F. (2016). The trade-off: A central concept for biomimetics. Bioinspired, Biomimetic and Nanobiomaterials, 6(2), 67–76.

    Article  Google Scholar 

  • Vincent, J. F., Bogatyreva, O. A., Bogatyrev, N. R., Bowyer, A., & Pahl, A. K. (2006). Biomimetics: Its practice and theory. Journal of the Royal Society Interface, 3(9), 471–482.

    Article  PubMed  PubMed Central  Google Scholar 

  • Waite, J. H., Andersen, N. H., Jewhurst, S., & Sun, C. (2005). Mussel adhesion: Finding the tricks worth mimicking. The Journal of Adhesion, 81(3-4), 297–317.

    Article  CAS  Google Scholar 

  • Walker, G. (1993). Adhesion to smooth surfaces by insects – a review. International Journal of Adhesion and Adhesives, 13(1), 3–7.

    Article  Google Scholar 

  • Wanieck, K., & Beismann, H. (2021). Perception and role of standards in the world of biomimetics. Bioinspired, Biomimetic and Nanobiomaterials, 10(1), 8–15.

    Article  Google Scholar 

  • Wanieck, K., Fayemi, P. E., Maranzana, N., Zollfrank, C., & Jacobs, S. (2017). Biomimetics and its tools. Bioinspired, Biomimetic, and Nanobiomaterials, 6(2), 53–66.

    Article  Google Scholar 

  • Wen, L., Weaver, J. C., & Lauder, G. V. (2014). Biomimetic shark skin: Design, fabrication and hydrodynamic function. The Journal of Experimental Biology, 217(10), 1656–1666.

    Article  PubMed  Google Scholar 

  • Wen, L., Weaver, J. C., Thornycroft, P. J., & Lauder, G. V. (2015). Hydrodynamic function of biomimetic shark skin: Effect of denticle pattern and spacing. Bioinspiration & Biomimetics, 10(6), 066010.

    Article  Google Scholar 

  • Wu, M., Zheng, X., Liu, R., Hou, N., Afridi, W. H., Afridi, R. H., Guo, X., Wu, J., Wang, C., & ** and sensing. Advanced Science, 9(17), 2104382.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Broeckhoven .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Broeckhoven, C., du Plessis, A. (2023). Convergent Evolution: Theory and Practice for Bioinspiration. In: Bels, V.L., Russell, A.P. (eds) Convergent Evolution. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-11441-0_17

Download citation

Publish with us

Policies and ethics

Navigation