Impact of High Marine Traffic on Harbor Porpoise: Effect on Abundance and Distribution

  • Living reference work entry
  • First Online:
The Effects of Noise on Aquatic Life

Abstract

Increasing evidence documents effects of impulsive underwater noise on hearing and behavior of marine mammals, but knowledge about the impacts of extensive or chronic exposure of cetaceans to continuous noise from ship** is still scarce. The distribution of harbor porpoises (Phocoena phocoena) was analyzed in relation to ship** noise and other environmental variables in an area with intense marine traffic, the Fehmarnbelt in the Baltic Sea. Autonomous noise recorders were deployed at 19 positions within the Fehmarnbelt between September 2009 and November 2010 (bandwidth = 16 Hz–16 kHz). Harbor porpoises were surveyed from March 2009 to October 2010 using aerial visual line transect surveys (altitude = 76 m and 250 m). The acoustic data were analyzed using 10 s intervals (CI = L5, L50 and L95). Noise maps were derived using AIS data for each month in 2010 in a grid of 750 × 750 m cells and applying an empirical geometrical spreading loss model. Ambient noise in the Fehmarnbelt was dominated by ship** noise (median SPL: 109–132 dB re 1μPa), and noise levels found are typical for busy waterways. Distribution modelling was used for analyzing correlations between environmental variables and porpoise densities. The best fitting distribution model included variables characterizing water temperature at the bottom, water depth, and underwater noise; plus, temporal variable as survey year and season were also important. The model shows porpoise densities declining with increasing median sound levels to about 130 dB re 1 μPa. Thus, median ship** noise levels significantly affected the distribution of harbor porpoises in the study area, but little habitat displacement appeared as a result. This finding might reflect habituation and a trade-off, where the benefits for the porpoises to stay in the study area outweigh the disruptions of disturbance due to underwater noise exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anderson ORJ, Phillips RA, Shore RF, McGill RAR, McDonald RA, Bearhop S (2008) Diet, individual specialisation and breeding of brown skuas (Catharacta antarctica lonnbergi): an investigation using stable isotopes. Polar Biol 32:27–33

    Article  Google Scholar 

  • Andreasen H, Ross SD, Siebert U, Andersen NG, Ronnenberg K, Gilles A (2017) Diet composition and food consumption rate of harbor porpoises (Phocoena phocoena) in the western Baltic Sea. Mar Mamm Sci 33(4):1053–1079

    Article  Google Scholar 

  • Andrew RK, Howe BM, Mercer JA (2011) Long-time trends in ship traffic noise for four sites off the North American West Coast. J Acoust Soc Am 129(2):642–651

    Article  PubMed  Google Scholar 

  • Bagočius D, Narščius A (2018) Method for the simplistic modelling of the acoustic footprint of the vessels in the shallow marine area. MethodsX 5:1010–1016

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey H, Senior B, Simmons D, Rusin J, Picken G, Thompson PM (2010) Assessing underwater noise levels during pile-driving at an offshore windfarm and its potential effects on marine mammals. Mar Pollut Bull 60(6):888–897

    Article  CAS  PubMed  Google Scholar 

  • Bejder L, Samuels A, Whitehead H, Gales N (2006) Interpreting short-term behavioural responses to disturbance within a longitudinal perspective. Anim Behav 72(5):1149–1158

    Article  Google Scholar 

  • Benhemma-Le Gall A, Graham IM, Merchant ND, Thompson PM (2021) Broad-scale responses of harbor porpoises to pile-driving and vessel activities during offshore windfarm construction. Front Mar Sci 8:664724

    Article  Google Scholar 

  • Booth C, Embling C, Gordon J, Calderan S, Hammond PS (2013) Habitat preferences and distribution of the harbour porpoise Phocoena phocoena west of Scotland. Mar Ecol Prog Ser 478:273–285

    Article  Google Scholar 

  • Brandt MJ, Höschle C, Diederichs A, Betke K, Matuschek R, Nehls G (2013) Seal scarers as a tool to deter harbour porpoises from offshore construction sites. Mar Ecol Prog Ser 475:291–302

    Article  Google Scholar 

  • Brandt MJ, Dragon A-C, Diederichs A, Schubert A, Kosarev V, Nehls G, Wahl V, Michalik A, Braasch A, Hinz C, Ketzer C, Todeskino D, Gauger M, Laczny M, Piper W (2016) Effects of offshore pile driving on harbour porpoise abundance in the German Bight 2009–2013. BioConsult, IBL, IFAÖ, Husum

    Google Scholar 

  • Campana I, Crosti R, Angeletti D, Carosso L, David L, Di-Méglio N, Moulins A, Rosso M, Tepsich P, Arcangeli A (2015) Cetacean response to summer maritime traffic in the Western Mediterranean Sea. Mar Environ Res 109:1–8

    Article  CAS  PubMed  Google Scholar 

  • Candy S (2004) Modelling catch and effort data using generalised linear models, the Tweedie distribution, random vessel effects and random stratum-by-year effects. CCAMLR Science 11:59–80

    Google Scholar 

  • Clark CW, Ellison WT, Southall BL, Hatch L, Van Parijs SM, Frankel A, Ponirakis D (2009) Acoustic masking in marine ecosystems: intuitions, analysis, and implication. Mar Ecol Prog Ser 395:201–222

    Article  Google Scholar 

  • Dey M, Krishnaswamy J, Morisaka T, Kelkar N (2019) Interacting effects of vessel noise and shallow river depth elevate metabolic stress in Ganges river dolphins. Sci Rep 9:15426

    Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1):27–46

    Article  Google Scholar 

  • Dragon A-C, Brandt MJ, Diederichs A, Nehls G (2016) Wind creates a natural bubble curtain mitigating porpoise avoidance during offshore pile driving. Proc Meetings Acoust Acoust Soc Am 27(1):070022

    Article  Google Scholar 

  • Dyndo M, Wiśniewska DM, Rojano-Doñate L, Madsen PT (2015) Harbour porpoises react to low levels of high frequency vessel noise. Nat Sci Rep 5(1):1–9

    Google Scholar 

  • Ellison WT, Southall BL, Clark CW, Frankel AS (2011) A new context-based approach to assess marine mammal behavioral responses to anthropogenic sounds. Conserv Biol 26(1):21–28

    Article  PubMed  Google Scholar 

  • Ellison WT, Southall BL, Frankel AS, Vigness-Raposa K, Clark CW (2018) An acoustic scene perspective on spatial, temporal, and spectral aspects of marine mammal behavioral responses to noise. Aquat Mamm 44(3):239–243

    Article  Google Scholar 

  • Embling CB, Gillibrand PA, Gordon J, Shrimpton J, Stevick PT, Hammond PS (2010) Using habitat models to identify suitable sites for marine protected areas for harbour porpoises (Phocoena phocoena). Biol Conserv 143(2):267–279

    Article  Google Scholar 

  • Erbe C (2002) Underwater noise of whale-watching boats and potential effects on killer whales (Orcinus orca), based on an acoustic impact model. Mar Mamm Sci 18(2):394–418

    Article  Google Scholar 

  • Erbe C, MacGillivray A, Williams R (2012) Map** cumulative noise from ship** to inform marine spatial planning. J Acoust Soc Am 132(5):EL423–EL428

    Article  PubMed  Google Scholar 

  • Erbe C, Marley SA, Schoeman RP, Smith JN, Trigg LE, Embling CB (2019) The effects of ship noise on marine mammals – a review. Front Mar Sci 6:606

    Article  Google Scholar 

  • European Commision (2008) Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (MarineStrategy Framework Directive). Brussels

    Google Scholar 

  • European Commission (2010) Commission decision of 1 September 2010 on criteria and methodological standards on good environmental status of marine waters. Brussels

    Google Scholar 

  • Farcas A, Powell CF, Brookes KL, Merchant ND (2020) Validated ship** noise maps of the Northeast Atlantic. Science of the Total Environment 735:1–9

    Google Scholar 

  • FEHY (2013) Marine water -baseline hydrography of the Fehmarnbelt area. Report E1TR0057 to Femern A/S, Copenhagen

    Google Scholar 

  • FEMM (2013) Fehmarnbelt fixed link EIA. Marine mammals – baseline. Report no. E5TR0014 to Femern A/S, Copenhagen

    Google Scholar 

  • Folegot T, Clorennec D, Chavanne R, Gallou R (2016) Map** of ambient noise for BIAS. In: Quiet-oceans technical report QO. 20130203.01. RAP. 001.01 A, Brest, France, December 2016

    Google Scholar 

  • Gervaise C, Simard Y, Roy N, Kinda B, Menard N (2012) Ship** noise in whale habitat: characteristics, sources, budget, and impact on belugas in Saguenay–St. Lawrence Marine Park hub. J Acoust Soc Am 132(1):76–89

    Article  PubMed  Google Scholar 

  • Gilles A, Viquerat S, Becker EA, Forney KA, Geelhoed SCV, Haelters J, Nabe-Nielsen J, Scheidat M, Siebert U, Sveegaard S (2016) Seasonal habitat-based density models for a marine top predator, the harbor porpoise, in a dynamic environment. Ecosphere 7(6):e01367

    Article  Google Scholar 

  • Grünkorn T, Diederichs A, Nehls G (2005) Aerial surveys in the German Bight – estimating g(0) for harbour porpoises (Phocecoena phoecoena) by employing independent double counts. In: Proceedings of the workshop on estimation of G(0) in line-transect surveys of cetaceans. Held at the Eropean Cetacean Society’s 18h annual conference, Kolmården (SWE), 28.03.2014. European Cetacean Society Newsletter, pp 26–32

    Google Scholar 

  • Hammond PS, Berggren P, Benke H, Borchers DL, Collet A, Heide-Jørgensen MP, Heimlich S, Hiby AR, Leopold MF, Øien N (2002) Abundance of harbour porpoise and other cetaceans in the North Sea and adjacent waters. J Appl Ecol 39(2):361–376

    Article  Google Scholar 

  • Hammond PS, Macleod K, Berggren P, Borchers DL, Burt L, Cañadas A, Desportes G, Donovan GP, Gilles A, Gillespie D, Gordon J, Hiby L, Kuklik I, Leaper R, Lehnert K, Mardik L, Lovell P, Øien N, Paxton CGM, Ridoux V, Rogan E, Filipa S, Scheidat M, Sequeira M, Siebert U, Skov H, Swift R, Tasker ML, Teilmann J, Van Canneyt O, Vázquez JA (2013) Cetacean abundance and distribution in European Atlantic shelf waters to inform conservation and management. Biol Conserv 164:107–122

    Article  Google Scholar 

  • Hammond PS, Lacey C, Gilles A, Viquerat S, Börjesson P, Herr H, MacLeod K, Ridoux V, Santos MB, Scheidat M, Teilmann J, Vingada J, Øien N (2017) Estimates of cetacean abundance in European Atlantic waters in summer 2016 from the SCANS-III aerial and shipboard surveys. JNCC

    Google Scholar 

  • Hildebrand JA (2009) Anthropogenic and natural sources of ambient noise in the ocean. Mar Ecol Prog Ser 395:5–20

    Article  Google Scholar 

  • International Maritime Organisation (2014) Guidelines for the reduction of underwater noise from commercial ship** to address adverse impacts on marine life. International Maritime Organisation, London

    Google Scholar 

  • Isojunno S, Matthiopoulos J, Evans PG (2012) Harbour porpoise habitat preferences: robust spatio-temporal inferences from opportunistic data. Mar Ecol Prog Ser 448:155–170

    Article  Google Scholar 

  • Johnston DW, Westgate AJ, Read AJ (2005) Effects of fine-scale oceanographic features on the distribution and movements of harbour porpoises Phocoena phocoena in the Bay of Fundy. Mar Ecol Prog Ser 295:279–293

    Article  Google Scholar 

  • Jones A, Sendt J, Duncan AJ, Clarke PA, Maggi A (2009) Modelling the acoustic reflection loss at the rough ocean surface. In: Proceedings of acoustics 2009: research to consulting. Annual conference of the Australian Acoustical Society, University of Adelaide, pp 1–8

    Google Scholar 

  • Jones A, Hosegood P, Wynn R, De Boer M, Butler-Cowdry S, Embling C (2014) Fine-scale hydrodynamics influence the spatio-temporal distribution of harbour porpoises at a coastal hotspot. Prog Oceanogr 128:30–48

    Article  Google Scholar 

  • Kaplan MB, Solomon S (2016) A coming boom in commercial ship**? The potential for rapid growth of noise from commercial ships by 2030. Mar Policy 73:119–121

    Article  Google Scholar 

  • Kastelein RA, Bunskoek P, Hagedoorn M, Au WWL, de Haan D (2002) Audiogram of a harbor porpoise (Phocoena phocoena) measured with narrow-band frequency-modulated signals. J Acoust Soc Am 112(1):334–344

    Article  PubMed  Google Scholar 

  • Kastelein RA, Huybrechts J, Covi J, Helder-Hoek L (2017) Behavioral responses of a harbor porpoise (Phocoena phocoena) to sounds from an acoustic porpoise deterrent. Aquat Mamm 43(3):233–244

    Article  Google Scholar 

  • Kibblewhite AC (1989) Attenuation of sound in marine sediments: a review with emphasis on new low-frequency data. J Acoust Soc Am 86(2):716–738

    Article  Google Scholar 

  • Kok ACM, Engelberts JP, Kastelein RA, Helder-Hoek L, Van de Voorde S, Fleur Visser, Slabbekoorn H (2018) Spatial avoidance to experimental increase of intermittent and continuous sound in two captive harbour porpoises. Environ Pollut 233:1024–1036

    Google Scholar 

  • Lambert C, Pettex E, Dorémus G, Laran S, Stéphan E, Canneyt OV, Ridoux V (2016) How does ocean seasonality drive habitat preferences of highly mobile top predators? Part II: The eastern North-Atlantic. Deep-Sea Res II Top Stud Oceanogr 141:133–154

    Article  Google Scholar 

  • Li S, Wu H, Xu Y, Peng C, Fang L, Lin M, **ng L, Zhang P (2015) Mid-to high-frequency noise from high-speed boats and its potential impacts on humpback dolphins. J Acoust Soc Am 138(2):942–952

    Article  PubMed  Google Scholar 

  • Lin M, Caruso F, Liu M, Lek S, Li K, Gozlan RE, Li S (2020) Food risk trade-off in the Indo-Pacific humpback dolphin: An exploratory case study. Aquatic Conserv: Mar Freshw Ecosyst 30:860–867

    Google Scholar 

  • Lusseau D, Bejder L (2007) The long-term consequences of short-term responses to disturbance experiences from whalewatching impact assessment. Int J Comp Psychol 20(2):228

    Article  Google Scholar 

  • Maglio A, Pavan G, Castellote M, Frey S (2016) Overview of the noise hotspots in the ACCOBAMS area. Part I – Mediterranean Sea. Final report to the ACCOBAMS Secreteriat

    Google Scholar 

  • Martin MJ, Halliday WD, Storrie L, Citta JJ, Dawson J, Hussey NE, Juanes F, Loseto LL, MacPhee SA, Moore L, Nicoll A, O’Corry-Crowe G, Insley SJ (2021) Exposure and behavioral responses of tagged beluga whales (Delphinapterus leucas) to ships in the Pacific Arctic. Mar Mamm Sci 39:387–421

    Article  Google Scholar 

  • McClellan CM, Brereton T, Dell’Amico F, Johns DG, Cucknell A-C, Patrick SC, Penrose R, Ridoux V, Solandt J-L, Stephan E, Votier SC, Williams R, Godley BJ (2014) Understanding the distribution of marine megafauna in the English Channel region: identifying key habitats for conservation within the busiest seaway on earth. PLoS One 9(2):e89720

    Article  PubMed  PubMed Central  Google Scholar 

  • McGregor P (2007) Designing experiments to test for behavioural effects of sound. International conference on the effects of noise on aquatic life. Nyborg Denmark

    Google Scholar 

  • McKenna M, Katz S, Wiggins S, Ross D, Hildebrand J (2012) A quieting ocean: unintended consequence of a fluctuating economy. J Acoust Soc Am 132(3):EL169–EL175

    Article  CAS  PubMed  Google Scholar 

  • Merchant ND, Pirotta E, Barton TR, Thompson PM (2014) Monitoring ship noise to assess the impact of coastal developments on marine mammals. Mar Pollut Bull 78(1–2):85–95

    Article  CAS  PubMed  Google Scholar 

  • Merchant ND, Faulkner RC, Martinez R (2017) Marine noise budgets in practice. Conserv Lett 11(3):e12420

    Article  Google Scholar 

  • Mikkelsen L, Johnson M, Wisniewska DM, Van Neer A, Siebert U, Madsen PT, Teilmann J (2019) Long-term sound and movement recording tags to study natural behavior and reaction to ship noise of seals. Ecol Evol 9(5):2588–2601

    Article  PubMed  PubMed Central  Google Scholar 

  • Miksis-Olds JL, Bradley DL, Maggie Niu X (2013) Decadal trends in Indian Ocean ambient sound. J Acoust Soc Am 134(5):3464–3475

    Article  PubMed  Google Scholar 

  • Mortensen LO, Chudzinska ME, Slabbekoorn H, Thomsen F (2021) Agent-based models to investigate sound impact on marine animals: bridging the gap between effects on individual behaviour and population level consequences. Oikos 130:1074–1086

    Google Scholar 

  • Nabe-Nielsen J, van Beest FM, Grimm V, Sibly RM, Teilmann J, Thompson PM (2018) Predicting the impacts of anthropogenic disturbances on marine populations. Conservation Letters 12563 1–8

    Google Scholar 

  • National Marine Fisheries Service (2018) 2018 revisions to: rechnical guidance for assessing the effects of anthropogenic sound on marine mammal hearing (Version 2.0): underwater thresholds for onset of permanent and temporary threshold shifts. U.S. Department of Commerce, NOAA

    Google Scholar 

  • Nedwell JR, Parvin SJ, Edwards B, Workman R, Brooker AG, Kynoch JE (2007) Measurement and interpretation of underwater noise during construction and operation of offshore windfarms in UK waters. Report for COWRIE, Newburgh

    Google Scholar 

  • Neenan ST, White PR, Leighton TG, Shaw PJ (2016) Modeling vessel noise emissions through the accumulation and propagation of Automatic Identification System data. In: Proceedings of meetings on acoustics 4ENAL, vol 27, no 1. Acoustical Society of America, p 070017

    Google Scholar 

  • Nehls G, Schmiing M, Bräger S. Folegot T, Hemon E, Bellmann M, Gerlach S, Matuschek R, Flamme J (2022) Managing dredging noise during the construction of the world’s longest immersed tunnel in the Fehmarnbelt between Denmark and Germany. WODCON XXIII – Copenhagen, Denmark, 2022 – proceedings

    Google Scholar 

  • Ng SL, Leung S (2003) Behavioral response of Indo-Pacific humpback dolphin (Sousa chinensis) to vessel traffic. Mar Environ Res 56(5):555–567

    Article  CAS  PubMed  Google Scholar 

  • Nowacek DP, Thorne LH, Johnston DW, Tyack PL (2007) Responses of cetaceans to anthropogenic noise. Mammal Rev 37(2):81–115

    Article  Google Scholar 

  • Oakley JA, Williams AT, Thomas T (2017) Reactions of harbour porpoise (Phocoena phocoena) to vessel traffic in the coastal waters of South West Wales, UK. Ocean Coast Manag 138:158–169

    Article  Google Scholar 

  • OSPAR Commission (2009) Overview of the impacts of anthropogenic underwater sound in the marine environment, OSPAR Convention for the Protection of the Marine Environment of the North-East Atlantic. Biodivers Ecosyst Ser 441:134

    Google Scholar 

  • Pirotta E, Booth CG, Costa DP, Fleishman E, Kraus D, Lusseau D, Moretti D, New LF, Schick RF, Schwarz LK, Simmons SE, Thomas L, Tyack PL, Weise MJ, Wells RS, Harwood J (2018) Understanding the population consequences of disturbance. Ecol Evol 2018;1–13

    Google Scholar 

  • Piwetz S, Hung S, Wang J, Lundquist D, Würsig B (2012) Influence of vessel traffic on movements of Indo-Pacific humpback dolphins (Sousa chinensis) off Lantau Island, Hong Kong. Aquat Mamm 38(3):325

    Article  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rako N, Fortuna CM, Holcer D, Mackelworth P, Nimak-Wood M, Pleslić G, Sebastianutto L, Vilibić I, Wiemann A, Picciulin M (2013) Leisure boating noise as a trigger for the displacement of the bottlenose dolphins of the Cres–Lošinj archipelago (northern Adriatic Sea, Croatia). Mar Pollut Bull 68(1–2):77–84

    Article  CAS  PubMed  Google Scholar 

  • Rambøll RS (2011) Ship traffic in Fehmarnbelt- yearly report 2009. Report to Femern A/S, Copenhagen

    Google Scholar 

  • Redfern JV, Hatch LT, Caldow C, DeAngelis ML, Gedamke J, Hastings S, Henderson L, McKenna MF, Moore TJ, Porter MB (2017) Assessing the risk of chronic ship** noise to baleen whales off Southern California, USA. Endanger Species Res 32:153–167

    Article  Google Scholar 

  • Richardson WJ, Würsig B (1997) Influences of man-made noise and other human actions on cetacean behaviour. Mar Freshw Behav Physiol 29(1–4):183–209

    Article  Google Scholar 

  • Richardson WJ, Greene J, Malme CI, Thomson DH (1995) Marine mammals and noise. Academic, San Diego

    Google Scholar 

  • Rojano-Doñate L, McDonald BI, Wisniewska DM, Johnson M, Teilmann J, Wahlberg M, Højer-Kristensen J, Madsen PT (2018) High field metabolic rates of wild harbour porpoises. J Exp Biol 221(23):jeb185827

    Article  PubMed  Google Scholar 

  • Rolland RM, Parks SE, Hunt KE, Castellote M, Corkeron PJ, Nowacek DP, Wasser SK, Kraus SD (2012) Evidence that ship noise increases stress in right whales. Proc R Soc B Biol Sci 279(1737):2363–2368

    Article  Google Scholar 

  • Senigaglia V, Christiansen F, Bejder L, Gendron D, Lundquist D, Noren D, Schaffar A, Smith J, Williams R, Martinez E (2016) Meta-analyses of whale-watching impact studies: comparisons of cetacean responses to disturbance. Mar Ecol Prog Ser 542:251–263

    Article  CAS  Google Scholar 

  • Sertlek HÖ, Slabbekoorn H, Ten Cate C, Ainslie MA (2019) Source specific sound map**: spatial, temporal and spectral distribution of sound in the Dutch North Sea. Environ Pollut 247:1143–1157

    Article  CAS  PubMed  Google Scholar 

  • Shono H (2008) Application of the Tweedie distribution to zero-catch data in CPUE analysis. Fish Res 93(1–2):154–162

    Article  Google Scholar 

  • Sigray P, Andersson M, Pajala J, Laanearu J, Klauson A, Tegowski J, Boethling M, Fischer J, Tougaard J, Wahlberg M, Nikolopoulos A, Folegot T, Matuschek R, Verfuss U (2016) BIAS: a regional management of underwater sound in the Baltic Sea. In: Popper AN, Hawkins A (eds) The effects of noise on aquatic life II. Springer New York, New York, pp 1015–1023

    Chapter  Google Scholar 

  • Simard Y, Roy N, Gervaise C (2008) Passive acoustic detection and localization of whales: effects of ship** noise in Saguenay–St. Lawrence Marine Park. J Acoust Soc Am 123(6):4109–4117

    Article  PubMed  Google Scholar 

  • Skov H, Thomsen F (2008) Resolving fine-scale spatio-temporal dynamics in the harbour porpoise Phocoena phocoena. Mar Ecol Prog Ser 373:173–186

    Article  Google Scholar 

  • Southall BL, Bowles AE, Ellison WT, Finneran JJ, Gentry RL, Greene CR, Kastak D, Ketten DR, Miller JH, Nachtigall PE, Richardson WJ, Thomas JA, Tyack PL (2007) Marine mammal noise exposure criteria: initial scientific recommendations. Aquat Mamm 33:411–521

    Article  Google Scholar 

  • Southall B, Quick NJ, Hastie GD, Tyack PL, Boyd IL (2017) Mitigation of harm during a novel behavioural response study involving active sonar and wild cetaceans. J Cetacean Res Manag 16:29–38

    Article  Google Scholar 

  • Sveegaard S, Teilmann J, Tougaard J, Dietz R, Mouritsen KN, Desportes G, Siebert U (2011) High-density areas for harbor porpoises (Phocoena phocoena) identified by satellite tracking. Mar Mamm Sci 27(1):230–246

    Article  Google Scholar 

  • Sveegaard S, Andreasen H, Mouritsen KN, Jeppesen JP, Teilmann J, Kinze CC (2012) Correlation between the seasonal distribution of harbour porpoises and their prey in the Sound, Baltic Sea. Mar Biol 159(5):1029–1037

    Article  Google Scholar 

  • Sveegaard S, Nabe-Nielsen J, Teilmann J (2018) Marsvins udbredelse og status for de marine habitatområder is danske farvande. Aarhus Universitet, DCE – Nationalt Center for Miljø og Energi, Aarhus

    Google Scholar 

  • Tasker ML, Amundin M, Andre M, Hawkins A, Lang W, Merck T, Scholik-Schlomer A, Teilmann J, Thomsen F, Werner S, Zakharia M (2010) Marine Strategy Framework Directive – Task Group 11 Underwater noise and other forms of energy. OPOCE, Luxemburg

    Google Scholar 

  • Thiele R, Schellstede G (1980) Standardwerte zur Ausbreitungsdämpfung in der Nordsee. Forschungsanstalt der Bundeswehr für Wasserschall- und Geophysik, Kiel

    Google Scholar 

  • Tougaard J, Wright AJ, Madsen PT (2015) Cetacean noise criteria revisited in the light of proposed exposure limits for harbour porpoises. Mar Pollut Bull 90(1–2):196–208

    Article  CAS  PubMed  Google Scholar 

  • United Nations (ed) (2018) Nineteenth meeting: ‘Anthropogenic underwater noise’. In: Biographies and abstracts of panellists. United Nations, New York, p 28

    Google Scholar 

  • Urick RJ (1983) Principles of underwater sound, 3rd edn. Peninsula Publising, Los Atlos

    Google Scholar 

  • van Beest FM, Teilmann J, Hermannsen L, Galatius A, Mikkelsen L, Sveegaard S, Balle JD, Dietz R, Nabe-Nielsen J (2018) Fine-scale movement responses of free-ranging harbour porpoises to capture, tagging and short-term noise pulses from a single airgun. R Soc Open Sci 5(1):170110

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Schaar M, Haugerud AJ, Weissenberger J, De Vreese S, André M (2017) Arctic anthropogenic sound contributions from seismic surveys during summer 2013. Front Mar Sci 4:175

    Article  Google Scholar 

  • Wales SC, Heitmeyer RM (2002) An ensemble source spectra model for merchant ship-radiated noise. J Acoust Soc Am 111(3):1211–1231

    Article  PubMed  Google Scholar 

  • Wang ZT, Akamatsu T, Duan PX, Zhou L, Yuan J, Li J, Lei PY, Chen YW, Yang YN, Wang K, Wang D (2020) Underwater noise pollution in China’s Yangtze River critically endangers Yangtze finless porpoises (Neophocaena asiaeorientalis asiaeorientalis). Environ Pollut 262:114310

    Google Scholar 

  • Williams R, Wright AJ, Ashe E, Blight LK, Bruintjes R, Canessa R, Clark C, Cullis-Suzuki S, Dakin D, Erbe C (2015) Impacts of anthropogenic noise on marine life: publication patterns, new discoveries, and future directions in research and management. Ocean Coast Manag 115:17–24

    Article  Google Scholar 

  • Wisniewska DM, Johnson M, Teilmann J, Rojano-Doñate L, Shearer J, Sveegaard S, Miller LA, Siebert U, Madsen PT (2016) Ultra-high foraging rates of harbor porpoises make them vulnerable to anthropogenic disturbance. Curr Biol 26(11):1441–1446

    Article  CAS  PubMed  Google Scholar 

  • Wisniewska DM, Johnson M, Teilmann J, Siebert U, Galatius A, Dietz R, Madsen PT (2018) High rates of vessel noise disrupt foraging in wild harbour porpoises (Phocoena phocoena). Proc R Soc B Biol Sci 285(1872):20172314

    Article  Google Scholar 

  • Wood S (2015) Package ‘mgcv’. R Package Version 1:7–29

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Femern A/S, Copenhagen, Denmark for funding the study, and Quiet Oceans, Plouzané, France, for preparation of Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Nehls .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nehls, G. et al. (2024). Impact of High Marine Traffic on Harbor Porpoise: Effect on Abundance and Distribution. In: Popper, A.N., Sisneros, J., Hawkins, A.D., Thomsen, F. (eds) The Effects of Noise on Aquatic Life. Springer, Cham. https://doi.org/10.1007/978-3-031-10417-6_118-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10417-6_118-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10417-6

  • Online ISBN: 978-3-031-10417-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation