Refinement of Lattice Parameters and Determination of Local Elastic Strains

  • Chapter
  • First Online:
Indexing of Crystal Diffraction Patterns

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 326))

  • 600 Accesses

Abstract

Having an indexed diffraction pattern, the next goal is to determine lattice parameters with high accuracy. From the computational viewpoint, the problem of refinement of lattice parameters in the process of structure determination is closely related to determination of elastic strains. This chapter describes computational aspects of two example methods for diffraction-based determination of micro-strains; one method relies on convergent beam electron diffraction patterns and the other on Kossel patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Broadening is also caused by crystalline defects, small crystallite sizes (in the case of X-rays) and by instrumental effects.

  2. 2.

    The assumption of plane strain is often made, but it is not justified in the presence of anisotropy.

  3. 3.

    Here and below, it is assumed that there are no distortions of the pattern recording medium or device.

  4. 4.

    If the pattern is registered with a large camera length and a low-index zone axis parallel to the optical axis of the microscope, the lines corresponding to reciprocal lattice nodes high on the Ewald sphere are referred to as high order Laue zone (HOLZ) lines.

  5. 5.

    Such lines are located far from low-index zone axes.

  6. 6.

    Take for instance procedures for strain determination; they could be limited to calculation of the strain tensor components with the assumption of plane stress conditions (e.g., [39]), in the plane strain approximation (e.g., [40]), or some other selected components are determined (e.g., [9]).

  7. 7.

    The older methods are reviewed in [57, 58].

References

  1. V.V. Lider, Precise determination of crystal lattice parameters. Physics - Uspekhi 63, 907–928 (2020)

    Article  ADS  Google Scholar 

  2. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, London, 1954)

    Google Scholar 

  3. J.M. Cowley, Diffraction Physics (North-Holland, Amsterdam, 1981)

    Google Scholar 

  4. P.M. Jones, G.M. Rackham, J.W. Steeds, Higher order Laue zone effects in electron diffraction and their use in lattice parameter determination. Proc. Roy. Soc. Lond. A 354, 197–222 (1977)

    Article  ADS  Google Scholar 

  5. A. Armigliato, R. Balboni, S. Frabboni, Improving spatial resolution of convergent beam electron diffraction strain map** in silicon microstructures. Appl. Phys. Lett. 86, Art. No. 063508 (2005)

    Google Scholar 

  6. S. Frabboni, F. Gambetta, A. Armigliato, R. Balboni, S. Balboni, F. Cembali, Lattice strain and static disorder determination in Si/\(\text{ Si}_{1-x}\text{ Ge}_{x}\)/Si heterostructures by convergent beam electron diffraction. Phys. Rev. B 60, 13750–13761 (1999)

    Article  ADS  Google Scholar 

  7. A. Armigliato, R. Balboni, S. Frabboni, A. Benedetti, A.G. Cullis, G.P. Carnevale, P. Colpani, G. Pavia, Strain characterisation of shallow trench isolation structures on a nanometer scale by convergent beam electron diffraction. Mat. Sci. Semicon. Proc. 4, 97–99 (2001)

    Article  Google Scholar 

  8. T. Akaogi, K. Tsuda, M. Terauchi, M. Tanaka, Lattice parameter determination of a strained area of an InAs layer on a GaAs substrate using CBED. J. Electron Microsc. 53, 11–19 (2004)

    Article  Google Scholar 

  9. S.L. Toh, K.P. Loh, C.B. Boothroyd, K. Li, C.H. Ang, L. Chan, Strain analysis in silicon substrates under uniaxial and biaxial stress by convergent beam electron diffraction. J. Vac. Sci. Technol. B 23, 940–946 (2005)

    Article  Google Scholar 

  10. J. Li, R.P. Wahi, Investigation of \(\gamma /\gamma ^{\prime }\) lattice mismatch in the polycrystalline nickel-base superalloy IN738LC: influence of heat treatment and creep deformation. Acta Metall. Mater. 43, 507–517 (1995)

    Article  Google Scholar 

  11. R. Völkl, U. Glatzel, M. Feller-Kniepmeier, Measurement of the lattice misfit in the single crystal nickel based superalloys CMSX-4, SRR99 and SC16 by convergent beam electron diffraction. Acta Mater. 46, 4395–4404 (1998)

    Article  ADS  Google Scholar 

  12. C. Schulze, M. Feller-Kniepmeier, Transmisson electron microscopy of phase composition and lattice misfit in the Re-containing nickel-base superalloy CMSX-10. Mater. Sci. Engng A 281, 204–212 (2000)

    Google Scholar 

  13. M. Yonemura, K. Sueoka, K. Kamei, Analysis of local lattice strain around oxygen precipitates in silicon crystals using CBED technique. Appl. Surf. Sci. 130–132, 208–213 (1998)

    Article  ADS  Google Scholar 

  14. H. Heinrich, A. Vananti, G. Kostorz, Strain fields at interfaces of Al–based metal matrix composites. Mater. Sci. Engng A 319–438 (2001)

    Google Scholar 

  15. L. Clément, R. Pantel, L.F.T. Kwakman, J.L. Rouvière, Strain measurements by convergent-beam electron diffraction: the importance of stress relaxation in lamella preparations. Appl. Phys. Lett. 85, 651–653 (2004)

    Article  ADS  Google Scholar 

  16. A. Benedetti, H. Bender, A. Lauwers, C. Torregiani, K. Maex, Effects of surface relaxation on convergent-beam electron diffraction analysis of stress in silicon. J. Microsc. 223, 249–252 (2006)

    Google Scholar 

  17. K.Z. Troost, P. van der Sluis, D.J. Gravesteijn, Microscale elastic-strain determination by backscatter Kikuchi diffraction in the scanning electron microscope. Appl. Phys. Lett. 62, 1110–1112 (1993)

    Article  ADS  Google Scholar 

  18. A.J. Wilkinson, Measurement of elastic strains and small lattice rotations using electron back scatter diffraction. Ultramicroscopy 62, 237–247 (1996)

    Article  Google Scholar 

  19. A.J. Wilkinson, P.B. Hirsch, Electron diffraction based techniques in scanning electron microscopy of bulk materials. Micron 28, 279–308 (1997)

    Article  Google Scholar 

  20. A.J. Wilkinson, G. Meaden, D.J. Dingley, High-resolution elastic strain measurement from electron backscatter diffraction patterns: new levels of sensitivity. Ultramicroscopy 106, 307–313 (2006)

    Article  Google Scholar 

  21. X. Tao, A. Eades, Measurement and map** of small changes of crystal orientation by electron backscattering diffraction. Microsc. Microanal. 11, 341–353 (2005)

    Article  ADS  Google Scholar 

  22. J.M. Zuo, J.C.H. Spence, Automated structure factor refinement from convergent-beam patterns. Ultramicroscopy 35, 185–196 (1991)

    Article  Google Scholar 

  23. C. Deininger, G. Necker, J. Mayer, Determination of structure factors, lattice strains and accelerating voltage by energy-filtered convergent beam electron diffraction. Ultramicroscopy 54, 15–30 (1994)

    Article  Google Scholar 

  24. Y. Ogata, K. Tsuda, Y. Akishige, M. Tanaka, Refinement of the crystal structural parameters of the intermediate phase of h–BaTi\(\text{ O}_3\) using convergent-beam electron diffraction. Acta Cryst. A 60, 525–531 (2004)

    Google Scholar 

  25. A. Morawiec, An algorithm for refinement of lattice parameters using CBED patterns. Ultramicroscopy 107, 390–395 (2007)

    Article  Google Scholar 

  26. J.M. Zuo, Automated lattice parameter measurement from HOLZ lines and their use for the measurement of oxygen content in \(\text{ YBa}_2\text{ Cu}_3\text{ O}_{7-\delta }\) from nanometer-sized region. Ultramicroscopy 41, 211–223 (1992)

    Article  Google Scholar 

  27. S.J. Rozeveld, J.M. Howe, S. Schmauder, Measurement of residual strain in an Al-Si\(\text{ C}_w\) composite using convergent-beam electron diffraction. Acta Metall. Mater. 40, S173–S193 (1992)

    Article  Google Scholar 

  28. T. Yamazaki, T. Isaka, K. Kuramochi, I. Hashimotoa, K. Watanabe, Precise measurement of local strain fields with energy-unfiltered convergent-beam electron diffraction. Acta Cryst. A 62, 201–207 (2006)

    Article  Google Scholar 

  29. A. Morawiec, Orientations and Rotations. Computations in Crystallographic Textures (Springer, Berlin, 2004)

    Google Scholar 

  30. S. Krämer, J. Mayer, C. Witt, A. Weickenmeier, M. Rühle, Analysis of local strain in aluminium interconnects by energy filtered CBED. Ultramicroscopy 81, 245–262 (2000)

    Article  Google Scholar 

  31. H.J. Maier, R.R. Keller, H. Renner, H. Mughrabi, A. Preston, On the unique evaluation of local lattice parameters by convergent-beam electron diffraction. Philos. Mag. A 74, 23–43 (1996)

    Article  ADS  Google Scholar 

  32. A. Morawiec, Formal conditions for unambiguous residual strain determination by CBED. Philos. Mag. 85, 1611–1623 (2005)

    Article  ADS  Google Scholar 

  33. J.M. Zuo, M. Kim, R. Holmestad, A new approach to lattice parameter measurements using dynamic electron diffraction and pattern matching. J. Electron Microsc. 47, 121–127 (1998)

    Article  Google Scholar 

  34. M. Kim, J.M. Zuo, G.S. Park, High-resolution strain measurement in shallow trench isolation structures using dynamic electron diffraction. Appl. Phys. Lett. 84, 2181–2183 (2004)

    Article  ADS  Google Scholar 

  35. J.C.H. Spence, J.M. Zuo, Electron Microdiffraction (Plenum, New York, 1992)

    Google Scholar 

  36. X.Z. Li, JECP/HOLZ - an interactive computer program for simulation of HOLZ patterns. J. Appl. Cryst. 38, 576–577 (2005)

    Google Scholar 

  37. R. Völkl, U. Glatzel, M. Feller-Kniepmeier, Image CBED++ - an easy to use program for rapid analysis of CBED HOLZ line patterns, in Electron Microscopy 1998: Proceedings of the 14th International Congress on Electron Microscopy, Cancun, Mexico, ed. by H.A. Calderón Benavides, M.J. Yacamàn (Institute of Physics Publishing, Bristol, 1998), pp. 785–786

    Google Scholar 

  38. P. Paczkowski, M. Gigla, A. Kostka, H. Morawiec, The software tool for lattice parameters determination from nanoareas using CBED patterns. Mater. Chem. Phys. 81, 233–236 (2003)

    Article  Google Scholar 

  39. B. Li, H. Zou, J. Pan, A study of residual strain in a \(\text{ K}_2\)O.6Ti\(\text{ O}_{2W}\)/Al composite by using convergent beam electron diffraction. Scripta Mater. 38, 1419–1425 (1998)

    Google Scholar 

  40. A. Toda, N. Ikarashi, H. Ono, Local lattice strain measurements in semiconductor devices by using convergent-beam electron diffraction. J. Cryst. Growth 210, 341–345 (2000)

    Article  ADS  Google Scholar 

  41. A. Morawiec, A program for refinement of lattice parameters based on multiple convergent beam electron diffraction patterns. J. Appl. Cryst. 40, 618–622 (2007)

    Article  Google Scholar 

  42. D. Waasmaier, A. Kirfel, New analytical scattering-factor functions for free atoms and ions. Acta Cryst. A 51, 416–431 (1995)

    Article  Google Scholar 

  43. A. Morawiec, Determinability of complete residual strain tensor from multiple CBED patterns. Mater. Sci. Forum 524–525, 115–120 (2006)

    Article  Google Scholar 

  44. W. Kossel, V. Loeck, H. Voges, Die Richtungsverteilung der in einem Kristall entstandenen charakteristischen Röntgenstrahlung. Z. Phys. 94, 139–144 (1935)

    Article  ADS  Google Scholar 

  45. K. Lonsdale, Divergent-beam X-ray photography of crystals. Philos. Trans. R. Soc. A 240, 219–250 (1947)

    ADS  Google Scholar 

  46. H.J. Ullrich, M. Schlaubitz, F. Friedel, T. Spann, J. Bauch, T. Wroblewski, S. Garbe, G. Gaul, A. Knöchel, F. Lechtenberg, E. Rossmanith, G. Kumpat, G. Ulrich, Excitation of Kossel patterns by synchrotron radiation. Nucl. Instrum. Methods A 349, 269–273 (1994)

    Article  ADS  Google Scholar 

  47. Ch. Schetelich, S. Weber, V. Geist, M. Schlaubitz, H.J. Ullrich, S. Kek, H.G. Krane, Recording of Kossel patterns using monochromatic synchrotron radiation. Nucl. Instrum. Methods B 103, 236–242 (1995)

    Article  ADS  Google Scholar 

  48. A.M. Glazer, S.P. Collins, D. Zekria, J. Liu, M. Golshan, Observation of divergent-beam X-ray diffraction from a crystal of diamond using synchrotron radiation. J. Synchrotron Rad. 11, 187–189 (2004)

    Article  Google Scholar 

  49. A.G.A. Nisbet, G. Beutier, F. Fabrizi, B. Moser, S.P. Collins, Diffuse multiple scattering. Acta Cryst. A 71, 20–25 (2015)

    Google Scholar 

  50. D.L. Vieth, H. Yakowitz, Design considerations for a Kossel microdiffraction camera. Rev. Sci. Instr. 37, 206–209 (1966)

    Article  ADS  Google Scholar 

  51. D.L. Vieth, H. Yakowitz, Tensile loading device for Kossel microdiffraction and metallography. Rev. Sci. Instr. 39, 1929–1931 (1968)

    Article  ADS  Google Scholar 

  52. E. Langer, S. Däbritz, C. Schurig, W. Hauffe, Lattice constant determination from Kossel patterns observed by CCD camera. Appl. Surf. Sci. 179, 45–48 (2001)

    Article  ADS  Google Scholar 

  53. S. Berveiller, P. Dubos, K. Inal, A. Eberhardt, E. Patoor, Inter- and intra-granular strain analysis by microdiffraction Kossel. Mater. Sci. Forum 490–491, 159–164 (2005)

    Article  Google Scholar 

  54. E. Langer, R. Kurt, S. Däbritz, KOPSKO: a computer program for generation of Kossel and pseudo Kossel diffraction patterns. Cryst. Res. Technol. 34, 801–816 (1999)

    Google Scholar 

  55. S. Weber, KOQUA2.0: a program for simulating divergent-beam diffraction patterns for crystals and quasicrystals. J. Appl. Cryst. 30, 85–86 (1997)

    Google Scholar 

  56. P.P. Ewald, Introduction to the dynamical theory of X-ray diffraction. Acta Cryst. A 25, 103–108 (1969)

    Article  Google Scholar 

  57. P. Gielen, H. Yakowitz, D. Ganow, R.E. Ogilvie, Evaluation of Kossel microdiffraction procedures: the cubic case. J. Appl. Phys. 36, 773–782 (1965)

    Article  ADS  Google Scholar 

  58. R. Tixier, C. Wache, Kossel patterns. J. Appl. Cryst. 3, 466–485 (1970)

    Google Scholar 

  59. A. Morawiec, A program for refinement of lattice parameters and strain determination using Kossel diffraction patterns. J. Appl. Cryst. 49, 322–329 (2016)

    Article  Google Scholar 

  60. A. Morawiec, A profile-based method of determining intragranular strains using Kossel diffraction patterns. Adv. Mat. Res. 996, 52–57 (2014)

    Google Scholar 

  61. B.J. Isherwood, C.A. Wallace, The geometry of X-ray multiple diffraction in crystals. Acta Cryst. A 27, 119–130 (1971)

    Article  Google Scholar 

  62. N. Harris, Indexing Kossel patterns. J. Mater. Sci. 10, 279–289 (1975)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Morawiec .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morawiec, A. (2022). Refinement of Lattice Parameters and Determination of Local Elastic Strains. In: Indexing of Crystal Diffraction Patterns. Springer Series in Materials Science, vol 326. Springer, Cham. https://doi.org/10.1007/978-3-031-11077-1_14

Download citation

Publish with us

Policies and ethics

Navigation