Anthropogenic Noise Impacts on Invertebrates: Case of Freshwater Red Cherry Shrimp (Neocaridina davidi)

  • Living reference work entry
  • First Online:
The Effects of Noise on Aquatic Life

Abstract

Sound-generating human activities have considerably increased ambient noise levels in marine and freshwater ecosystems across the globe. Anthropogenic, human-made noise is an issue of international concern and rising in ambient sound levels may have negative consequences on aquatic animals at the individual and community level. Anthropogenic noise can negatively affect the behavior of aquatic animals in several ways. While some studies have addressed the effects of noise on fish species, there are considerable gaps in our understanding of the effects of noise more widely, especially on invertebrates. Our interest lies in the effect of noise on the “lower levels of food web members,” i.e., small crustaceans such as the red cherry shrimp (Neocaridina davidi), as model for the link between trophic levels. The red cherry shrimp is a gregarious species, abundant in freshwater habitats, and native to Asia. The red cherry shrimp has economic importance in the ornamental trade and ecological threat as a potential invasive species; however, its behavioral performance in response to anthropogenic noise is unknown. This chapter details the effect of sound exposure on shrimp under laboratory conditions. The findings revealed that noise impact assessments on invertebrates are critically important for understanding how anthropogenic noise alters food webs and reverberates through communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akamatsu T, Okumura T, Novarini N, Yan HY (2002) Empirical refinements applicable to the recording of fish sounds in small tanks. J Acoust Soc Am 112(6):3073–3082

    Article  PubMed  Google Scholar 

  • Azarm-Karnagh S, López Greco L, Sabet SS (2022) Annoying noise: effect of anthropogenic underwater noise on movement and feeding performance in the red cherry shrimp Neocaridina davidi. bioRxiv

    Google Scholar 

  • Bass AH, Clark CW (2003) The physical acoustics of underwater sound communication. In: Acoustic communication. Springer, New York, pp 15–64

    Chapter  Google Scholar 

  • Berghahan R, Wiese K, Lüdemann K (1995) Physical and physiological aspects of gear efficiency in North Sea brown shrimp fisheries. Helgoländer Meeresuntersuchungen 49(1):507–518

    Article  Google Scholar 

  • Breithaupt T (2002) Sound perception in aquatic crustaceans. In: The crustacean nervous system. Springer, Berlin/Heidelberg, pp 548–558

    Chapter  Google Scholar 

  • Breithaupt T, Tautz J (1988) Vibration sensitivity of the crayfish statocyst. Naturwissenschaften 75(6):310–312

    Article  Google Scholar 

  • Breithaupt T, Tautz J (1990) The sensitivity of crayfish mechanoreceptors to hydrodynamic and acoustic stimuli. In: Frontiers in crustacean neurobiology. Birkhäuser, Basel, pp 114–120

    Chapter  Google Scholar 

  • Brewer PG, Hester K (2009) Ocean acidification and the increasing transparency of the ocean to low-frequency sound. Oceanography 22(4):86–93

    Article  Google Scholar 

  • Brusca RC, Giribet G, Moore W (2022) Invertebrates, 4th edn. Oxford University Press, New York, 1104p

    Google Scholar 

  • Budelmann BU (1992) Hearing in nonarthropod invertebrates. In: The evolutionary biology of hearing. Springer, New York, pp 141–155

    Chapter  Google Scholar 

  • Campbell J, Shafiei Sabet S, Slabbekoorn H (2019) Particle motion and sound pressure in fish tanks: a behavioural exploration of acoustic sensitivity in the zebrafish. Behav Process 164:38–47

    Article  Google Scholar 

  • Carroll AG, Przeslawski R, Duncan A, Gunning M, Bruce B (2017) A critical review of the potential impacts of marine seismic surveys on fish & invertebrates. Mar Pollut Bull 114(1):9–24

    Article  CAS  PubMed  Google Scholar 

  • Caruthers JW (1977) Fundamentals of marine acoustics. Elsevier, Amsterdam

    Google Scholar 

  • Chang KH, Hanazato T (2003) Vulnerability of cladoceran species to predation by the copepod Mesocyclops leuckarti: laboratory observations on the behavioural interactions between predator and prey. Freshw Biol 48(3):476–484

    Article  Google Scholar 

  • Compson ZG, Monk WA, Hayden B, Bush A, O’Malley Z, Hajibabaei M, Porter TM, Wright MT, Baker CJ, Al Manir MS, Curry RA, Baird DJ (2019) Network-based biomonitoring: exploring freshwater food webs with stable isotope analysis and DNA metabarcoding. Front Ecol Evol 7:395

    Article  Google Scholar 

  • Dinh JP, Radford C (2021) Acoustic particle motion detection in the snap** shrimp (Alpheus richardsoni). J Comp Physiol A 207(5):641–655

    Article  Google Scholar 

  • Dodson SI, Ryan S, Tollrian R, Lampert W (1997) Individual swimming behavior of Daphnia: effects of food, light and container size in four clones. J Plankton Res 19(10):1537–1552

    Article  Google Scholar 

  • Duarte CM, Chapuis L, Collin SP, Costa DP, Devassy RP, Eguiluz VM, Erbe C, Gordon TA, Halpern BS, Harding HR, Havlik MN, Juanes F (2021) The soundscape of the Anthropocene Ocean. Science 371(6529):eaba4658

    Article  CAS  PubMed  Google Scholar 

  • Elliott M, Burdon D, Hemingway KL, Apitz SE (2007) Estuarine, coastal and marine ecosystem restoration: confusing management and science–a revision of concepts. Estuar Coast Shelf Sci 74(3):349–366

    Article  Google Scholar 

  • Fewtrell JL, McCauley RD (2012) Impact of air gun noise on the behaviour of marine fish and squid. Mar Pollut Bull 64(5):984–993

    Article  CAS  PubMed  Google Scholar 

  • Gray MD, Rogers PH, Popper AN, Hawkins AD, Fay RR (2016) “Large” tank acoustics: how big is big enough? In: The effects of noise on aquatic life II. Springer, New York, pp 363–369

    Chapter  Google Scholar 

  • Hawkins AD, Popper AN (2014) Assessing the impacts of underwater sounds on fishes and other forms of marine life. Acoust Today 10(2):30–41

    Google Scholar 

  • Hawkins A, Popper AN, Wahlberg M (2008) Introduction: international conference on the effects of noise on aquatic life. Bioacoustics 17(1–3):1–3

    Article  Google Scholar 

  • Hawkins AD, Pembroke AE, Popper AN (2015) Information gaps in understanding the effects of noise on fishes and invertebrates. Rev Fish Biol Fish 25(1):39–64

    Article  Google Scholar 

  • Hawkins AD, Hazelwood RA, Popper AN, Macey PC (2021) Substrate vibrations and their potential effects upon fishes and invertebrates. J Acoust Soc Am 149(4):2782–2790

    Article  PubMed  Google Scholar 

  • Hildebrand JA (2009) Anthropogenic and natural sources of ambient noise in the ocean. Mar Ecol Prog Ser 395:5–20

    Article  Google Scholar 

  • Hill PS, Virant-Doberlet M, Wessel A (2019) What is biotremology? In: Biotremology: studying vibrational behavior. Springer, Cham, pp 15–25

    Chapter  Google Scholar 

  • Jones IT, Peyla JF, Clark H, Song Z, Stanley JA, Mooney TA (2021) Changes in feeding behavior of longfin squid (Doryteuthis pealeii) during laboratory exposure to pile driving noise. Mar Environ Res 165:105250

    Article  CAS  PubMed  Google Scholar 

  • Kühn S, Utne-Palm AC, de Jong K (2022) Two of the most common crustacean zooplankton Meganyctiphanes norvegica and Calanus spp. produce sounds within the hearing range of their fish predators. Bioacoustics 32:73–89

    Article  Google Scholar 

  • Ladich F (2013) Diversity in hearing in fishes: ecoacoustical, communicative, and developmental constraints. In: Insights from comparative hearing research. Springer, New York, pp 289–321

    Chapter  Google Scholar 

  • Larsson P, Kleiven OT (1996) Food search and swimming speed in Daphnia. In: Lenz PH, Hartline DK, Purcell JE, Macmillan DL (eds) Zooplankton: Sensory Ecology and Physiology. Gordon-Breach, Amsterdam, pp. 375–387. https://doi.org/10.1201/9780203733615-28

  • Lecchini D, Bertucci F, Gache C, Khalife A, Besson M, Roux N, Berthe C, Singh S, Parmentier E, Nugues MM, Brooker RM, Dixon DL, Hédouin L (2018) Boat noise prevents soundscape-based habitat selection by coral planulae. Sci Rep 8(1):1–9

    Article  CAS  Google Scholar 

  • Mooney TA, Samson JE, Schlunk AD, Zacarias S (2016) Loudness-dependent behavioral responses and habituation to sound by the longfin squid (Doryteuthis pealeii). J Comp Physiol A 202(7):489–501

    Article  CAS  Google Scholar 

  • Morley EL, Jones G, Radford AN (2014) The importance of invertebrates when considering the impacts of anthropogenic noise. Proc R Soc B Biol Sci 281(1776):20132683

    Article  Google Scholar 

  • Myrberg AA Jr (1997) Underwater sound: its relevance to behavioral functions among fishes and marine mammals. Mar Freshw Behav Physiol 29(1–4):3–21

    Article  Google Scholar 

  • Nedelec SL, Campbell J, Radford AN, Simpson SD, Merchant ND (2016) Particle motion: the missing link in underwater acoustic ecology. Methods Ecol Evol 7(7):836–842

    Article  Google Scholar 

  • O’Keefe TC, Brewer M, Dodson SI (1998) Swimming behavior of Daphnia: its role in determining predation risk. J Plankton Res 20(5):973–984

    Article  Google Scholar 

  • Olivier F, Gigot M, Mathias D, Jezequel Y, Meziane T, L’Her C, Chauvaud L, Bonnel J (2022) Assessing the impacts of anthropogenic sounds on early stages of benthic invertebrates: the “Larvosonic system”. Limnol Oceanogr Methods 21:53

    Article  Google Scholar 

  • Parvulescu A (1967) The acoustics of small tanks. Mar Bio Acoust 2:7–13

    Google Scholar 

  • Popper AN, Fay RR (2011) Rethinking sound detection by fishes. Hearing research 273(1–2):25–36

    Google Scholar 

  • Popper AN, Hastings MC (2009) The effects of anthropogenic sources of sound on fishes. J Fish Biol 75(3):455–489

    Article  CAS  PubMed  Google Scholar 

  • Popper AN, Hawkins A (eds) (2016) The effects of noise on aquatic life II. Springer, New York, p 1292

    Google Scholar 

  • Popper AN, Hawkins AD (2018) The importance of particle motion to fishes and invertebrates. J Acoust Soc Am 143(1):470–488

    Article  PubMed  Google Scholar 

  • Popper AN, Salmon M, Horch KW (2001) Acoustic detection and communication by decapod crustaceans. J Comp Physiol A 187(2):83–89

    Article  CAS  PubMed  Google Scholar 

  • Popper AN, Hawkins AD, Sisneros JA (2022a) Fish hearing “specialization” – a re-evaluation. Hear Res 425:108393

    Article  PubMed  Google Scholar 

  • Popper AN, Hice-Dunton L, Jenkins E, Higgs DM, Krebs J, Mooney A, Rice A, Roberts L, Thomsen F, Vigness-Raposa K, Zeddies D, Williams KA (2022b) Offshore wind energy development: research priorities for sound and vibration effects on fishes and aquatic invertebrates. J Acoust Soc Am 151(1):205–215

    Article  PubMed  Google Scholar 

  • Prosnier L, Rojas E, Valéro O, Médoc V (2022a) Chronic noise unexpectedly increases fitness of a freshwater zooplankton. bioRxiv

    Google Scholar 

  • Prosnier L, Loeuille N, Hulot FD, Renault D, Piscart C, Bicocchi B, Deparis M, Lam M, Médoc V (2022b) Parasites make hosts more profitable but less available to predators. bioRxiv. https://doi.org/10.1101/2022.02.08.479552

  • Putland RL, Montgomery JC, Radford CA (2019) Ecology of fish hearing. J Fish Biol 95(1):39–52

    Article  PubMed  Google Scholar 

  • Radford AN, Kerridge E, Simpson SD (2014) Acoustic communication in a noisy world: can fish compete with anthropogenic noise? Behav Ecol 25(5):1022–1030

    Article  Google Scholar 

  • Roberts L, Elliott M (2017) Good or bad vibrations? Impacts of anthropogenic vibration on the marine epibenthos. Sci Total Environ 595:255–268

    Article  CAS  PubMed  Google Scholar 

  • Roberts L, Howard DR (2022) Substrate-borne vibrational noise in the anthropocene: from land to sea. In: Biotremology: physiology, ecology, and evolution. Springer, Cham, pp 123–155

    Chapter  Google Scholar 

  • Roberts L, Wickings K (2022) Biotremology: tap** into the world of substrate-borne waves. Acoust Today 18:49–57

    Article  Google Scholar 

  • Roberts L, Cheesman S, Breithaupt T, Elliott M (2015) Sensitivity of the mussel Mytilus edulis to substrate-borne vibration in relation to anthropogenically generated noise. Mar Ecol Prog Ser 538:185–195

    Article  CAS  Google Scholar 

  • Roberts L, Cheesman S, Elliott M, Breithaupt T (2016) Sensitivity of Pagurus bernhardus (L.) to substrate-borne vibration and anthropogenic noise. J Exp Mar Biol Ecol 474:185–194

    Article  Google Scholar 

  • Roberts L, Harding HR, Voellmy I, Bruintjes R, Simpson SD, Radford AN, Breithaupt T, Elliott M (2016) Exposure of benthic invertebrates to sediment vibration: from laboratory experiments to outdoor simulated pile-driving. In Proceedings of Meetings on Acoustics 4ENAL (Vol. 27, No. 1, p. 010029). Acoustical Society of America

    Google Scholar 

  • Rogers PH, Cox M (1988) Underwater sound as a biological stimulus. In: Sensory biology of aquatic animals. Springer, New York, pp 131–149

    Chapter  Google Scholar 

  • Rogers PH, Hawkins AD, Popper AN, Fay RR, Gray MD (2016) Parvulescu revisited: small tank acoustics for bioacousticians. In: The effects of noise on aquatic life II. Springer, New York, pp 933–941

    Chapter  Google Scholar 

  • Roozen F, Lürling M (2001) Behavioural response of Daphnia to olfactory cues from food, competitors and predators. J Plankton Res 23(8):797–808

    Article  Google Scholar 

  • Ruiz-Ruiz PA, Hinojosa IA, Urzua A, Urbina MA (2019) Anthropogenic noise disrupts mating behavior and metabolic rate in a marine invertebrate. In: Proceedings of meetings on acoustics 5ENAL, vol 37, no 1. Acoustical Society of America, p 040006

    Google Scholar 

  • Schierwater B, De Salle R (2021) Invertebrate zoology: a tree of life approach, 1st edn. CRC Press, Boca Raton, 628p

    Book  Google Scholar 

  • Shafiei Sabet S, Alizadeh Lademakhi F (2022) Measuring the spatial distribution of sound pressure in a fish tank under laboratory conditions. J Acoust Soc Iran 10(1):13–22

    Google Scholar 

  • Shafiei Sabet S, Neo YY, Slabbekoorn H (2015) The effect of temporal variation in sound exposure on swimming and foraging behaviour of captive zebrafish. Anim Behav 107:49–60

    Article  Google Scholar 

  • Shafiei Sabet S, Neo YY, Slabbekoorn H (2016) Impact of anthropogenic noise on aquatic animals: from single species to community-level effects. In: Popper A, Hawkins A (eds) The effects of noise on aquatic life II. Advances in experimental medicine and biology, vol 875. Springer, New York

    Google Scholar 

  • Shafiei Sabet S, Karnagh SA, Azbari FZ (2019) Experimental test of sound and light exposure on water flea swimming behaviour. In: Proceedings of meetings on acoustics 5ENAL, vol 37, no 1. Acoustical Society of America, p 010015

    Google Scholar 

  • Simpson SD, Radford AN, Nedelec SL, Ferrari MC, Chivers DP, McCormick MI, Meekan MG (2016) Anthropogenic noise increases fish mortality by predation. Nat Commun 7(1):1–7

    Article  Google Scholar 

  • Slabbekoorn H (2016) Aiming for progress in understanding underwater noise impact on fish: complementary need for indoor and outdoor studies. In: The effects of noise on aquatic life II. Springer, New York, pp 1057–1065

    Chapter  Google Scholar 

  • Slabbekoorn H, Bouton N, van Opzeeland I, Coers A, ten Cate C, Popper AN (2010) A noisy spring: the impact of globally rising underwater sound levels on fish. Trends Ecol Evol 25(7):419–427

    Article  PubMed  Google Scholar 

  • Slabbekoorn H, Dooling RJ, Popper AN, Fay RR (eds) (2018) Effects of anthropogenic noise on animals. ASA Press-Springer Science+Business Media, LLC, New York

    Google Scholar 

  • Spiga I (2016) Acoustic response to playback of pile-driving sounds by snap** shrimp. In: The effects of noise on aquatic life II. Springer, New York, pp 1081–1088

    Chapter  Google Scholar 

  • Swaddle JP, Francis CD, Barber JR, Cooper CB, Kyba CC, Dominoni DM, Shannon G, Aschehoug E, Goodwin SE, Kawahara AY, Luther DA, Spoelstra K, Voss M, Longcore T (2015) A framework to assess evolutionary responses to anthropogenic light and sound. Trends Ecol Evol 30(9):550–560

    Article  PubMed  Google Scholar 

  • Tyack PL (1998) Acoustic communication under the sea. In: Animal acoustic communication. Springer, Berlin/Heidelberg, pp 163–220

    Chapter  Google Scholar 

  • Van den Berg AV, Schuijf A (1985) Acoustics of a standing wave tank for studying the hearing capacity of fish. J Acoust Soc Am 78(1):12–16

    Article  PubMed  Google Scholar 

  • Wale MA, Simpson SD, Radford AN (2013) Noise negatively affects foraging and antipredator behaviour in shore crabs. Anim Behav 86(1):111–118

    Article  Google Scholar 

  • Wale MA, Briers RA, Hartl MG, Bryson D, Diele K (2019) From DNA to ecological performance: effects of anthropogenic noise on a reef-building mussel. Sci Total Environ 689:126–132

    Article  CAS  PubMed  Google Scholar 

  • Wale MA, Briers RA, Diele K (2021) Marine invertebrate anthropogenic noise research–trends in methods and future directions. Mar Pollut Bull 173:112958

    Article  CAS  PubMed  Google Scholar 

  • Wang SV, Wrede A, Tremblay N, Beermann J (2022) Low-frequency noise pollution impairs burrowing activities of marine benthic invertebrates. Environ Pollut 310:119899

    Article  CAS  PubMed  Google Scholar 

  • Weatherby TM, Lenz PH (2000) Mechanoreceptors in calanoid copepods: designed for high sensitivity. Arthropod Struct Dev 29(4):275–288

    Article  CAS  PubMed  Google Scholar 

  • Williams BR, McAfee D, Connell SD (2022) Oyster larvae swim along gradients of sound. J Appl Ecol 59:1815–1824

    Article  Google Scholar 

  • Wilson MW, Ridlon AD, Gaynor KM, Gaines SD, Stier AC, Halpern BS (2020) Ecological impacts of human-induced animal behaviour change. Ecol Lett 23(10):1522–1536

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Shafiei Sabet .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Azarm-Karnagh, S., López Greco, L., Shafiei Sabet, S. (2023). Anthropogenic Noise Impacts on Invertebrates: Case of Freshwater Red Cherry Shrimp (Neocaridina davidi). In: Popper, A.N., Sisneros, J., Hawkins, A.D., Thomsen, F. (eds) The Effects of Noise on Aquatic Life . Springer, Cham. https://doi.org/10.1007/978-3-031-10417-6_151-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10417-6_151-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10417-6

  • Online ISBN: 978-3-031-10417-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation