SPROUT - Smart Power ROUting Tool for board-level exploration and prototy**

  • Chapter
  • First Online:
Graphs in VLSI

Abstract

The board-level power network design process is governed by system-level parameters such as the number of layers and the ball grid array (BGA) pattern. These parameters influence the characteristics of the resulting system, such as power, speed, and cost. Evaluating the impact of these parameters is however challenging. To estimate the reduction in impedance if, for example, additional BGA balls are dedicated to the power delivery system, adjustments to the board layout and an additional impedance extraction process are required. These processes are poorly automated, requiring significant time and labor. Automating both power network exploration and prototy** can greatly enhance the board-level power delivery design process by increasing the number of possible design options. With power network exploration and prototy**, the effects of the system parameters on the electrical characteristics can be better understood, providing valuable insight into early stages of the design process. SPROUT – an automated algorithm for prototy** printed circuit board (PCB) power networks – is presented here. This tool includes the first fully automated algorithm for board-level power network layout synthesis. Two board-level industrial power networks are synthesized using SPROUT. The impedance of the resulting layouts exhibits good agreement with manual PCB layouts while significantly reducing the design time. The tool is used to explore area/impedance tradeoffs in a three rail system, providing useful data to enhance the PCB design process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 58.84
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 74.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Bairamkulov, A. Roy, M. Nagarajan, V. Srinivas, and E. G. Friedman, “SPROUT - Smart Power ROUting Tool for Board-Level Exploration and Prototy**,” Proceedings of the ACM/IEEE Design Automation Conference, pp. 283–288, December 2021.

    Google Scholar 

  2. R. Bairamkulov, T. Jabbari, E.G. Friedman, “QuCTS-single-flux quantum clock tree synthesis”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 41(10), 3346–3358 (October 2022)

    Article  Google Scholar 

  3. R. Bairamkulov and E. G. Friedman, “Effective Resistance of Two-Dimensional Truncated Infinite Mesh Structures,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 66, No. 11, pp. 4368–4376, November 2019.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Bairamkulov and E. G. Friedman, “Effective Resistance of Finite Two-Dimensional Grids based on Infinity Mirror Technique,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 67, No. 9, pp. 3224–3233, September 2020.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Bairamkulov, K. Xu, M. Popovich, J. S. Ochoa, V. Srinivas, and E. G. Friedman, “Power Delivery Exploration Methodology based on Constrained Optimization,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 39, No. 9, pp. 1916–1924, September 2020.

    Article  Google Scholar 

  6. S. H. Gerez, Algorithms for VLSI Design Automation, Wiley, 1998.

    Google Scholar 

  7. R. Bairamkulov, A. Roy, M. Nagarajan, V. Srinivas, and E. G. Friedman, “Graph-Based Power Network Routing for Board-Level High Performance Systems,” Proceedings of the IEEE International Symposium on Circuits and Systems, October 2020.

    Google Scholar 

  8. A. V. Mezhiba and E. G. Friedman, “Inductive Properties of High-Performance Power Distribution Grids,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 10, No. 6, pp. 762–776, December 2002.

    Article  Google Scholar 

  9. M. Popovich, M. Sotman, A. Kolodny, and E. G. Friedman, “Effective Radii of On-Chip Decoupling Capacitors,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 16, No. 7, pp. 894–907, July 2008.

    Article  Google Scholar 

  10. R. Bairamkulov, K. Xu, E. G. Friedman, M. Popovich, J. Ochoa, and V. Srinivas, “Versatile Framework for Power Delivery Exploration,” Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 1–5, May 2018.

    Google Scholar 

  11. K. Shringarpure, B. Zhao, L. Wei, B. Archambeault, A. Ruehli, M. Cracraft, M. Cocchini, E. Wheeler, J. Fan, and J. Drewniak, “On Finding the Optimal Number of Decoupling Capacitors by Minimizing the Equivalent Inductance of the PCB PDN,” Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, pp. 218–223, September 2014.

    Google Scholar 

  12. C. M. Smutzer, C. K. White, C. R. Haider, and B. K. Gilbert, “Power Delivery Network Pre-Layout Design Planning and Analysis through Automated Scripting,” Proceedings of the IEEE Workshop on Signal and Power Integrity, pp. 1–4, June 2019.

    Google Scholar 

  13. J. Mohamed, T. Michalka, S. Ozbayat, and G. R. Luevano, “PDN Design and Sensitivity Analysis using Synthesized Models in DDR SI/PI Co-Simulations,” Proceedings of the IEEE Electrical Design of Advanced Packaging and Systems Symposium, pp. 1–3, December 2018.

    Google Scholar 

  14. S. Yang, Y. S. Cao, H. Ma, J. Cho, A. E. Ruehli, J. L. Drewniak, and E. Li, “PCB PDN Prelayout Library for Top-Layer Inductance and the Equivalent Model for Decoupling Capacitors,” IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 6, pp. 1898–1906, August 2017.

    Article  Google Scholar 

  15. Y. S. Cao, T. Makharashvili, J. Cho, S. Bai, S. Connor, B. Archambeault, L. Jiang, A. E. Ruehli, J. Fan, and J. L. Drewniak, “Inductance Extraction for PCB Prelayout Power Integrity using PMSR Method,” IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 4, pp. 1339–1346, August 2017.

    Article  Google Scholar 

  16. B. Zhao, C. Huang, K. Shringarpure, J. Fan, B. Archambeault, B. Achkir, S. Connor, M. Cracraft, M. Cocchini, A. Ruehli, and J. Drewniak, “Analytical PDN Voltage Ripple Calculation using Simplified Equivalent Circuit Model of PCB PDN,” Proceedings of the IEEE Symposium on Electromagnetic Compatibility and Signal Integrity, pp. 133–138, March 2015.

    Google Scholar 

  17. S. Sun, D. Pommerenke, J. L. Drewniak, K. **ao, S.-T. Chen, and T.-L. Wu, “Characterizing Package/PCB PDN Interactions from a Full-Wave Finite-Difference Formulation,” Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, Vol. 2, pp. 550–555, August 2006.

    Google Scholar 

  18. B. Archambeault, M. Cocchini, G. Selli, J. Fan, J. L. Knighten, S. Connor, A. Orlandi, and J. Drewniak, “Design Methodology for PDN Synthesis on Multilayer PCBs,” Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, pp. 1–6, August 2008.

    Google Scholar 

  19. J. Fan, J. L. Drewniak, J. L. Knighten, N. W. Smith, A. Orlandi, T. P. Van Doren, T. H. Hubing, and R. E. DuBroff, “Quantifying SMT Decoupling Capacitor Placement in DC Power-Bus Design for Multilayer PCBs,” IEEE Transactions on Electromagnetic Compatibility, Vol. 43, No. 4, pp. 588–599, August 2001.

    Article  Google Scholar 

  20. T.-L. Wu, H.-H. Chuang, and T.-K. Wang, “Overview of Power Integrity Solutions on Package and PCB: Decoupling and EBG Isolation,” IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 2, pp. 346–356, July 2010.

    Article  Google Scholar 

  21. T. Hubing, “PCB EMC Design Guidelines: a Brief Annotated List,” Proceedings of the IEEE Symposium on Electromagnetic Compatibility, pp. 34–36, August 2003.

    Google Scholar 

  22. M. Moganti, F. Ercal, C. H. Dagli, and S. Tsunekawa, “Automatic PCB Inspection Algorithms: a Survey,” Computer Vision and Image Understanding, Vol. 63, No. 2, pp. 287–313, March 1996.

    Article  Google Scholar 

  23. G. Greiner and K. Hormann, “Efficient Clip** of Arbitrary Polygons,” ACM Transactions on Graphics, Vol. 17, No. 2, pp. 71–83, April 1998.

    Article  Google Scholar 

  24. B. R. Vatti, “A Generic Solution to Polygon Clip**,” Communications of the ACM, Vol. 35, No. 7, pp. 56–63, July 1992.

    Article  Google Scholar 

  25. I. Savidis and E. G. Friedman, “Electrical Modeling and Characterization of 3-D Vias,” IEEE International Symposium on Circuits and Systems, pp. 784–787, May 2008.

    Google Scholar 

  26. S. Peyer, D. Rautenbach, and J. Vygen, “A Generalization of Dijkstra’s Shortest Path Algorithm with Applications to VLSI Routing,” Journal of Discrete Algorithms, Vol. 7, No. 4, pp. 377–390, December 2009.

    Article  MathSciNet  MATH  Google Scholar 

  27. P. J. van Laarhoven and E. H. Aarts, Simulated Annealing: Theory and Applications, Vol. 37, Springer Science & Business Media, 2013.

    Google Scholar 

  28. Y. K. Liu, X. Q. Wang, S. Z. Bao, M. Gomboši, and B. Žalik, “An Algorithm for Polygon Clip**, and for Determining Polygon Intersections and Unions,” Computers and Geosciences, Vol. 33, No. 5, pp. 589 – 598, May 2007.

    Article  Google Scholar 

  29. Z. Tang, J. Zhu, F. He, L. Feng, G. Yang, and G. Han, “Adaptive Polygon Simplification basing on Delaunay Triangulation and its Application in High Speed PCBs and IC Packages Simulation,” Proceedings of the IEEE International Conference on Microwave Technology & Computational Electromagnetics, pp. 253–256, May 2011.

    Google Scholar 

  30. W. Zeng and R. L. Church, “Finding Shortest Paths on Real Road Networks: the Case for A-Star,” International Journal of Geographical Information Science, Vol. 23, No. 4, pp. 531–543, June 2009.

    Article  Google Scholar 

  31. A. George and E. Ng, “On the Complexity of Sparse QR and LU Factorization of Finite-Element Matrices,” SIAM Journal on Scientific and Statistical Computing, Vol. 9, No. 5, pp. 849–861, September 1988.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bairamkulov, R., Friedman, E. (2023). SPROUT - Smart Power ROUting Tool for board-level exploration and prototy**. In: Graphs in VLSI. Springer, Cham. https://doi.org/10.1007/978-3-031-11047-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11047-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11046-7

  • Online ISBN: 978-3-031-11047-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation