Nanotheranostic: A Versatile Approach for Eye Cancer Diagnosis and Treatment

  • Chapter
  • First Online:
Nanomaterials for Cancer Detection Using Imaging Techniques and Their Clinical Applications

Abstract

Despite numerous scientific efforts, efficient drug delivery or accurate diagnosis of ocular diseases remains a challenge for pharmaceutical scientists due to the presence of various anatomic and physiologic barriers. Most ocular diseases are treated by conventional ophthalmic medications, like topical eye drops, suspensions, and ointments. Entry of foreign particles is discouraged from active absorption due to the presence of unique static and dynamic ocular barriers. Strategy to overcome various ocular barriers has been the foremost approach in ocular research, which deals with the proper designing of an ideal delivery system that has the ability of enhanced drug bioavailability and controlled release of drug at the site of action. Nanotechnology has made significant progress in the fields of ocular drug delivery and imaging. Nanotechnology can potentially transform the pharmacological approach by overcoming limitations displayed by the protective ocular barriers precisely with a sustained release manner. Currently, noteworthy interest has been given to the integration of therapy and diagnostics (theranostic) for better clinical management. The application of nanoparticles in diagnostics will be able to enhance the existing diagnostic and screening tools for detecting eye diseases precisely while monitoring the disease progression. In this chapter, we will discuss different nanotheranostics applications for specific ophthalmology applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Burton MJ, Ramke J, Marques AP, Bourne RRA, Congdon N, Jones I, et al. The lancet Global Health Commission on global eye health: vision beyond 2020. Lancet Glob Health. 2021;9:e489–551.

    Article  Google Scholar 

  2. Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov Today. 2008;13(3–4):144–51.

    Article  CAS  Google Scholar 

  3. Weng Y, Liu J, ** S, Guo W, Liang X, Hu Z. Nanotechnology-based strategies for treatment of ocular disease. Acta PharmSin B. 2017;7:281–91.

    Article  Google Scholar 

  4. Jiang S, Franco YL, Zhou Y, Chen J. Nanotechnology in retinal drug delivery. Int J Ophthalmol. 2018;11(6):1038–44.

    Google Scholar 

  5. Jo DH, Kim JH, Son JG, Dan KS, Song SH, Lee TG, et al. Nanoparticle-protein complexes mimicking corona formation in ocular environment. Biomaterials. 2016;109:23–31.

    Article  CAS  Google Scholar 

  6. Wong XY, Sena-Torralba A, Alvarez-Diduk R, Muthoosamy K, Merkoçi A. Nanomaterials for nanotheranostics: tuning their properties according to disease needs. ACS Nano. 2020;14:2585–627.

    Article  CAS  Google Scholar 

  7. Das SS, Bharadwaj P, Bilal M, Barani M, Rahdar A, Taboada P, Bungau S, Kyzas G.Z. . Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers 2020;12:1397.

    Google Scholar 

  8. Todd TW, Beecher H, Williams GH, Todd AW. The weight and growth of the human eye ball. Hum Biol. 1940;12:1–20.

    Google Scholar 

  9. Dingeldein SA, Klyce SD. The topography of normal corneas. Arch Ophthalmol. 1989;107:512–518.

    Google Scholar 

  10. Klyce SD, Beuerman RW. Structure and function of the cornea. In: Kaufman HE, Barron BA, McDonald MB, Waltman SR, editors, The cornea NewYork: Churchill Livingstone Inc. 1988. p. 3–54.

    Google Scholar 

  11. Prausnitz M, Noonan JS. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci. 1998;87:1479–88.

    Article  CAS  Google Scholar 

  12. Yi X, Wang Y. Yu FS corneal epithelial tight junctions and their response to lipopolysaccharide challenge. Invest Ophthalmol Vis Sci. 2000;41:4093–100.

    CAS  Google Scholar 

  13. Furuichi MC, ChibaT AK, Kogure S, Iijima H, Tsukahara S, et al. Cystoid macular edema associated with topical latanoprost in glaucomatous eyes with a normally functioning blood–ocular barrier. J Glaucoma. 2001;10:233–6.

    Article  CAS  Google Scholar 

  14. Cunha-Vaz JG. The blood–ocular barriers: past, present, and future. Doc Ophthalmol. 1997;93:149–57.

    Article  CAS  Google Scholar 

  15. Weijtens O, Schoemaker RC, Romijn FP, Cohen AF, Lentjes EG, van Meurs JC. Intraocular penetration and systemic absorption after topical application of dexamethasone disodium phosphate. Ophthalmology. 2002;109:1887–91.

    Article  Google Scholar 

  16. Baudouin C, Labbé A, Liang H, Pauly A, Brignole-Baudouin F. Preservatives in eye drops: the good, the bad and the ugly. Prog Retin Eye Res. 2010;29:312–34.

    Article  CAS  Google Scholar 

  17. Ward AH, Siegwart JT Jr, Frost MR, Norton TT. The effect of intravitreal injection of vehicle solutions on form deprivation myopia in tree shrews. Exp Eye Res. 2016;145:289–96.

    Article  CAS  Google Scholar 

  18. Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv. 2006;3:275–87.

    Article  CAS  Google Scholar 

  19. Raghava S, Hammond M, Kompella UB. Periocular routes for retinal drug delivery. Expert Opin Drug Deliv. 2004;1:99–114.

    Article  Google Scholar 

  20. Rajala A, Wang Y, Zhu Y, Ranjo-Bishop M, Ma J-X, Mao C, Rajala RVS. Nanoparticle-assisted targeted delivery of eye-specific genes to eyes significantly improves the vision of blind mice in vivo. Nano Lett. 2014;14(9):5257–63.

    Article  CAS  Google Scholar 

  21. Shen H-H, Chan EC, Lee JH, Bee YS, Lin T-W, Dusting GJ, Liu G-S. Nanocarriers for treatment of ocular neovascularization in the back of the eye: new vehicles for ophthalmic drug delivery. Nanomedicine (Lond). 2015;10(13):2093–107.

    Article  CAS  Google Scholar 

  22. Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010;12(3):348–60.

    Article  CAS  Google Scholar 

  23. Regnier A, Schneider M, Concordet D, Toutain PL. Intraocular pharmacokinetics of intravenously administered marbofloxacin in rabbits with experimentally induced acute endophthalmitis. Am J Vet Res. 2008;69(3):410–5.

    Article  CAS  Google Scholar 

  24. Varela-Fernández R, Díaz-Tomé V, Luaces-Rodríguez A, Conde-Penedo A, García-Otero X, Luzardo-Álvarez A, Fernández-Ferreiro A, Otero-Espinar FJ. Drug delivery to the posterior segment of the eye: biopharmaceutic and pharmacokinetic considerations. Pharmaceutics. 2020;12(3):269.

    Article  Google Scholar 

  25. Finger PT, Kurli M, Reddy S, Tena LB, Pavlick AC. Whole body PET/CT for initial staging of choroidal melanoma. Brit J Ophthalmol. 2005;89:1270–4.

    Article  CAS  Google Scholar 

  26. Anderson SA, Rader RK, Westlin WF, Null C, Jackson D, Lanza GM, et al. Magnetic resonance contrast enhancement of neovasculature with αvβ3-targetednanoparticles. Magn Reson Med. 2000;44:433–9.

    Article  CAS  Google Scholar 

  27. Zagaynova EV, Shirmanova MV, Kirillin MY, Khlebtsov BN, Orlova AG, Balalaeva IV et al. Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation. Phys Med Biol 2008;53:4995–5009.

    Google Scholar 

  28. Cang H, Sun T, Li ZY, Chen J, Wiley BJ, **a Y, et al. Gold nanocages as contrast agents for spectro scopic optical coherence tomography. Opt Lett. 2005;30:3048–50.

    Article  CAS  Google Scholar 

  29. Hosoya H, Dobroff AS, Driessen WH, et al. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release. Proc Natl Acad Sci U S A. 2016;113(7):1877–82.

    Article  CAS  Google Scholar 

  30. Pokki J, Ergeneman O, Chatzipirpiridis G, Lühmann T, Sort J, Pellicer E, Pot SA, Spiess BM, Pané S, Nelson BJ. Protective coatings for intraocular wirelessly controlled microrobots for implantation: corrosion, cell culture, and in vivo animal tests. J Biomed Mater ResPart B. 2017;105(4):836–45.

    Article  CAS  Google Scholar 

  31. Ullrich F, Bergeles C, Pokki J, Ergeneman O, Erni S, Chatzipirpiridis G, et al. Mobility experiments with microrobots for minimally invasive intraocular surgery. Invest Ophthalmol Vis Sci. 2013;54:2853–63.

    Article  Google Scholar 

  32. Wu Z, Troll J, Jeong H-H, Wei Q, Stang M, Ziemssen F, et al. A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci Adv. 2018;4(11):eaat4388.

    Google Scholar 

  33. Kong L, Alves CS, Hou W, Qiu J, Möhwald H, Tomás H, Shi X. RGD peptide-modified dendrimer-entrapped gold nanoparticles enable highly efficient and specific gene delivery to stem cells. ACS Appl Mater Interfaces. 2015;7(8):4833–43.

    Article  CAS  Google Scholar 

  34. Masse F, Ouellette M, Lamoureux G, Boisselier E. Gold nanoparticles in ophthalmology. Med Res Rev. 2019;39(1):302–27.

    Article  Google Scholar 

  35. Daraee H, Eatemadi A, Abbasi E, Fekri Aval S, Kouhi M, Akbarzadeh A. Application of gold nanoparticles in biomedical and drug delivery. Artif Cells Nanomed Biotechnol. 2016;44(1):410–22.

    Article  CAS  Google Scholar 

  36. Basuki JS, Qie F, Mulet X, Suryadinata R, Vashi AV, Peng YY, et al. Photo-modulated therapeutic protein release from a hydrogel depot using visible light. Angew Chem Int Ed Engl. 2017;56(4):966–71.

    Article  CAS  Google Scholar 

  37. Adler DC, Huang SW, Huber R, Fujimoto JG. Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography. Optic Express. 2008;16(7):4376–93.

    Article  CAS  Google Scholar 

  38. Goldmann C, Lazzari R, Paquez X, Boissière C, Ribot F, Sanchez C, et al. Charge transfer at hybrid interfaces: plasmonics of aromatic thiol-capped gold nanoparticles. ACS Nano. 2015;9(7):7572–82.

    Article  CAS  Google Scholar 

  39. Lin YX, Hu XF, Zhao Y, Gao YJ, Yang C, Qiao SL, et al. Photothermal ring integrated intraocular lens for high-efficient eye disease treatment. Adv Mater. 2017;29(34):1701617.

    Article  Google Scholar 

  40. Nelidova D, Morikawa RK, Cowan CS, Raics Z, Goldblum D, Scholl HPN, et al. Restoring light sensitivity using tunable near-infrared sensors. Sci Adv. 2020;368(6495):1108–13.

    CAS  Google Scholar 

  41. Mukherjee P, Bhattacharya R, Wang P, Wang L, Basu S, Nagy JA, et al. Antiangiogenic properties of gold nanoparticles. Clin Canc Res. 2005;11(9):3530–4.

    Article  CAS  Google Scholar 

  42. Brivio D, Zygmanski P, Arnoldussen M, Hanlon J, Chell E, Sajo E et al. Kilovoltage radiosurgery with gold nanoparticles for neovascular age-related macular degeneration (AMD): a Monte Carlo evaluation. Phys Med Biol 2015;60(24): 9203–13.

    Google Scholar 

  43. Rezaei H, Zabihzadeh M, Ghorbani M, Goli Ahmadabad F, Mostaghimi H. Evaluation of dose enhancement in presence of gold nanoparticles in eye brachytherapy by (103)Pd source. Australas Phys Eng Sci Med. 2017;40(3):545–53.

    Article  Google Scholar 

  44. Pereira DV, Petronilho F, Pereira HR, Vuolo F, Mina F, Possato JC, et al. Effects of gold nanoparticles on endotoxin-induced uveitis in rats. Invest Ophthalmol Vis Sci. 2012;53(13):8036–41.

    Article  CAS  Google Scholar 

  45. Wang M, Yang Q, Li M, Zou H, Wang Z, Ran H, et al. Multifunctional nanoparticles for multimodal imaging-guided low-intensity focused ultrasound/Immunosynergistic retinoblastoma therapy. ACS Appl Mater Interfaces. 2020;12(5):5642–57.

    Article  CAS  Google Scholar 

  46. Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov. 2004;3(3):205–14.

    Article  CAS  Google Scholar 

  47. Chen J, Patil S, Seal S, McGinnis JF. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol. 2006;1(2):142–50.

    Article  CAS  Google Scholar 

  48. Cai X, Sezate SA, Seal S, McGinnis JF. Sustained protection against photoreceptor degeneration in tubby mice by intravitreal injection of nanoceria. Biomaterials. 2012;33(34):8771–81.

    Article  CAS  Google Scholar 

  49. Cai X, Seal S, McGinnis JF. Sustained inhibition of neovascularization in vldlr−/− mice following intravitreal injection of cerium oxide nanoparticles and the role of the ASK1-P38/JNK-NF-κB pathway. Biomaterials. 2014;35(1):249–58.

    Article  CAS  Google Scholar 

  50. Wong LL, Pye QN, Chen L, Seal S, McGinnis JF. Defining the catalytic activity of nanoceria in the P23H-1 rat, a photoreceptor degeneration model. PLoS One. 2015;10(3):e0121977.

    Article  Google Scholar 

  51. Jo DH, Kim JH, Son JG, Song NW, Kim Y-I, Yu YS, et al. Anti-angiogenic effect of bare titanium dioxide nanoparticles on pathologic neovascularization without unbearable toxicity. Nanomed Nanotechnol Biol Med. 2014;10(5):e1109–17.

    Article  Google Scholar 

  52. Zhang L, Ji X, Su Y, Zhai X, Xu H, Song B, et al. Fluorescent silicon nanoparticles-based nanotheranostic agents for rapid diagnosis and treatment of bacteria-induced keratitis. Nano Res. 2021;14(1):52–8.

    Article  Google Scholar 

  53. Krebs I, Lois N, Forrester JV. Fundus autofluorescence. Graefes Arch Clin Exp Ophthalmol. 2011;249(2):309.

    Article  Google Scholar 

  54. Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, Iancu C, Mocan L. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine. 2017;12:5421–31.

    Article  CAS  Google Scholar 

  55. Zarbin MA, Montemagno C, Leary JF, Ritch R. Nanotechnology in ophthalmology. Can J Ophthalmol. 2010;45(5):457–76.

    Article  Google Scholar 

  56. Cormode DP, Skajaa GO, Delshad A, Parker N, Jarzyna PA, Calcagno C, et al. A versatile and tunable coating strategy allows control of nanocrystal delivery to cell types in the liver. Bioconjug Chem. 2011;22(3):353–61.

    Article  CAS  Google Scholar 

  57. Tari SR, Barile GR, Kompella UB. Polychromatic, diversely-sized particles for angiography. In: Office USP, editor, United States: The Trustees of Columbia University in the City of New York Board or Reagents of the University of Nebraska Varner Hall 2009:19.

    Google Scholar 

  58. Pathak S, Tolentino R, Nguyen K, D'Amico L, Barron E, Cheng L, et al. Quantum dot labeling and imaging of glial fibrillary acidic protein intermediate filaments and gliosis in the rat neural retina and dissociated astrocytes. J Nanosci Nanotechnol. 2009;9(8):5047–54.

    Article  CAS  Google Scholar 

  59. Yamamoto S, Manabe N, Fujioka K, Hoshino A, Yamamoto K. Visualizing vitreous using quantum dots as imaging agents. IEEE Trans Nanobioscience. 2007;6(1):94–8.

    Article  Google Scholar 

  60. Takeda A, Baffi JZ, Kleinman ME. CCR3 is a target for age-related macular degeneration diagnosis and therapy. Nature. 2009;460(7252):225–30.

    Article  CAS  Google Scholar 

  61. Tam AL, Gupta N, Zhang Z, Yucel YH. Quantum dots trace lymphatic drainage from the mouse eye. Nanotechnology. 2011;22(42):425101.

    Article  Google Scholar 

  62. Jayagopal A, Russ PK, Haselton FR. Surface engineering of quantum dots for in vivo vascular imaging. Bioconjug Chem. 2007;18(5):1424–33.

    Article  CAS  Google Scholar 

  63. Prabhu P, Patravale V. The upcoming field of theranostic nanomedicine: an overview. J Biomed Nanotech. 2012;8(6):859–82.

    Article  CAS  Google Scholar 

  64. Raju HB, Hu Y, Padgett KR, Rodriguez JE, Goldberg JL. Investigation of nanoparticles using magnetic resonance imaging after intravitreal injection. Clin Experiment Opthalmol. 2012;40(1):100–7.

    Article  Google Scholar 

  65. Krause M, Kwong KK, **ong J, Gragoudas ES, Young LH. MRI of blood volume and cellular uptake of superparamagnetic iron in an animal model of choroidal melanoma. Opthalmic Res. 2002;34(4):241–50.

    Article  CAS  Google Scholar 

  66. Barnett JM, Penn JS, Jayagopal A. Imaging of endothelial progenitor cell subpopulations in angiogenesis using quantum dot nanocrystals. In: Rosenthal SJ, Wright DW, editors. NanoBiotechnology protocols. Totowa: Humana Press; 2013. p. 45–56.

    Chapter  Google Scholar 

  67. Wang HC, Brown J, Alayon H, Stuck BE. Transplantation of quantum dot-labelled bone marrow-derived stem cells into the vitreous of mice with laser-induced retinal injury: survival, integration and differentiation. Vis Res. 2010;50(7):665–73.

    Article  CAS  Google Scholar 

  68. Tam ALC, Gupta N, Zhang Z, Yücel YH. Latanoprost stimulates ocular lymphatic drainage: an in vivo Nanotracer study. Transl Vis Sci Technol. 2013;2(5):3–3.

    Article  Google Scholar 

  69. Kompella UB, Amrite AC, Pacha Ravi R, Durazo SA. Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Prog Retin Eye Res. 2013;36:172–98.

    Article  CAS  Google Scholar 

  70. Rowe-Rendleman CL, Durazo SA, Kompella UB, Rittenhouse KD, Di Polo A, Weiner AL, et al. Drug and gene delivery to the back of the eye: from bench to bedside. Invest Ophthalmol Vis Sci Nature. 2014;55(4):2714–30.

    Article  CAS  Google Scholar 

  71. Mishra V, Patil A, Thankur S, Prashant K. Carbon dots: emerging theranostic nanoarchitectures. Drug Discov Today. 2018;23:1219–32.

    Article  CAS  Google Scholar 

  72. Hu S-L, Niu K-Y, Sun J, Yang J, Zhao N-Q, Du XW. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J Mater Chem. 2009;19:484–8.

    Article  CAS  Google Scholar 

  73. Tabish TA, Zhang S. Graphene quantum dots: synthesis, properties, and biological applications. Compr Nanosci Nanotechnol. 2016;3:171–92.

    Article  Google Scholar 

  74. **a C, Zhu S, Feng T, Yang M, Yang, B. Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots. Adv Sci (Weinh). 2019;6:1901316.

    Google Scholar 

  75. Sharma A, Das J. Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine. J Nanobiotechnol. 2019;17:1–24.

    Article  CAS  Google Scholar 

  76. Jian H-J, Wu R-S, Lin T-Y, Li Y-J, Lin H-J, Harroun SG, et al. Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis. ACS Nano. 2017;11(7):6703–16.

    Article  CAS  Google Scholar 

  77. Liu C, Zhang P, Zhai X, Tian F, Li W, Yang J, et al. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials. 2012;33:3604–13.

    Article  CAS  Google Scholar 

  78. Qu D, Miao X, Wang X, Nie C, Li Y, Luo L, et al. Se & N co-doped carbon dots for high-performance fluorescence imaging agent of angiography. J Mater Chem B 5. 2017;4988–92.

    Google Scholar 

  79. Karakoçak B, Liang J, Kavadiya S, Berezin MY, Biswas P, Ravi N. Optimizing the synthesis of red-emissive nitrogen-doped carbon dots for use in bioimaging. ACS Appl Nano Mater. 2018;1:3682–92.

    Article  Google Scholar 

  80. Shoval A, Markus A, Zhou Z., Liu X., Cazelles R., Willner I. Anti-VEGF-aptamer modified c-dots-a hybrid nanocomposite for topical treatment of ocular vascular disorders. Small. 2019;15:e1902776.

    Google Scholar 

  81. Yang TC, Chang CY, Yarmishyn AA, Mao YS, Yang YP, Wang ML, et al. . Carboxylated nanodiamond-mediated CRISPR-Cas9 delivery of human retinoschisis mutation into human iPSCs and mouse retina. Acta Biomater 2020;101:484–494.

    Google Scholar 

  82. Zhu X, Zhang J, Liu J, Zhang Y. Recent progress of rare-earth doped upconversion nanoparticles: synthesis, optimization, and applications. Adv Sci (Weinh). 2019;6(22):1901358.

    Article  CAS  Google Scholar 

  83. Ma Y, Bao J, Zhang Y, Li Z, Zhou X, Wan C, Huang L, Zhao Y, Han G, Xue T. Mammalian near-infrared image vision through injectable and self-powered retinal nanoantennae. Cell. 2019;177(2):243–55.

    Article  CAS  Google Scholar 

  84. Cavalli R Soster M, Argenziano M. Nanobubbles: a promising efficient tool for therapeutic delivery. Ther Deliv. 2016;7(2):117–138.

    Google Scholar 

  85. Mahlumba P, Choonara YE, Kumar P, du Toit LC, Pillay V. Stimuli-responsive polymeric systems for controlled protein and peptide delivery: future implications for ocular delivery. Molecules 2016;21:1002.

    Google Scholar 

  86. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12:991–1003.

    Article  CAS  Google Scholar 

  87. Thakur SS, Chen Y-S, Houston ZH, Fletcher N, Barnett NL, Thurecht KJ, et al. Ultrasound-responsive nanobubbles for enhanced intravitreal drug migration: an ex vivo evaluation. Eur J Pharm Biopharm. 2019;136:102–7.

    Article  CAS  Google Scholar 

  88. Bhandari P, Novikova G, Goergen CJ, Irudayaraj J. Ultrasound beam steering of oxygen nanobubbles for enhanced bladder cancer therapy. Sci RepB. 2018;8(3112).

    Google Scholar 

  89. Chiu TI, Wang MJ, Su CC. The treatment of glioblastoma multiforme through activation of microglia and TRAIL induced by rAAV2-mediated IL-12 in a syngeneic rat model. J Biomed Sci. 2012;19(1):45.

    Article  CAS  Google Scholar 

  90. Meleis AM, Mahtabfar A, Danish S, Foty RA. Dexamethasone-mediated inhibition of Glioblastoma neurosphere dispersal in an ex vivo organotypic neural assay. PLoS One. 2017;12(10):e0186483.

    Google Scholar 

  91. Goswami M, Wang X, Zhang P, **ao W, Karlen SJ, Li Y, et al. Novel window for cancer nanotheranostics: non-invasive ocular assessments of tumor growth and nanotherapeutic treatment efficacy in vivo. Biomed Opt Express. 2019;10(1):151–66.

    Article  CAS  Google Scholar 

  92. Souto EB, Silva GF, Dias-Ferreira J, Zielinska A, Ventura F, Durazzo A, Lucarini M, Novellino E, Santini A. Nanopharmaceutics: Part I-clinical trials legislation and good manufacturing practices (GMP) of nanotherapeutics in the EU. Pharmaceutics. 2020;12(2).146.

    Google Scholar 

Download references

Acknowledgments

FD gratefully acknowledges the Department of Science and Technology, Government of India, for the financial support (SR/WOS-A/LS-448/2017) in the form of Women Scientist-A fellowship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dilnawaz, F., Sahoo, S.K. (2022). Nanotheranostic: A Versatile Approach for Eye Cancer Diagnosis and Treatment. In: Chaughule, R.S., Patkar, D.P., Ramanujan, R.V. (eds) Nanomaterials for Cancer Detection Using Imaging Techniques and Their Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-09636-5_15

Download citation

Publish with us

Policies and ethics

Navigation