Estimation of the Influence of Contamination by Rocket Fuel Combustion Products on the Chemical and Isotopic Composition of the Lunar Regolith in the Polar Regions

  • Chapter
  • First Online:
Advances in Geochemistry, Analytical Chemistry, and Planetary Sciences

Abstract

Permanently-shadowed Polar Regions of the Moon contain in deposits of ice water and other volatile substances. Current intensification of polar regions investigation using landing spacecrafts creates preconditions for contamination of polar regolith by rocket exhaust. Such contamination can influence the interpretation of the obtained information on chemical and isotopic composition of lunar volatiles. On the basis of theoretical modeling of the condensation of the rocket exhaust in the cold traps it is shown that the level of contamination of the regolith surface could be quite insignificant, about ng/g. However, locally it could be higher due to a possible interaction of the rocket jet with the porous frozen regolith which should take place at the Luna 25, 27, 28 spacecrafts landing sites. Based on the analysis of the distribution of volatiles in the low-latitude regolith and the Cabeus near-polar crater, the question of possible chemical and isotopic composition of the polar regolith volatiles is investigated. It is shown that the chemical and isotopic composition of the volatiles in the non-polar regolith varies within a very wide range, so that the fuel composition is likely to be within this interval. Reliable chemical markers of the primary nature of volatiles could be sulfur and mercury, which are absent from the composition of the rocket gases. We conclude that there has been no significant contamination of the Moon with rocket gases during the entire history of its study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shipley, S., Metzger, P., Lane, J.: Lunar cold trap contamination by landing vehicles. American Society of Civil Engineers Earth and Space. Conference paper (2014)

    Google Scholar 

  2. Prem, P., Hurley, D., Goldstein, D., Varghese, P.: The evolution of a spacecraft-generated lunar exosphere. J. Geophys. Res. Planets 125, e2020JE006464 (2020)

    Google Scholar 

  3. Witze, A.: Will increasing traffic to the Moon contaminate its precious ice? Nature 589, 180–181 (2021)

    Article  Google Scholar 

  4. Aronowitz, L., Koch, F., Scanlon, J., Sidran, M.: Contamination of lunar surface samples by the lunar module exhaust. J. Geophys. Res. 73, 3231–3238 (1968)

    Article  Google Scholar 

  5. Paige, D., Siegler, M., Zhang, J., Hayne, P., Foote, E., Bennett, K., Vasavada, A., Greenhagen, B., Schofield, J., McCleese, D., Foote, M., DeJong, E., Bills, B., Hartford, W., Murray, B., Allen, C., Snook, K., Soderblom, L., Calcutt, S., Taylor, F., Bowles, N., Bandfield, J., Elphic, R., Ghent, R., Glotch, T., Wyatt, M., Lucey, P.: Diviner observations of cold traps in the lunar south polar region: spatial distribution and temperature. Science 330(6003), 479–482 (2010)

    Article  Google Scholar 

  6. Aye, K., Paige, D., Foote, M., Greenhagen, B., Siegler, M.: The coldest place on the Moon. LPI Contrib. 1719, 3016 (2013)

    Google Scholar 

  7. Sefton-Nash, E., Williams, J., Greenhagen, B., Warren, T., Bandfield, J., Aye, K., Leader, F., Siegler, M., Hayne, P., Bowles, N., Paige, D.: Evidence for ultra-cold traps and surface water ice in the lunar south polar crater Amundsen. Icarus 332, 1–13 (2019)

    Article  Google Scholar 

  8. Davidsson, B., Hosseini, S.: Implications of surface roughness in models of water desorption on the Moon. Mon. Not. R. Astron. Soc. 506, 3421–3429 (2020)

    Article  Google Scholar 

  9. Efanov, V., Dolgopolov, V.: The Moon. From exploration to development (to the 50th anniversary of spacecraft “Luna-9” and “Luna-10”). Vestnik NPO S.A. Lavochkin 4(34), 3−8 (2016)

    Google Scholar 

  10. NASA, Future Chinese Lunar Missions. https://nssdc.gsfc.nasa.gov/planetary/lunar/cnsa_moon_future.html. Last accessed 9 Nov 2021

  11. Artemis program. https://www.nasa.gov/specials/artemis/. Last accessed 9 Nov 2021

  12. NASA’s Break the Ice Lunar Challenge. https://breaktheicechallenge.com. Last accessed 9 Nov 2021

  13. Feldman, W., Maurice, S., Lawrence, D., Little, R., Lawson, S., Gasnault, O., Wiens, R., Barraclough, B., Elphic, R., Prettyman, T., Steinberg, J., Binder, A.: Evidence for water ice near the lunar poles. J. Geophys. Res. Planets 106(E10), 23231–23251 (2001)

    Article  Google Scholar 

  14. Mitrofanov, I., Sanin, A., Boynton, W., Chin, G., Garvin, J., Golovin, D., Evans, L., Harshman, K., Kozyrev, A., Litvak, M., Malakhov, A., Mazarico, E., McClanahan, T., Milikh, G., Mokrousov, M., Nandikotkur, G., Neumann, G., Nuzhdin, I., Sagdeev, R., Shevchenko, V., Shvetsov, V., Smith, D., Starr, R., Tretyakov, V., Trombka, J., Usikov, D., Varenikov, A., Vostrukhin, A., Zuber, M.: Hydrogen map** of the Lunar south pole using the LRO Neutron detector experiment LEND. Science 330, 483–486 (2010)

    Article  Google Scholar 

  15. Sanin, A., Mitrofanov, I., Litvak, M., Bakhtin, B., Bodnarik, J., Boynton, W., Chin, G., Evans, L., Harshman, K., Fedosov, F., Golovin, D., Kozyrev, A., Livengood, T., Malakhov, A., McClanahan, T., Mokrousov, M., Starr, R., Sagdeev, R., Tret’yakov, V., Vostrukhin, A.: Hydrogen distribution in the lunar polar regions. Icarus 283, 20–30 (2017)

    Google Scholar 

  16. Akhmanova, M., Dementyev, B., Markov, M.: Possible water in Luna 24 regolith from the sea of crises. Geochem. Int. 15, 166–168 (1979)

    Google Scholar 

  17. Livengood, T., Chin, G., Sagdeev, R., Mitrofanov, I., Boynton, W., Evans, L., Litvak, M., McClanahan, T., Sanin, A., Starr, R., Su, J.: Moonshine: diurnally varying hydration through natural distillation on the Moon, detected by the Lunar Exploration Neutron Detector (LEND). Icarus 255, 100–115 (2015)

    Article  Google Scholar 

  18. Colaprete, A., Schultz, P., Heldmann, J., Wooden, D., Shirley, M., Ennico, K., Hermalyn, B., Marshall, W., Ricco, A., Elphic, R., Goldstein, D., Summy, D., Bart, G., Asphaug, E., Korycansky, D., Landis, D., Sollitt, L.: Detection of water in the LCROSS ejecta plume. Science 330, 463–468 (2010)

    Article  Google Scholar 

  19. Gladstone, G., Hurley, D., Retherford, K., Feldman, P., Pryor, W., Chaufray, J., Versteeg, M., Greathouse, T., Steffl, A., Throop, H., Parker, J., Kaufmann, D., Egan, A., Davis, M., Slater, D., Mukherjee, J., Miles, P., Hendrix, A., Colaprete, A., Stern, S.: LRO-LAMP observations of the LCROSS impact plume. Science 330, 472–476 (2010)

    Article  Google Scholar 

  20. Mandt, K., Mousis, O., Bouquet A., Hurley D., Luspay-Kuti, A.: The origin of volatiles sampled by the LCROSS mission in Cabeus crater. In: 52nd Lunar and Planetary Science Conference 2021. Abs. 2167 (2021)

    Google Scholar 

  21. Dolgov, Yu., Shugurova, N.: Results of study of gases from inclusions in lunar glasses. In: Vinogradov, A. (ed.) Lunar Soil from the Sea of Fertility, pp. 356−362. Nauka, Moscow (1974)

    Google Scholar 

  22. Simoneit, B., Vjolek, P., Christiansen, P., Dixon, R., Burlingame, A.: Carbon chemistry in samples delivered by Luna 16 and Luna 20. In: Barsukov, V., Surkov, Yu. (eds.) Grunt from the Highland Region of the Moon, pp. 566−572. Nauka, Moscow (1979)

    Google Scholar 

  23. Apollo Operations Handbook. https://history.nasa.gov/afj/aohindex.html. Last accessed 09 Nov 2021

  24. The Apollo Spacecraft News Reference. https://www.hq.nasa.gov/alsj/LMNewsRef-Boothman.html. Last accessed 09 Nov 2021

  25. Mazarico, E., Neumann, G., Smith, D., Zuber, M., Torrence, M.: Illumination conditions of the lunar polar regions using LOLA topography. Icarus 211, 1066–1081 (2011)

    Article  Google Scholar 

  26. Aldrin, E., Armstrong, N., Collins, M.: Crew observations. Apollo 11 Preliminary Science Report. NASA SP-214, pp. 35−40 (1969)

    Google Scholar 

  27. Clegg, R., Jolliff, B., Robinson, M., Hapke, B., Plescia, J.: Effects of rocket exhaust on lunar soil reflectance properties. Icarus 227, 176–194 (2014)

    Article  Google Scholar 

  28. Kaydash, V., Shkuratov, Yu., Korokhin, V., Videen, G.: Photometric anomalies in the Apollo landing sites as seen from the Lunar Reconnaissance Orbiter. Icarus 211, 89–96 (2011)

    Google Scholar 

  29. Kaydash, V., Shkuratov, Yu.: Structural disturbances of the lunar surface near the Lunokhod-1 spacecraft landing site. Solar Syst. Res. 48(3), 167–175 (2014)

    Google Scholar 

  30. Metzger, P., Smith, J., Lane, J.: Phenomenology of soil erosion due to rocket exhaust on the Moon and the Mauna Kea lunar test site. J. Geophys. Res. 116(E6), E06005 (2011)

    Article  Google Scholar 

  31. Sargeant, H., Bickel, V., Honniball, C., Martinez, S., Rogaski, A., Bell, S., Czaplinski, E., Farrant, B., Harrington, E., Tolometti, G., Kring D.: Determining the bearing capacity of permanently shadowed regions of the Moon using boulder tracks. In: 50th Lunar and Planetary Science Conference, abs. 1792 (2019)

    Google Scholar 

  32. Plemmons, D., Mehta, M., Clark, B., Kounaves, S., Peach, L., Renno, N., Tamppari, L., Young, S.: Effects of the Phoenix Lander descent thruster plume on the Martian surface. J. Geophys. Res. Planets 113(E3), E00A11 (2008)

    Google Scholar 

  33. Manish, M., Renno, N., Marshall, J., Grover, M., Sengupta, A., Rusche, N., Kok, J., Arvidson, R., Markiewicz, W., Lemmon, M., Smith, P.: Explosive erosion during the Phoenix landing exposes subsurface water on Mars. Icarus 211, 172–194 (2011)

    Article  Google Scholar 

  34. Tretyakov, V., Zelenyi, L., Mitrofanov I.: 2021. Science program of Luna-25 and Luna-27 missions. In: The 12th Moscow Solar System Symposium, abs. 12MS3-MN-09 (2021)

    Google Scholar 

  35. Carpenter, J., Fisackerly, R.: PROSPECT: ESA’s package for resource observation and in-situ prospecting for exploration, commercial exploitation, and transportation. In: The 48th Lunar and Planetary Science Conference, abs. 2514 (2017)

    Google Scholar 

  36. Duxbury, N., Nealson, K., Romanovsky, V.: On the possibility of clathrate hydrates on the Moon. J. Geophys. Res. Atmospheres 106(E11), 27811–27813 (2001)

    Article  Google Scholar 

  37. Nozette, S., Lichtenberg, C., Spudis, P., Bonner, R., Ort, W., Malaret, E., Robinson, M., Shoemaker, E.: The Clementine bistatic radar experiment. Science 274, 1495–1498 (1996)

    Article  Google Scholar 

  38. Feldman, W., Maurice, S., Binder, A., Barraclough, B., Elphic, R., Lawrence, D.: Fluxes of fast and epithermal neutrons from the Lunar prospector: evidence for water ice at the lunar poles. Science 281, 1496–1500 (1998)

    Article  Google Scholar 

  39. Hashizume, K., Marty, B., Wieler, R.: Analyses of nitrogen and argon in single lunar grains: towards a quantification of the asteroidal contribution to planetary surface. Earth Planet. Sci. Lett. 202, 201–216 (2002)

    Article  Google Scholar 

  40. Liu, Y., Guan, Y., Zhang, Y., Rossman, G., Eiler, J., Taylor, L.: Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water. Nat. Geosci. 5, 779–782 (2012)

    Article  Google Scholar 

  41. Füri, E., Marty, B., Assonov, S.: Constraints on the flux of meteoritic and cometary water on the Moon from volatile element (N-Ar) analyses of single lunar soil grains, Luna 24 core. Icarus 218(1), 220–229 (2012)

    Article  Google Scholar 

  42. McCubbin, F., Vander Kaaden, K., Tartèse, R., Klima, R., Liu, Y., Mortimer, J., Barnes, J., Shearer, C., Treiman, A., Lawrence, D., Elardo, S., Hurley, D., Boyce, J., Anand, M.: Magmatic volatiles (H, C, N, F, S, Cl) in the lunar mantle, crust, and regolith: abundances, distributions, processes, and reservoirs. Am. Miner. 100, 1668–1707 (2015)

    Article  Google Scholar 

  43. Joy, K., Tartèse, R., Messenger, S., Zolensky, M., Marrocchi, Y., Frank, D., Kring, D.: The isotopic composition of volatiles in the unique Bench Crater carbonaceous chondrite impactor found in the Apollo 12 regolith. Earth Planet. Sci. Lett. 540, 116265 (2020)

    Article  Google Scholar 

  44. Morbidelli, A., Chambers, J., Lunine, J., Petit, J., Robert, F., Valsecchi, G., Cyr, K.: Source regions and timescales for the delivery of water to the Earth. Meteorit. Planet. Sci. 35, 1309–1320 (2000)

    Article  Google Scholar 

  45. Gounelle, M., Engrand, C., Maurette, M., Kurat, G., McKeegan, K., Brandstätter, F.: Small Antarctic micrometeorites: a mineralogical and in situ oxygen study. Meteorit. Planet. Sci. 40, 917–932 (2005)

    Article  Google Scholar 

  46. Barnes, J., Kring, D., Tartese, R., Franchi, I., Anand, M., Russell, S.: An asteroidal origin for water in the Moon. Nat. Commun. 7, 11684 (2016)

    Article  Google Scholar 

  47. Vacher, L., Piani, L., Rigaudier, T., Thomassin, D., Florin, G., Piralla, M., Marrocchi, Y.: Hydrogen in chondrites: influence of parent body alteration and atmospheric contamination on primordial components. Geochim. Cosmochim. Acta 281, 53–66 (2020)

    Article  Google Scholar 

  48. Svetsov, V., Shuvalov, V.: Water delivery to the Moon by asteroidal and cometary impacts. Planet. Space Sci. 117, 444–452 (2015)

    Article  Google Scholar 

  49. Mortimer, J., Verchovsky, A., Anand, M.: Predominantly non-solar origin of nitrogen in lunar soils. Geochim. Cosmochim. Acta 193, 36–53 (2016)

    Article  Google Scholar 

  50. Siegler, M., Paige, D., Williams, J., Bills, B.: Evolution of lunar polar ice stability. Icarus 255, 78–87 (2015)

    Article  Google Scholar 

  51. Kerridge, G., Kaplan, I., Petrowski, C., Chang, S.: Light element geochemistry of the Apollo 16 site. Geochim. Cosmochim. Acta 39, 137–162 (1975)

    Article  Google Scholar 

  52. Stephant, A., Anand, M., Tartèse, R., Zhao, X., Degli-Alessandrini, G., Franchi, I.: The hydrogen isotopic composition of lunar melt inclusions: an interplay of complex magmatic and secondary processes. Geochim. Cosmochim. Acta 284, 196–221 (2020)

    Article  Google Scholar 

  53. Stephant, A., Robert, F.: The negligible chondritic contribution in the lunar soils water. Proc. Natl. Acad. Sci. 111(42), 15007–15012 (2014)

    Article  Google Scholar 

  54. Benna, M., Hurley, D., Stubbs, T., Mahaffy, P., Elphic, R.: Lunar soil hydration constrained by exospheric water liberated by meteoroid impacts. Nat. Geosci. 12, 333–338 (2019)

    Google Scholar 

  55. Crandall, P., Gillis-Davis, J., Kaiser, R.: Untangling the origin of molecular hydrogen in the lunar exosphere. Astrophys J 887, 1–7 (2019)

    Article  Google Scholar 

  56. Moore, C., Gibson, E., Larimer, J., Lewis, C., Nichiporuk, W.: Total carbon and nitrogen abundances in Apollo 11 lunar samples and selected achondrites and basalts. In: Proceedings of the Apollo 11 Lunar Science Conference. Geochimica et Cosmochimica Acta Supplement, pp. 1375−1382 (1970)

    Google Scholar 

  57. Moore, C., Lewis, C., Larimer, J., Delles, F., Gooley, R., Nichiporuk, W., Gibson, E., Jr.: Total carbon and nitrogen abundances in Apollo 12 lunar samples. In: Proceedings of the 2nd Lunar Science Conference, pp. 1343–1350 (1971)

    Google Scholar 

  58. Marty, B., Chaussidon, M., Wiens, R., Jurewicz, A., Burnett, D.: A 15N-poor isotopic composition for the solar system as shown by Genesis solar wind samples. Science 332, 1533–1536 (2011)

    Article  Google Scholar 

  59. Mathew, K., Marti, K.: Lunar nitrogen: indigenous signature and cosmic ray production rate. Earth Planet. Sci. Lett. 184, 659–669 (2001)

    Article  Google Scholar 

  60. Pearson, V., Sephton, M., Franchi, I., Gibson, J., Gilmour, I.: Carbon and nitrogen in carbonaceous chondrites: elemental abundances and stable isotopic compositions. Meteorit. Planet. Sci. 41(12), 1899–1918 (2006)

    Article  Google Scholar 

  61. Floss, C., Stadermann, F., Bradley, J., Dai, Z., Bajt, S., Graham, G., Lea, A.: Identification of isotopically primitive interplanetary dust particles: a NanoSIMS isotopic imaging study. Geochim. Cosmochim. Acta 70, 2371–2399 (2006)

    Article  Google Scholar 

  62. Franchi, I., Wright, I., Pillinger, C.: 1986. Heavy nitrogen in Bencubbin, a light-element isotopic anomaly in a stony-iron meteorite. Nature 323, 138–140 (1986)

    Google Scholar 

  63. Briani, G., Gounelle, M., Marrocchi, Y., Mostefaoui, S., Leroux, H., Quirico, E., Meibom, A.: Pristine extraterrestrial material with unprecedented nitrogen isotopic variation. Proc. Natl. Acad. Sci. 106(26), 10522–10527 (2009)

    Article  Google Scholar 

  64. Mortimer, J., Verchovsky, A., Anand, M., Gilmour, I., Pillinger, C.: Simultaneous analysis of abundance and isotopic composition of nitrogen, carbon, and noble gases in lunar basalts: insights into interior and surface processes on the Moon. Icarus 255, 3–17 (2015)

    Article  Google Scholar 

  65. Housley, R.: Modeling lunar volcanic eruptions. In: Proceeding of 9th Lunar and Planetary Science Conference, pp. 1473–1484 (1978)

    Google Scholar 

  66. Sato, M.: The driving mechanism of lunar pyroclastic eruptions inferred from the oxygen fugacity behavior of Apollo 17 orange glass. In: Proceedings of 10th Lunar and Planetary Science Conference, pp. 311–325 (1979)

    Google Scholar 

  67. Wilson, L., Head, J.: Ascent of magma with volatiles on the Earth and Moon. In: 10th Lunar and Planetary Science Conference, pp. 1350–1352 (1979)

    Google Scholar 

  68. Epstein, S., Taylor, H.: D/H and 18O/16O ratios of H2O in the ‘rusty’ breccia 66095 and the origin of ‘lunar water’. In: Proceedings of the 5th Lunar Conference, Supplement 5, Geochimica et Cosmochimica Acta, pp. 1834–1854 (1974)

    Google Scholar 

  69. Kerridge, G., Kaplan, I., Kung, C., Winter, D., Friedman, D.: Light element geochemistry of the Apollo 12 site. Geochim. Cosmochim. Acta 42, 391–402 (1978)

    Article  Google Scholar 

  70. Kaplan, I., Smith, J., Ruth, E.: Carbon and sulfur concentration and isotopic composition in Apollo 11 lunar samples. Geochimica et Cosmochimica Acta Supplement. In: Proceedings of the Apollo 11 Lunar Science Conference, pp. 1317–1329 (1970)

    Google Scholar 

  71. McKeegan, K., Kallio, A., Heber, V., Jarzebinski, G., Mao, P., Coath, C., Kunihiro, T., Wiens, R., Nordholt, J., Moses, R., Jr., Reisenfeld, D., Jurewicz, A., Burnett, D.: The oxygen isotopic composition of the Sun inferred from captured solar winds. Science 332, 1528–1532 (2011)

    Article  Google Scholar 

  72. Terada, K., Yokota, S., Saito, Y., Kitamura, N., Asamura, K., Nishino, M.: Biogenic oxygen from Earth transported to the Moon by a wind of magnetospheric ions. Nat. Astronomy 1(2), 0026 (2017)

    Article  Google Scholar 

  73. Hashizume, K., Chaussidon, M.: Two oxygen isotopic components with extra-selenial origins observed among lunar metallic grains—in search for the solar wind component. Geochim. Cosmochim. Acta 73, 3038–3054 (2009)

    Article  Google Scholar 

  74. Li, S., Lucey, P., Fraeman, A., Poppe, A., Sun, V., Hurley, D., Schultz, P.: Widespread hematite at high latitudes of the Moon. Science Advances 6(36), eaba1940 (2020)

    Google Scholar 

  75. Von Steiger, R., Zurbuchen, T., McComas, D.: Oxygen flux in the solar wind: Ulysses observations. Geophys. Res. Lett. 37, L22101 (2010)

    Google Scholar 

  76. Greenwood, R., Barrat, J., Miller, M., Anand, M., Dauphas, N., Franchi, I., Sillard, P., Starkey, N.: Oxygen isotopic evidence for accretion of Earth’s water before a high-energy Moon-forming giant impact. Sci. Adv. 4(3), eaao5928

    Google Scholar 

  77. Cano, E., Sharp, D., Shearer, C.: Distinct oxygen isotope compositions of the Earth and Moon. Nat. Geosci. 13, 270–274 (2020)

    Article  Google Scholar 

  78. Maximilien, J., Verdier-Paoletti, J., Marrocchi, Y., Avice, G., Roskosz, M., Gurenko, A., Gounelle, M.: Oxygen isotope constraints on the alteration temperatures of CM chondrites. Earth Planet. Sci. Lett. 458, 273–281 (2017)

    Article  Google Scholar 

  79. Hoppe, P., Rubin, M., Altwegg, K.: Presolar isotopic signatures in meteorites and comets: new insights from the Rosetta Mission to Comet 67P/Churyumov–Gerasimenko. Space Sci. Rev. 214, 106 (2018)

    Article  Google Scholar 

  80. Vinogradov, A., Chupakhin, M., Shevaleevsky, I., Belyaev, Yu.: Chemical composition of the lunar regolith of Luna-16. In: Vinogradov, A. (ed.) Lunar soil from the sea of fertility, pp. 264–277. Nauka, Moscow (1974)

    Google Scholar 

  81. Barsukov, V., Dmitriev, L., Tarasov, L., Kolesov, G., Shevaleevsky, I., Ramendik, G., Garanin, A.: Geochemical and petrochemical features of regolith and rocks from the Crisis Sea (preliminary data). In: Barsukov, V. (ed.) Lunar soil from the Crisis Sea, pp. 158–165. Nauka, Moscow (1980)

    Google Scholar 

  82. Gibson, E., Andrawes, F.: The role of sulfur in the Apollo 12 basalts. In: 8th Lunar and Planetary Science Conference, pp. 351–353 (1977)

    Google Scholar 

  83. Frondel, J.: Lunar Mineralogy. Wiley (1975)

    Google Scholar 

  84. Lindstrom, M., Salpas, P.: Geochemical studies of feldspatic fragmental breccias and the nature of North Ray crater ejecta. J. Geophys. Res. 88, A671–A683 (1983) (Proceedings of 13th Lunar Science Conference)

    Google Scholar 

  85. Norman, M., Taylor, G., Keil, K.: Additional complexity in the lunar crust—petrology of sodic anorthosites and sulfur-rich, ferroan noritic anorthosites. Geophys. Res. Lett. 18, 2081–2084 (1991)

    Article  Google Scholar 

  86. Colson, R.: Mineralisation on the Moon? Theoretical Considerations of Apollo 16 “Rusty Rocks”, sulfide replacement in 67016, and surface-correlated volatiles on lunar volcanic glass. In: Proceedings of the 22nd Lunar and Planetary Science Conference, pp. 427−436 (1992)

    Google Scholar 

  87. Grove, T.: Compositional variations among Apollo 15 green glass spheres. In: 12th Lunar and Planetary Science Conference, pp. 935–948 (1981)

    Google Scholar 

  88. Morrison, G., Gerard, J., Kashuba, A., Gangadharam, E., Rothenberg, A., Potter, N., Miller, G.: Elemental abundance of lunar soil and rocks. In: Proceedings of the Apollo 11 Lunar Science Conference, pp. 1383–1392. Geochimica et Cosmochimica Acta Supplement (1970)

    Google Scholar 

  89. Morrison, G., Gerard, J., Potter, N., Gangadharam, E., Rottenberg, A., Burdo, R.: Elemental abundances of lunar soil and rocks from Apollo 12. In: Proceedings of the 2nd Lunar Science Conference, pp. 1169–1185 (1971)

    Google Scholar 

  90. Belyaev, Yu., Koveshnikova, T.: On the content of mercury in the regolith of the sea of tranquility, the sea of fertility and the ocean of storms. In: Vinogradov, A. (ed.) Lunar Soil from the Sea of Fertility, pp. 264–277. Nauka, Moscow (1974)

    Google Scholar 

  91. Reed, G., Goleb, J., Jovanovic, S.: Surface-related mercury in lunar samples. Science 172, 258–261 (1971)

    Article  Google Scholar 

  92. Jovanovic, S., Reed, G.: Trace-elements profiles, notably Hg, from a preliminary study of the Apollo 15 deep drill core. Earth Planet. Sci. Lett. 16, 257–262 (1972)

    Article  Google Scholar 

  93. Milicka, J., Massault, M., Francu, J.: Carbon and hydrogen isotopes in four natural gases from the Slovak and Czech part of the Vienna Basin. Geol. Carpath. 45(4), 379–382 (1994)

    Google Scholar 

  94. Ni, Y., Liao, F., Yao, L., Gao, J., Zhang, D.: Hydrogen isotope of natural gas from the Xujiahe formation and its implications for water salinization in central Sichuan Basin, China. J. Nat. Gas Geosci. 4(4), 215–230 (2019)

    Article  Google Scholar 

  95. Michalski, G., Kolanowski, M., Riha, K.: Oxygen and nitrogen isotopic composition of nitrate in commercial fertilizers, nitric acid, and reagent salts. Isotopes Environ. Health Stud. pp. 1−10 (2015)

    Google Scholar 

  96. Dai, J., Qin, S., Tao, S., Zhu, G., Mi, J.: Development trends of natural gas industry and the significant progress on natural gas geological theories in China. Nat. Gas Geosci. 16(2), 127–142 (2005)

    Google Scholar 

  97. VIPER Mission Overview. https://www.nasa.gov/viper/overview. Last accessed 9 Nov 2021

  98. Robinson, K., Barnes, J., Nagashima, K., Thomen, A., Franchi, I., Huss, G., Anand, M., Taylor, G.: Water in evolved lunar rocks: evidence for multiple reservoirs. Geochim. Cosmochim. Acta 188, 244−260 (2016)

    Google Scholar 

  99. Saal, A., Hauri, E., Van Orman, J., Rutherford, M.: Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage. Science 340, 1317–1320 (2013)

    Article  Google Scholar 

  100. Füri, E., Deloule, E., Trappitsch, R.: The production rate of cosmogenic deuterium at the Moon’s surface. Earth Planet. Sci. Lett. 474, 76–82 (2017)

    Article  Google Scholar 

  101. Piani, L., Marrocchi, Y.: Hydrogen isotopic composition of water in CV-type carbonaceous chondrites. Earth Planet. Sci. Lett. 504, 64–71 (2018)

    Article  Google Scholar 

  102. Fujiya, W., Sugiura, N., Marrocchi, Y., Takahata, N., Hoppe, P., Shirai, K., Sano, Y., Hiyagon, H.: Comprehensive study of carbon and oxygen isotopic compositions, trace element abundances, and cathodoluminescence intensities of calcite in the Murchison CM chondrite. Geochim. Cosmochim. Acta 161, 101−117 (2015)

    Google Scholar 

  103. Fujiya, W., Fukuda, K., Koike, M., Ishida, A., Sano, Y.: Oxygen and carbon isotopic ratios of carbonates in the Nogoya CM chondrite. In: 47th Lunar and Planetary Science Conference. LPI Contribution No. 1903:1712 (2016)

    Google Scholar 

  104. Fujiya, W., Hoppe, P., Fukuda, K., Lindgren, P., Lee, M., Koike, M., Shirai, K., Sano, Y.: Carbon isotopic ratios of carbonate in CM chondrites and the Tagish Lake meteorite. In: 49th Lunar and Planetary Science Conference. LPI Contribution No. 2083, abstract #1377 (2018)

    Google Scholar 

  105. Lyons, J., Gharib-Nezhad, E., Ayres, T.: A light carbon isotope composition for the Sun. Nat. Commun. 9, 908 (2018)

    Article  Google Scholar 

  106. Marty, B.: The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313–314, 56–66 (2012)

    Google Scholar 

  107. Pieters, C., Goswami, J., Clark, R., Annadurai, M., Boardman, J., Buratti, B., Combe, J., Dyar, M., Green, R., Head, J., Hibbitts, C., Hicks, M., Isaacson, P., Klima, R., Kramer, G., Kumar, S., Livo, E., Lundeen, S., Malaret, E., McCord, T., Mustard, J., Nettles, J., Petro, N., Runyon, C., Staid, M., Sunshine, J., Taylor, L., Tompkins, S., Varanasi, P.: Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1. Science 326, 568–572 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The work is conducted under the GEOKHI RAS state assignment. The authors are grateful to colleagues N. A. Artemyeva, V. A. Dorofeeva and A. I. Buikin for helpful comments on the text of the manuscript, and Mark Robinson for the help with preparation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Lorenz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lorenz, C.A., Basilevsky, A.T., Dolgopolov, V.P., Kozlova, T.O. (2023). Estimation of the Influence of Contamination by Rocket Fuel Combustion Products on the Chemical and Isotopic Composition of the Lunar Regolith in the Polar Regions. In: Kolotov, V.P., Bezaeva, N.S. (eds) Advances in Geochemistry, Analytical Chemistry, and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-09883-3_23

Download citation

Publish with us

Policies and ethics

Navigation