Data-Driven Methods for Efficient Operation of District Heating Systems

  • Chapter
  • First Online:
Handbook of Low Temperature District Heating

Abstract

In this chapter, data-driven methods for the efficient operation of DHSs are described. DHSs are inherently non-linear and time-varying systems as the heating demand is highly influenced by non-linear dependencies on the weather conditions as well as the occupancy behaviour. Furthermore, the dependency on flow and temperature in delivering the needed heat demand using the district heating network gives a non-linear dependency on these two signals. This chapter presents several data-driven models to handle the non-linear and time-varying phenomena in order to ensure an efficient operation. First, we introduce forecasts that are used to reach an optimal operation as forecasts are needed for both control and production planning, e.g. heat demand and electricity price forecasts. Second, temperature control of a DHN will be introduced with a focus on how the physical characteristics of the network can be incorporated into a control scheme. A special focus will be on how to ensure that the temperatures in the network are high enough to ensure the needed heat supply for the attached buildings in the entire district heating network is met. We shall also briefly look at the role of smart buildings integrated into a DHN that can be used to enhance the efficiency and flexibility of a DHS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Brazil)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Heat 4.0. The HEAT 4.0 will get a subpage on the CITIES homepage. https://smart-cities-centre.org/.

  2. Cities. The homepage of CITIES. https://smart-cities-centre.org/.

  3. Fed. The homepage of FED. https://www.flexibleenergydenmark.com/.

  4. Bergsteinsson, H. G., Ben Amer, S., Nielsen, P., Madsen, H. (2021). Digitalization of district heating. Technical University of Denmark (2021). https://orbit.dtu.dk/en/publications/digitalization-of-district-heating.

  5. Gadd, H., & Werner, S. (2013). Daily heat load variations in Swedish district heating systems. Applied Energy, 106, 47–55. https://doi.org/10.1016/j.apenergy.2013.01.030.

    Article  Google Scholar 

  6. Madsen, H., Søgaard, H. T., Sejling, K., Palsson, O. P. (1990). Models and methods for optimization of district heating systems.: Part I: models and identification methods. Informatics and Mathematical Modelling, Technical University of Denmark.

    Google Scholar 

  7. Nielsen, H. A., & Madsen, H. (2000). Predicting the heat consumption in district heating systems using meteorological forecasts. Informatics and Mathematical Modelling, Technical University of Denmark.

    Google Scholar 

  8. Bacher, P., Madsen, H., Nielsen, H. A., & Perers, B. (2013). Short-term heat load forecasting for single family houses. Energy and Buildings, 65, 101–112. https://doi.org/10.1016/j.enbuild.2013.04.022.

  9. Bergsteinsson, H. G., Møller, J. K., Nystrup, P., Pálsson, Ó. P., Guericke, D., & Madsen, H. (2021). Heat load forecasting using adaptive temporal hierarchies. Applied Energy, 292, 116872. https://doi.org/10.1016/j.apenergy.2021.116872.

    Article  Google Scholar 

  10. Bacher, P., Madsen, H., & Nielsen, H. A. (2009). Online short-term solar power forecasting. Solar Energy, 83(10), 1772–1783. https://doi.org/10.1016/j.solener.2009.05.016.

    Article  Google Scholar 

  11. Nielsen, T. S., Madsen, H., Nielsen, H. A., Giebel, G., & Landberg, L. (2002). Prediction of regional wind power. In Proceedings of the 2002 Global Windpower Conference, Paris, France.

    Google Scholar 

  12. Vlasova, J., Kotwa, E., Nielsen, H. A., & Madsen, H. (2007) Spatio-temporal modelling of short-term wind power prediction errors. Informatics and Mathematical Modelling, Technical University of Denmark.

    Google Scholar 

  13. Madsen, H. (2007). Time Series Analysis. Chapman & Hall. https://doi.org/10.1201/9781420059687.

  14. Ljung, L., & Söderström, T. (1983). Theory and Practice of Recursive Identification. The MIT Press Series in Signal Processing, Optimization, and Control (Vol. 4). MIT Press.

    Google Scholar 

  15. Nielsen, T. S., Madsen, H., Nielsen, H. A., Pinson, P., Kariniotakis, G., Siebert, N., Marti, I., Lange, M., Focken, U., Lueder V., & Hal, H. I. (2006). Short-term wind power forecasting using advanced statistical methods. In Proceedings of The European Wind Energy Conference, EWEC.

    Google Scholar 

  16. Rasmussen, L. B., Bacher, P., Madsen, H., Nielsen, H. A., Heerup, C., & Green, T. (2016). Load forecasting of supermarket refrigeration. Applied Energy, 163, 32–40. https://doi.org/10.1016/j.apenergy.2015.10.046.

    Article  Google Scholar 

  17. Madsen, H., & Holst, J. (1995). Estimation of continuous-time models for the heat dynamics of a building. Energy and Buildings, 22(1), 67–79. https://doi.org/10.1016/0378-7788(94)00904-X.

    Article  Google Scholar 

  18. Nielsen, H. A., & Madsen, H. (2006). Modelling the heat consumption in district heating systems using a grey-box approach. Energy and Buildings, 38(1), 63–71. https://doi.org/10.1016/j.enbuild.2005.05.002.

    Article  Google Scholar 

  19. Dotzauer, E. (2002). Simple model for prediction of loads in district-heating systems. Applied Energy, 73(3), 277–284. https://doi.org/10.1016/S0306-2619(02)00078-8.

    Article  Google Scholar 

  20. Heat demand forecasting software system. https://enfor.dk/services/heatfor/.

  21. Bacher, P., Bergsteinsson, H. G., Frölke, L., Sørensen, M. L., Lemos-Vinasco, J., Liisberg, J., Møller, J. K., Nielsen, H. A., Madsen, H. (2021). Onlineforecast: An r package for adaptive and recursive forecasting. ar**v preprint ar**v: 2109.12915.

  22. Jónsson, T., Pinson, P., Nielsen, H. A., Madsen, H., & Nielsen, T. (2013). Forecasting electricity spot prices accounting for wind power predictions. IEEE Transactions on Sustainable Energy, 4(1), 210–218. https://doi.org/10.1109/TSTE.2012.2212731.

  23. Blanco, I., Guericke, D., Andersen, A. N., & Madsen, H. (2018). Operational planning and bidding for district heating systems with uncertain renewable energy production. Energies,11(3310). https://doi.org/10.3390/en11123310.

  24. Fang, T., & Lahdelma, R. (2016). Optimization of combined heat and power production with heat storage based on sliding time window method. Applied Energy, 162, 723–732. https://doi.org/10.1016/j.apenergy.2015.10.135.

    Article  Google Scholar 

  25. Schledorn, A., Guericke, D., Andersen, A. N., & Madsen, H. (2021). Optimising block bids of district heating operators to the day-ahead electricity market using stochastic programming. Smart Energy,1. https://doi.org/10.1016/j.segy.2021.100004.

  26. Nowotarski, J., & Weron, R. (2018). Recent advances in electricity price forecasting: A review of probabilistic forecasting. Renewable and Sustainable Energy Reviews, 81, 1548–1568. https://doi.org/10.1016/j.rser.2017.05.234.

    Article  Google Scholar 

  27. Lago, J., Marcjasz, G., De Schutter, B., & Weron, R. (2021). Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark. Applied Energy, 293, 116983. https://doi.org/10.1016/j.apenergy.2021.116983.

    Article  Google Scholar 

  28. Weron, R. (2014). Electricity price forecasting: A review of the state-of-the-art with a look into the future. International Journal of Forecasting, 30(4), 1030–1081. https://doi.org/10.1016/j.ijforecast.2014.08.008.

  29. Aggarwal, S. K., Saini, L. M., & Kumar, A. (2009). Electricity price forecasting in deregulated markets: A review and evaluation. International Journal of Electrical Power and Energy Systems, 31(1), 13–22 (2009). https://doi.org/10.1016/j.ijepes.2008.09.003.

  30. Dahl, M., Brun, A., & Andresen, G. B. (2017). Using ensemble weather predictions in district heating operation and load forecasting. Applied Energy, 193, 455–465. https://doi.org/10.1016/j.apenergy.2017.02.066.

    Article  Google Scholar 

  31. Grosswindhager, S., Voigt, A., & Kozek, M. (2011). Online short-term forecast of system heat load in district heating networks.

    Google Scholar 

  32. Sejling, K. (1993). Modelling and prediction of load in district heating systems. Ph.D. thesis, Technical University of Denmark, Department of Applied Mathematics and Computer Science. http://www2.imm.dtu.dk/pubdb/pubs/6757-full.html.

  33. Dahl, M., Brun, A., Kirsebom, O. S., & Andresen, G. B. (2018). Improving short-term heat load forecasts with calendar and holiday data. Energies,11(7). https://doi.org/10.3390/en11071678.

  34. Kato, K., Sakawa, M., Ishimaru, K., Ushiro, S., & Shibano, T. (2008). Heat load prediction through recurrent neural network in district heating and cooling systems. In: 2008 IEEE International Conference on Systems, Man and Cybernetics (pp. 1401–1406). https://doi.org/10.1109/ICSMC.2008.4811482.

  35. Steeneveld, G. J., Koopmans, S., Heusinkveld, B. G., Van Hove, L. W. A., & Holtslag, A. A. M. (2011). Quantifying urban heat island effects and human comfort for cities of variable size and urban morphology in The Netherlands. Journal of Geophysical Research Atmospheres,116(20). https://doi.org/10.1029/2011JD015988.

  36. Glahn, H. R., & Lowry, D. A. (1972). The use of model output statistics (MOS) in objective weather forecasting. Journal of Applied Meteorology (1962–1982), 11(8), 1203–1211.

    Google Scholar 

  37. Crochet, P. (2004). Adaptive Kalman filtering of 2-metre temperature and 10-metre wind-speed forecasts in Iceland. Meteorological Applications, 11(2), 173–187. https://doi.org/10.1017/S1350482704001252.

    Article  Google Scholar 

  38. Oliker, I. (1980). Steam turbines for cogeneration power plants. Journal of Engineering for Power, 102(2), 482–485. https://doi.org/10.1115/1.3230281.

    Article  Google Scholar 

  39. Åström, K. J., & Wittenmark, B. (2008). Adaptive Control (2 rev. Dover ed.). Dover Publications.

    Google Scholar 

  40. Madsen, H., Nielsen, T. S., & Sögaard, H. T. (1996). Control of supply temperature: EFP 1323/93-07. Informatics and Mathematical Modelling, Technical University of Denmark.

    Google Scholar 

  41. Madsen, H., Søgaard, H. T., Sejling, K., & Palsson, O. P. (1992). Models and methods for optimization of district heating systems.: Part II: models and control methods. Informatics and Mathematical Modelling, Technical University of Denmark.

    Google Scholar 

  42. Nielsen, T. S. (2002). Online prediction and control in nonlinear stochastic systems. Ph.D. thesis, Technical University of Denmark, Department of Applied Mathematics and Computer Science.

    Google Scholar 

  43. Pinson, P., Nielsen, T. S., Nielsen, H. A., Poulsen, N. K., & Madsen, H. (2009). Temperature prediction at critical points in district heating systems. European Journal of Operational Research, 194(1), 163–176. https://doi.org/10.1016/j.ejor.2007.11.065.

  44. Temperature optimization software system. https://enfor.dk/services/heatto/.

  45. Benonysson, A., Bøhm, B., & Ravn, H. F. (1995). Operational optimization in a district heating system. Energy Conversion and Management, 36(5), 297–314. https://doi.org/10.1016/0196-8904(95)98895-T.

    Article  Google Scholar 

  46. Søgaard, H. T. (1993). Stochastic systems with embedded parameter variations—applications to district heating. Ph.D. thesis, Technical University of Denmark, Department of Applied Mathematics and Computer Science.

    Google Scholar 

  47. Bergsteinsson, H. G., Nielsen, T. S., Møller, J. K., Amer, S. B., Dominković, D. F., & Madsen, H. (2021). Use of smart meters as feedback for district heating temperature control. Energy Reports, 7, 213–221. https://doi.org/10.1016/j.egyr.2021.08.153.

  48. Madsen, H., Sejling, K., Søgaard, H. T., & Palsson, O. P. (1994). On flow and supply temperature control in district heating systems. Heat Recovery Systems and CHP, 14(6), 613–620. https://doi.org/10.1016/0890-4332(94)90031-0.

    Article  Google Scholar 

  49. Nielsen, T. S., Madsen, H., Holst, J., & Søgaard, H. T. (2002). Predictive control of supply temperature in district heating systems. Informatics and Mathematical Modelling, Technical University of Denmark.

    Google Scholar 

  50. Palsson, O. P. (1993). Stochastic modeling, control and optimization of district heating systems. Ph.D. thesis, Technical University of Denmark, Department of Applied Mathematics and Computer Science.

    Google Scholar 

  51. Palsson, O. P., Madsen, H., & Søgaard, H. T. (1994). Generalized predictive control for non-stationary systems. Automatica, 30(12), 1991–1997. https://doi.org/10.1016/0005-1098(94)90061-2.

    Article  MathSciNet  MATH  Google Scholar 

  52. Palsson, O. P., Madsen, H. T., & Søgaard, H. (1993). Application of predictive control in district heating systems. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 207(3), 157–163. https://doi.org/10.1243/PIME_PROC_1993_207_029_02.

  53. Clarke, D. W., Mohtadi, C., & Tuffs, P. S. (1987). Generalized predictive control-part i. The basic algorithm. Automatica, 23(2), 137–148. https://doi.org/10.1016/0005-1098(87)90087-2.

  54. Grosswindhager, S., Voigt, A., & Kozek, M. (2012). Predictive control of district heating network using fuzzy DMC. In: 2012 Proceedings of International Conference on Modelling, Identification and Control (pp. 241–246).

    Google Scholar 

  55. Larsen, H. V., Palsson, H., Bøhm, B., & Ravn, H. F. (2002) Aggregated dynamic simulation model of district heating networks. Energy Conversion and Management, 43, 995–1019. https://doi.org/10.1016/S0196-8904(01)00093-0.

  56. Sandou, G., Font, S., Tebbani, S., Hiret, A., & Mondon, C. (2004). Global modelling and simulation of a district heating network. In Proceeding of the 8th International Symposium on District Heating and Cooling, Espoo, Finland.

    Google Scholar 

  57. Sandou, G., Font, S., Tebbani, S., Hiret, A., Mondon, C., Tebbani, S., Hiret, A., & Mondon, C. (2005). Predictive control of a complex district heating network. In: Proceedings of the 44th IEEE Conference on Decision and Control (pp. 7372–7377). https://doi.org/10.1109/CDC.2005.1583351.

  58. Bavière, R., & Vallèe, M. (2018). Optimal temperature control of large scale district heating networks. Energy Procedia, 149, 69–78. https://doi.org/10.1016/j.egypro.2018.08.170.

    Article  Google Scholar 

  59. Giraud, L., Merabet, M., Bavière, R., Vallèe, M. (2017). Optimal control of district heating systems using dynamic simulation and mixed integer linear programming. In Proceedings of the 12th International Modelica Conference. https://doi.org/10.3384/ecp17132141.

  60. Vandermeulen, A., van der Heijde, B., & Helsen, L. (2018). Controlling district heating and cooling networks to unlock flexibility: A review. Energy, 151, 103–115. https://doi.org/10.1016/j.energy.2018.03.034.

    Article  Google Scholar 

  61. Drgoňa, J., Arroyo, J., Cupeiro Figueroa, I., Blum, D., Arendt, K., Kim, D., et al. (2020). All you need to know about model predictive control for buildings. Annual Reviews in Control, 50, 190–232. https://doi.org/10.1016/j.arcontrol.2020.09.001.

    Article  MathSciNet  Google Scholar 

  62. Thilker, C. A., Madsen, H., & Jørgensen, J. B. (2021). Advanced forecasting and disturbance modelling for model predictive control of smart energy systems. Applied Energy, 292, 116889. https://doi.org/10.1016/j.apenergy.2021.116889.

    Article  Google Scholar 

  63. Thilker, C. A., Bacher, P., Bergsteinsson, H. G., Junker, R. G., Cali, D., & Madsen, H. (2021). Non-linear grey-box modelling for heat dynamics of buildings. Energy and Buildings. https://doi.org/10.1016/j.enbuild.2021.111457.

  64. Thilker, C. A., Bergsteinsson, H. G., Bacher, P., Madsen, H., Cali, D., & Junker, R. (2021). Non-linear model predictive control for smart heating of buildings. In: Proceedings of Cold Climate HVAC & Energy 2021.

    Google Scholar 

  65. Halvgaard, R., Poulsen, N. K., Madsen, H., & Jørgensen, J.B. (2012). Economic model predictive control for building climate control in a smart grid. In: 2012 IEEE PES Innovative Smart Grid Technologies (ISGT) (pp. 1–6). https://doi.org/10.1109/ISGT.2012.6175631.

  66. Kuboth, S., Heberle, F., König-Haagen, A., & Brüggemann, D. (2019). Economic model predictive control of combined thermal and electric residential building energy systems. Applied Energy, 240, 372–385. https://doi.org/10.1016/j.apenergy.2019.01.097.

    Article  Google Scholar 

  67. De Coninck, R., & Helsen, L. (2016). Practical implementation and evaluation of model predictive control for an office building in brussels. Energy and Buildings, 111, 290–298. https://doi.org/10.1016/j.enbuild.2015.11.014.

    Article  Google Scholar 

  68. Madsen, H., Parvizi, J., Halvgaard, R., Sokoler, L. E., Jørgensen, J.B., Hansen, L. H., & Hilger, K. B. (2015). Control of electricity loads in future electric energy systems. Handbook of Clean Energy Systems, pp. 1–26.

    Google Scholar 

  69. Junker, R. G., Azar, A. G., Lopes, R. A., Lindberg, K. B., Reynders, G., Relan, R., & Madsen, H. (2018). Characterizing the energy flexibility of buildings and districts. Applied Energy, 225, 175–182. https://doi.org/10.1016/j.apenergy.2018.05.037.

    Article  Google Scholar 

  70. Junker, R. G., Kallesøe, C. S., Real, J. P., Howard, B., Lopes, R. A., & Madsen, H. (2020). Stochastic nonlinear modelling and application of price-based energy flexibility. Applied Energy, 275, 115096. https://doi.org/10.1016/j.apenergy.2020.115096.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hjörleifur G. Bergsteinsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 TECNALIA

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bergsteinsson, H.G. et al. (2022). Data-Driven Methods for Efficient Operation of District Heating Systems. In: Garay-Martinez, R., Garrido-Marijuan, A. (eds) Handbook of Low Temperature District Heating. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-10410-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10410-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10409-1

  • Online ISBN: 978-3-031-10410-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation