Passive Acoustic Monitoring Power Analysis: A Tool for Designing an Acoustic Monitoring Program

  • Living reference work entry
  • First Online:
The Effects of Noise on Aquatic Life

Abstract

Monitoring trends of marine mammal populations are notoriously challenging, as density and abundance estimates are frequently characterized by high levels of uncertainty. Statistical power is described as correctly detecting a trend when one is present and is influenced by the uncertainty surrounding the input parameters. The “AVADECAF” tool evaluates the power of a fixed Passive Acoustic Monitoring (PAM) array to detect changes in animal density, via simulation. The simulations can be based on existing surveys or can be used to design monitoring programs. The tool allows for density estimation via distance sampling where ranging of acoustic detections is possible, or Spatial Capture Recapture (SCR), when an animal’s sounds can be detected on more than one of the acoustic sensors. The tool provides an opportunity to evaluate how the power to detect population declines might be improved by comparing alternate survey designs. Improving statistical power increases the probability of detecting a change in the population and can reduce the required duration of a monitoring program. The AVADECAF tool was applied to simulated Blainville’s beaked whale clicks detected by hydrophones at the US Navy’s Atlantic Undersea Test and Evaluation Center (AUTEC), and the potential future applications of this tool are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Authier M, Galatius A, Gilles A, Spitz J (2020) Of power and despair in cetacean conservation: estimation and detection of trend in abundance with noisy and short time-series. PeerJ 8:e9436

    Article  PubMed  PubMed Central  Google Scholar 

  • Barlow J, Fregosi S, Thomas L, Harris D, Griffiths ET (2021) Acoustic detection range and population density of Cuvier’s beaked whales estimated from near-surface hydrophones. J Acoust Soc Am 149(1):111–125

    Article  PubMed  Google Scholar 

  • Bernaldo de Quirós Y, Fernandez A, Baird R, Brownell R Jr, Aguilar de Soto N, Allen D, Arbelo M, Arregui M, Costidis A, Fahlman A (2019) Advances in research on the impacts of anti-submarine sonar on beaked whales. Proc R Soc B 286(1895):20182533

    Article  PubMed  PubMed Central  Google Scholar 

  • Blackwell SB, Thode AM, Conrad AS, Ferguson MC, Berchok CL, Stafford KM, Marques TA, Kim KH (2021) Estimating acoustic cue rates in bowhead whales, Balaena mysticetus, during their fall migration through the Alaskan Beaufort Sea. J Acoust Soc Am 149(5):3611–3625. https://doi.org/10.1121/10.0005043

    Article  PubMed  Google Scholar 

  • Booth CG, Oedekoven CS, Gillespie D, Macaulay J, Plunkett R, Joy R, Harris D, Wood J, Marques TA, Marshall L, Verfuss UK, Tyack P, Johnson M, Thomas L (2017) Assessing the viability of density estimation for cetaceans from passive acoustic fixed sensors throughout the life cycle of an Offshore E&P Field Development. SMRU Consulting

    Google Scholar 

  • Borchers D (2012) A non-technical overview of spatially explicit capture–recapture models. J Ornithol 152(2):435–444

    Article  Google Scholar 

  • Borchers D, Stevenson B, Kidney D, Thomas L, Marques T (2015) A unifying model for capture–recapture and distance sampling surveys of wildlife populations. J Am Stat Assoc 110(509):195–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd C, Punt AE (2021) Shifting trends: detecting changes in cetacean population dynamics in shifting habitat. PLoS One 16(5):e0251522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2001) Introduction to distance sampling. Estimating abundance of biological populations. Oxford University Press, Oxford

    Google Scholar 

  • Buckland ST, Rexstad EA, Marques TA, Oedekoven CS (2015) Distance sampling: methods and applications. Springer

    Book  Google Scholar 

  • Curtis KA, Falcone EA, Schorr GS, Moore JE, Moretti DJ, Barlow J, Keene E (2020) Abundance, survival, and annual rate of change of Cuvier’s beaked whales (Ziphius cavirostris) on a Navy sonar range. Mar Mamm Sci 37(3):1–21

    Google Scholar 

  • D’Amico A, Gisiner RC, Ketten DR, Hammock JA, Johnson C, Tyack PL, Mead J (2009) Beaked whale strandings and naval exercises. Space and Naval Warfare Systems Center, San Diego

    Book  Google Scholar 

  • De Vreese S, van der Schaar M, Weissenberger J, Erbs F, Kosecka M, Solé M, André M (2018) Marine mammal acoustic detections in the Greenland and Barents Sea, 2013–2014 seasons. Sci Rep 8(1):1–14

    Article  Google Scholar 

  • Falcone EA, Schorr GS, Douglas AB, Calambokidis J, Henderson E, McKenna MF, Hildebrand J, Moretti D (2009) Sighting characteristics and photo-identification of Cuvier’s beaked whales (Ziphius cavirostris) near San Clemente Island, California: a key area for beaked whales and the military? Mar Biol 156(12):2631–2640

    Article  PubMed  PubMed Central  Google Scholar 

  • Falcone E, Schorr G, Watwood SL, DeRuiter SL, Zerbini A, Andrews R, Morrissey R, Moretti D (2017) Go long! behavioral changes in satellite-tagged Cuvier’s beaked whales exposed to two types of military mid-frequency active sonar, Halifax, Nova Scotia, Canada

    Google Scholar 

  • Filadelfo R, Mintz J, Michlovich E, D’Amico A, Tyack PL, Ketten DR (2009) Correlating military sonar use with beaked whale mass strandings: what do the historical data show? Aquat Mamm 35(4):435–444

    Article  Google Scholar 

  • Harris D, Matias L, Thomas L, Harwood J, Geissler WH (2013) Applying distance sampling to fin whale calls recorded by single seismic instruments in the Northeast Atlantic. J Acoust Soc Am 134(5):3522–3535

    Article  PubMed  Google Scholar 

  • Jacobson EK, Boyd C, McGuire TL, Shelden KE, Himes Boor GK, Punt AE (2020) Assessing cetacean populations using integrated population models: an example with cook inlet beluga whales. Ecol Appl 30(5):e02114

    Article  PubMed  Google Scholar 

  • Jacobson EK, Henderson EE, Miller DL, Oedekoven CS, Moretti DJ, Thomas L (2022) Quantifying the response of Blainville’s beaked whales to US naval sonar exercises in Hawaii. Mar Mamm Sci 2022:1–17

    Google Scholar 

  • Link WA (2004) Individual heterogeneity and identifiability in capture–recapture models. Anim Biodivers Conserv 27(1):87–91

    Google Scholar 

  • Marques TA, Thomas L, Ward J, DiMarzio N, Tyack PL (2009) Estimating cetacean population density using fixed passive acoustic sensors: an example with Blainville’s beaked whales. J Acoust Soc Am 125(4):1982–1994

    Article  PubMed  Google Scholar 

  • Marques TA, Munger L, Thomas L, Wiggins S, Hildebrand JA (2011) Estimating North Pacific right whale Eubalaena japonica density using passive acoustic cue counting. Endanger Species Res 13:163–172

    Article  Google Scholar 

  • Marques TA, Thomas L, Martin SW, Mellinger DK, Jarvis S, Morrissey RP, Ciminello CA, DiMarzio N (2012) Spatially explicit capture-recapture methods to estimate minke whale density from data collected at bottom-mounted hydrophones. J Ornithol 152:S445–S455

    Article  Google Scholar 

  • Marques TA, Thomas L, Martin SW, Mellinger DK, Ward JA, Moretti DJ, Harris D, Tyack PL (2013) Estimating animal population density using passive acoustics. Biol Rev 88(2):287–309. https://doi.org/10.1111/brv.12001

    Article  PubMed  Google Scholar 

  • Matsumoto H, Jones C, Klinck H, Mellinger DK, Dziak RP, Meinig C (2013) Tracking beaked whales with a passive acoustic profiler float. J Acoust Soc Am 133(2):731–740

    Google Scholar 

  • Moretti D (2019). Estimating the effect of mid-frequency active sonar on the population health of Blainville’s beaked whales (Mesoplodon densirostris) in the Tongue of the Ocean. PhD Dissertation. https://research-repository.st-andrews.ac.uk/handle/10023/19250

  • Moretti D, Marques T, Thomas L, DiMarzio N, Dilley A, Morrissey R, McCarthy E, Ward J, Jarvis S (2010) A dive counting density estimation method for Blainville’s beaked whale (Mesoplodon densirostris) using a bottom-mounted hydrophone field as applied to a mid-frequency active (MFA) sonar operation. Appl Acoust 71(11):1036–1042

    Article  Google Scholar 

  • Oedekoven CS, Marques TA, Harris D, Thomas L, Thode AM, Blackwell SB, Conrad AS, Kim KH (2022) A comparison of three methods for estimating call densities of migrating bowhead whales using passive acoustic monitoring. Environ Ecol Stat 29(1):101–125

    Article  Google Scholar 

  • Ou H, Au WW, Oswald JN (2012) A non-spectrogram-correlation method of automatically detecting minke whale boings. J Acoust Soc Am 132(4):EL317–EL322

    Article  PubMed  Google Scholar 

  • Pirotta E, Thompson PM, Miller PI, Brookes KL, Cheney B, Barton TR, Graham IM, Lusseau D (2014) Scale-dependent foraging ecology of a marine top predator modelled using passive acoustic data. Funct Ecol 28(1):206–217

    Article  Google Scholar 

  • Pirotta E, Thompson PM, Cheney B, Donovan CR, Lusseau D (2015) Estimating spatial, temporal and individual variability in dolphin cumulative exposure to boat traffic using spatially explicit capture–recapture methods. Anim Conserv 18(1):20–31

    Article  Google Scholar 

  • Sarnocińska J, Teilmann J, Balle JD, van Beest FM, Delefosse M, Tougaard J (2020) Harbor porpoise (Phocoena phocoena) reaction to a 3D seismic airgun survey in the North Sea. Front Mar Sci 6:824

    Article  Google Scholar 

  • Schorr G, Falcone E, Rone B, Keene E (2017) Distribution and demographics of Cuvier’s beaked whales in the Southern California Bight., Annual Report to the US Navy Pacific Fleet Integrated Comprehensive Monitoring Program, Award No. N66604-14- C-0145. 15p

    Google Scholar 

  • Simonis AE, Brownell RL Jr, Thayre BJ, Trickey JS, Oleson EM, Huntington R, Baumann-Pickering S (2020) Co-occurrence of beaked whale strandings and naval sonar in the Mariana Islands, Western Pacific. Proc R Soc B 287(1921):20200070

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevenson BC, Borchers DL, Altwegg R, Swift RJ, Gillespie DM, Measey GJ (2015) A general framework for animal density estimation from acoustic detections across a fixed microphone array. Methods Ecol Evol 6(1):38–48

    Article  Google Scholar 

  • Taylor BL, Martinez M, Gerrodette T, Barlow J, Hrovat YN (2007) Lessons from monitoring trends in abundance of marine mammals. Mar Mamm Sci 23(1):157–175

    Article  Google Scholar 

  • Thode AM, Blackwell SB, Conrad AS, Kim KH, Marques T, Thomas L, Oedekoven CS, Harris D, Bröker K (2020) Roaring and repetition: how bowhead whales adjust their call density and source level (Lombard effect) in the presence of natural and seismic airgun survey noise. J Acoust Soc Am 147(3):2061–2080

    Article  PubMed  Google Scholar 

  • Thomas L, Juanes F (1996) The importance of statistical power analysis: an example from animal behaviour. Anim Behav 52(4):856–859

    Article  Google Scholar 

  • Warren V, Marques T, Harris D, Thomas L, Tyack P, Aguilar de Soto N, Hickmott L, Johnson M (2017) Spatio-temporal variation in click production rates of beaked whales: implications for passive acoustic density estimation. J Acoust Soc Am 141(3):1962–1974. https://doi.org/10.1121/1.4978439

    Article  PubMed  Google Scholar 

  • White ER, Schakner Z, Bellamy A, Srinivasan M (2022) Detecting population trends for US marine mammals. Conserv Sci Pract 4(3):e611

    Google Scholar 

  • Wisniewska DM, Johnson M, Teilmann J, Rojano-Doñate L, Shearer J, Sveegaard S, Miller LA, Siebert U, Madsen PT (2016) Ultra-high foraging rates of harbor porpoises make them vulnerable to anthropogenic disturbance. Curr Biol 26(11):1441–1446

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by Living Marine Resources (Award: N3943019C2175) and the original development of the AVADECAF tool by the Sound and Marine Life Joint Industry Program (IOGP SML JIP – award: 12 (III – 15). We thank Jamie MacAulay, Doug Gillespie, Laura Marshall, Len Thomas, and Peter Tyack for their contributions to the development of the simulation tool and support in improving this manuscript. We thank CEAUL (funded by FCT – Fundação para a Ciência e a Tecnologia, Portugal, through the project UIDB/00006/2020) for partial support of TAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan Ryder .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ryder, M., Booth, C., Oedekoven, C., Marques, T., Joy, R., Harris, D. (2023). Passive Acoustic Monitoring Power Analysis: A Tool for Designing an Acoustic Monitoring Program. In: Popper, A.N., Sisneros, J., Hawkins, A.D., Thomsen, F. (eds) The Effects of Noise on Aquatic Life. Springer, Cham. https://doi.org/10.1007/978-3-031-10417-6_140-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10417-6_140-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10417-6

  • Online ISBN: 978-3-031-10417-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation